Fundamental relations in Hv-structures. The ’Judging from the results’ proof

Document Type : Original Article


Emeritus Professor of Mathematics, Democritus University of Thrace, Greece


The largest class of hyperstructures is the one which satisfy the weak axioms. These are called Hv-structures introduced in 1990 and they proved to have a lot of applications on several sciences. The main tool in the study of Hv-structures is the ’fundamental structure’ which is based on the ’fundamental relations’. These relations connect the hyperstructures with the corresponding classical structures. One cannot find the fundamental classes in an analytic way since they depend on the results of hyperoperations used. In this paper we focus on the fact that the fundamental classes depend on the results which gives new proofs and a lot of new important, for applications, large classes of hyperstructures.


[1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, (1993).
[2] P. Corsini, V. Leoreanu, Application of hyperstructure theory, Klower Academic, (2003).
[3] P. Corsini, T. Vougiouklis, From groupoids to groups through hypergroups, Rendiconti di Matematica VII, 9 (1989), 173–181.
[4] B. Davvaz, On Hv-rings and Fuzzy Hv-ideals, Journal of Fuzzy Mathematics, 6(1) (1998),
[5] B. Davvaz, Fuzzy Hv-submodules, Fuzzy sets and Systems, 117 (2001), 477–484.
[6] B. Davvaz, A brief survey of the theory of Hv-structures, 8th AHA, Greece, Spanidis, (2003),
[7] B. Davvaz, R.M. Santilli, T. Vougiouklis, Multi-valued hypermathematics for characterization
of matter and antimatter systems, Journal of Computational Methods in Sciences and Engineering(JCMSE), 13 (2013), 37–50.
[8] B. Davvaz, S. Vougiouklis, T. Vougiouklis, On the multiplicative Hvrings derived from helix
hyperoperations, Utilitas Mathematica, 84 (2011), 53–63.
[9] B. Davvaz, T. Vougiouklis, A walk through weak hyperstructures, Hv-Structures, World Scientific, (2018).
[10] P. Kambakis Vougioukli, P. Nikolaidou, T. Vougiouklis, Questionnaires in linguistics using
the bar and the Hv-structures, Studies in Systems, Decision and Control 66, Springer, (2017),
[11] P. Kambaki Vougioukli, T. Vougiouklis, Bar instead of scale, Ratio Sociologica, 3 (2008),
[12] M. Koskas, Groupoides demi-hypergroupes et hypergroupes, Journal de Math´ematiques Pures
et Appliqu´ees, 49(9) (1970), 155–192.
[13] F. Marty, Sur un g´en´eralisation de la notion de groupe, 8eme Congr´es Mathematics Scandinaves, Stockholm, (1934), 45–49.
[14] R.M. Santilli, T. Vougiouklis, Isotopies, Genotopies, hyperstructures and their applications,
New frontiers in Hyperstructures, Hadronic, (1996), 1–48.
[15] R.M. Santilli, T. Vougiouklis, Hyperstructures in Lie-Santilli admissibility and iso-theories,
Ratio Mathematica, 33 (2017), 151–165.
[16] S. Spartalis, A. Dramalides, T. Vougiouklis, On Hv-group rings, Algebras, Groups and Geometries, 15 (1998), 47–54.
[17] S. Vougioukli, T. Vougiouklis, Helix-hopes on finite Hv-fields, Algebras, Groups and Geometries (AGG), 33(4) (2016), 491–506.
[18] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car.Math. Et Ph., 22(1)
(1981), 3–6.
[19] T. Vougiouklis, Representations of hypergroups, Hypergroup Algebra, Proc. Convegno: Ipergrouppi, Altre strutture Multivoche Appl. Udine, (1985), 59–73.
[20] T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Matematica Pura
ed Applicata, 2 (1987), 7–19.
[21] T. Vougiouklis, The very thin hypergroups and the S-construction, Combinatorics88, Incidence
Geometries Combinatorial Str., 2 (1991), 471–477.
[22] T. Vougiouklis, The fundamental relation in hyperrings, The General Hyperfield, 4th AHA,
Xanthi 1990, World Scientific, (1991), 203–211.
[23] T. Vougiouklis, Representations of hypergroups by generalized permutations, Algebra Universalis, 29 (1992), 172–183.
[24] T. Vougiouklis, Hyperstructures and their representations, Monographs in Mathematics,
Hadronic, (1994).
[25] T. Vougiouklis, Some remarks on hyperstructures, Contemporary Mathematics, American
Mathematical Society, 184 (1995), 427–431.
[26] T. Vougiouklis, Hv-groups defined on the same set, Discrete Mathematics, 155 (1996), 259–
[27] T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Mathematics, 174 (1997),
[28] T. Vougiouklis, Enlarging Hv-structures, Algebras and Combinatorics, ICAC97, Hong Kong,
Springer, (1999), 455–463.
[29] T. Vougiouklis, On Hv-rings and Hv-representations, Discrete Mathematics, Elsevier, 208/209
(1999), 615–620.
[30] T. Vougiouklis, The h/v-structures, Journal of Discrete Mathematical Sciences Cryptography,
6(2-3) (2003), 235–243.
[31] T. Vougiouklis, ∂-operations and Hv-fields, Acta Mathematica Sinica, English Series, 23(6)
(2008), 965–972.
[32] T. Vougiouklis, The Lie-hyperalgebras and their fundamental relations, Southeast Asian Bulletin of Mathematics, 37(4) (2013), 601–614.
[33] T. Vougiouklis, Enlarged fundamentally very thin Hv-structures, Journal of Algebraic Structures and Their Applications (ASTA), 1(1) (2014), 11–20.
[34] T. Vougiouklis, Hv-lie algebras and their representations, International Journal of Algebraic
Hyperstructures Application, 2(1) (2015), 53–65.
[35] T. Vougiouklis, On the hyperstructure theory, Southeast Asian Bulletin Mathematics, 40(4)
(2016), 603–620.
[36] T. Vougiouklis, Hv-fields, h/v-fields, Ratio Mathematica, 33 (2017), 181–201.
[37] T. Vougiouklis, From continuous to discrete via V&V bar, Science & Philosophy, 6(2) (2018),
[38] T. Vougiouklis, P. Kambakis-Vougiouklis, Bar in questionnaires, Chinese Business Review,
12(10) (2013), 691–697.
[39] T. Vougiouklis, T. Kaplani, Special elements on P-hopes and ∂-hopes, Southeast Asian Bulletin
Mathematics, 40(3) (2016), 451–460.
[40] T. Vougiouklis, S. Vougiouklis, The helix hyperoperations, Italian Journal and Pure Applied
Mathematics, 18 (2005), 197–206.
[41] T. Vougiouklis, S. Vougiouklis, Hyper-representations by non square matrices, Helix-hopes,
American Journal of Modern Physics, 4(5) (2015), 52–58.
[42] M.M. Zahedi, R.A. Borzoei, H. Rezaei, A classification of hyperK-algebras of order 3 which
satisfy the simple condition, Proc. C. Caratheodory in, Hadronic, (2001), 207–216.