L-fuzzy algebraic substructure

Document Type : Original Article


1 Department Mathematics, Northwest University, Xian, China

2 School of Science, Xi'an Polytechnic University, Xi'an, China

3 School of Science, Xi'an Polytechnic University, Xi'an, China


This article aims to provide a method for defining L-fuzzy algebraic substructures on general algebras. Concretely, the  properties of L-fuzzy sets are first reviewed, and their representations are then provided. Next, algebraic substructures  are generalised as the closure systems on the power set of the algebra, and the properties of the prime and maximal elements in the above closure system are investigated. Based on these facts, L-fuzzy algebraic substructures with respect to the closure system are defined and studied. Two equivalence characterisations of the sup property of the ordered set L are provided using L-fuzzy substructures. Similarly, some properties of L-fuzzy prime and maximal substructures with respect to the closure system are discussed. Finally, to demonstrate the broad applicability of the theory of L-fuzzy  algebraic substructures, the theory is applied to some specific algebraic structures, such as groups and pseudo MV-algebras.


[1] S.Z. Alavi, R.A. Borzooei, M. Aaly Kologani, Fuzzy filters in pseudo hoops, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 1997–2007. DOI: 10.3233/JIFS-161586.
[2] M. Bakhshi, S.S. Ahn, Y.B. Jun, Construction of some algebras of logic by using fuzzy ideals in MV-modules, Journal of Intelligent and Fuzzy Systems, 44(3) (2023), 4509–4519. DOI: 10.3233/JIFS-221552.
[3] R. Belohlavek, Fuzzy relational systems: Foundations and principles, New York: Springer Science and Business Media, 2012.
[4] T.S. Blyth, Lattices and ordered algebraic structures, London: Springer, 2005.
[5] R.A. Borzooei, G.R. Rezaei, G. Muhiuddin, Multipolar fuzzy a-ideals in BCI-algebras, International Journal of Machine Learning and Cybernetics, 12(8) (2021), 2339–2348. DOI: 10.1007/s13042-021-01314-8.
[6] S. Burris, H.P. Sankappanavar, A course in universal algebra, New York: Springer, 1981.
[7] P.S. Das, Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84(1) (1981), 264–269. DOI: 10.1016/0022-247X(81)90164-5.
[8] P.H. Dwinger, On the closure operators of a complete lattice, Indagationes Mathematicae, 57 (1954), 560–563. DOI: 10.1016/S1385-7258(54)50072-7.
[9] G. Dymek, Fuzzy maximal ideals of pseudo MV-algebras, Commentationes Mathematicae, 47(1) (2007), 31–46.
[10] G. Dymek, Fuzzy prime ideals of pseudo-MV algebras, Soft Computing-A Fusion of Foundations, Methodologies and Applications, 12(4) (2007), 365–372. DOI: 10.1007/s00500-007- 0170-2.
[11] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Multi-Valued Logic, 6(1-2) (2001), 95–135.
[12] J.A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18(1) (1967), 145–174. DOI: 10.1016/0022-247X(67)90189-8.
[13] C.S. Hoo, Fuzzy ideals of BCI and MV-algebras, Fuzzy Sets and Systems, 62(1) (1994), 111– 114. DOI: 10.1016/0165-0114(94)90078-7.
[14] Y.B. Jun, A. Walendziak, Fuzzy ideals of pseudo MV-algebras, International Review of Fuzzy Mathematics, 1 (2006), 21–31.
[15] H.M. MacNeille, Partially ordered sets, Transactions of the American Mathematical Society, 2(3) (1937), 416–460. DOI: 10.1090/S0002-9947-1937-1501929-X.
[16] V. Murali, Fuzzy congruence relations, Fuzzy Sets and Systems, 41(3) (1991), 359–369. DOI: 10.1016/0165-0114(91)90138-G.
[17] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications, 35(3) (1971), 512–517. DOI: 10.1016/0022-247X(71)90199-5.
[18] S.Z. Song, H. Bordbar, Y.B. Jun, A new type of hesitant fuzzy subalgebras and ideals in BCK/BCI-algebras, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 2009–2016. DOI: 10.3233/JIFS-161601.
[19] W. Wei, X.L. Xin, On fuzzy filters of Heyting-algebras, Discrete and Continuous Dynamical Systems-Series-S, 6(6) (2012), 1611–1619. DOI: 10.3934/dcdss.2011.4.1611.
[20] L.A. Zadeh, Fuzzy sets, Information Control, 8 (1965), 338–353. DOI: 10.1016/S0019-9958(65)90241-X.
[21] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3(2) (1971), 177– 200. DOI: 10.1016/S0020-0255(71)80005-1.
[22] Q. Zhan, J. Wang, W. Luan, Fuzziness in L-algebras, Fuzzy Sets and Systems, 425 (2021), 157–168. DOI: 10.1016/j.fss.2021.03.002.