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Abstract

The largest class of hyperstructures is the one which
satisfy the weak axioms. These are called Hv-structures
introduced in 1990 and they proved to have a lot of ap-
plications on several sciences. The main tool in the study
of Hv-structures is the ’fundamental structure’ which is
based on the ’fundamental relations’. These relations
connect the hyperstructures with the corresponding clas-
sical structures. One cannot find the fundamental classes
in an analytic way since they depend on the results of
hyperoperations used. In this paper we focus on the fact
that the fundamental classes depend on the results which
gives new proofs and a lot of new important, for applica-
tions, large classes of hyperstructures.
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A Title

1 Introduction

The Hv-structures is the largest class of hyperstructures, and they satisfy the weak axioms where
the non-empty intersection replaces the equality. They were introduced in 1990 by T. Vougiouklis
in the 4th AHA congress held in Greece [22], [24].

Some basic definitions:
In a set H equipped with a hyperoperation (abbreviation: hyperoperation=hope) · : H ×

H → P (H)− {∅}, we abbreviate by,
WASS the weak associativity: (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by
COW the weak commutativity: xy ∩ yx 6= ∅,∀x, y ∈ H.
The hyperstructure (H, ·) is called Hv- semigroup if it is WASS, it is called Hv-group if it is

reproductive Hv-semigroup, i.e.,
xH = Hx = H,∀x ∈ H.
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In a similar way more advanced hyperstructures can be defined:
(R,+, ·) is called Hv-ring if (+) and (·) are WASS, the reproduction axiom is valid for (+) and

(·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Let (R,+, ·) be an Hv-ring, (M,+) be a COW Hv-group and there exists an external hope

· : R×M → P (M) : (a, x)→ ax

such that ∀a, b ∈ R and ∀x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then M is called an Hv-module over F.
For more definitions and applications on Hv-structures one can see the books and related papers

as [1], [2], [3], [4], [5], [8], [16], [17], [20], [23], [24], [25], [26], [27], [29], [30], [31], [42].
In 1970 [12] M. Koskas defined in the classical hypergroup the relation β and its transitive

closure β*. This relation connects the hyperstructures with the corresponding classical structures
and is defined in Hv-groups as well. T. Vougiouklis [22],[24] introduced the γ* and ε* relations,
which are defined, in Hv-rings and Hv-modules, respectively. He also named all these relations β*,
γ* and ε*, Fundamental Relations because they play very important role to study hyperstructures.

Definition 1.1. The fundamental relations β*, γ* and ε*, are defined, in Hv-groups, Hv-rings
and Hv-modules, respectively, as the smallest equivalences so that the quotient would be group, ring
and vector spaces, respectively [9], [22], [24], [25], [27], [29],[34].

Remark 1.2. In the classical theory the quotient of a group with respect to an invariant subgroup is
a group. In 1934, F. Marty [13] states that, the quotient of a group with respect to any subgroup is a
hypergroup. Finally, the motivation to introduce the Hv-structures [9], [22], [24], is the quotient of
a group with respect to any partition (or equivalently, to any equivalence relation) is an Hv-group.

Specifying the above, we remark that: Let (G, ·) be a group and R be an equivalence relation
(or a partition) in G, then (G/R, ·) is an Hv-group, thus, the quotient (G/R, ·)/β* is a group, the
fundamental. The classes of the fundamental group (G/R, ·)/β* are a union of the R-classes.

Remark that the proof by Koskas and others for the classical hypergroups is very extensive, so
is very hard to be applied for general structures. On the other side, the proof by Vougiouklis [22],
[24], is short and can be applied on hyperstructures with more hopes. The main point is to find
the fundamental classes which one cannot find in an analytic way.

The way to find the fundamental classes is given by the following:

Theorem 1.3. Let (H, ·) be an Hv-group and denote by U the set of all finite products of elements
of H. We define the relation β in H by setting xβy iff {x, y} ⊂ u where u ∈ U. Then β* is the
transitive closure of β.

We present the proof for an Hv-ring, in order to see how easily can be applied:

Theorem 1.4. Let (R,+, ·) be an Hv-ring. Denote by U the set of all finite polynomials of
elements of R. We define the relation γ in R as follows:

xγy iff {x, y} ⊂ u where u ∈ U.

Then the relation γ* is the transitive closure of the relation γ.
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Proof. Let γ be the transitive closure of γ, and denote by γ(a) the class of the element a. First
we prove that the quotient set M/γ is a ring.

In R/γ the sum (⊕) and the product (⊗) are defined in the usual manner:

γ(a)⊕ γ(b) = {γ(c) : c ∈ γ(a) + γ(b)},

γ(a)⊗ γ(b) = {γ(d) : d ∈ γ(a) · γ(b)}, ∀a, b ∈ R.

Take a′ ∈ γ(a), b′ ∈ γ(b). Then we have

a′γa iff ∃x1, ..., xm+1 with x1 = a′, xm+1 = a and u1, ..., um ∈ U

such that {xi, xi+1} ⊂ ui, i = 1, ...,m, and

b′γb iff ∃y1, ..., yn+1 with y1 = b′, yn+1 = b and v1, ..., vn ∈ U

such that {yj , yj+1} ⊂ vj , i = 1, ..., n.

From the above we obtain

{xi, xi+1}+ y1 ⊂ ui + v1, i = 1, ...,m− 1,

xm+1 + {yj , yj+1} ⊂ um + vj , j = 1, ..., n.

The sums
ui + v1 = ti, i = 1, ...m− 1 and um + vj = tim+j−1, j = 1, ..., n

are also polynomials, therefore tk ∈ U for all k ∈ {1, ...,m+ n− 1}.
Now, pick up elements z1, ..., zm+n such that

zi ∈ xi + y1, i = 1, ..., n and zm+j ∈ xm+1 + yj+1, j = 1, ..., n,

therefore, using the above relations we obtain {zk, zk+1} ⊂ tk, k = 1, ...,m+ n− 1.
Thus, every element z1 ∈ x1+y1 = a′+b′ is γ equivalent to every element zm+n ∈ xm+1+yn+1 =

a+ b. Thus γ(a)⊕ γ(b) is a singleton so we can write

γ(a)⊕ γ(b) = γ(c) for all c ∈ γ(a) + γ(b)

In a similar way we prove that

γ(a)⊗ γ(b) = γ(d) for all d ∈ γ(a) · γ(b)

The WASS and the weak distributivity on R guarantee that the associativity and the distributivity
are valid for the quotient R/γ. Therefore R/γ is a ring.

Now, let σ be an equivalence relation in R such that R/σ is a ring. Denote σ(a) the class of
a. Then σ(a)⊕ σ(b) and σ(a)⊗ σ(b) are singletons for all a, b ∈ R, i.e.

σ(a)⊕ σ(b) = σ(c) for all c ∈ σ(a) + σ(b), σ(a)⊗ σ(b) = σ(d) for all d ∈ σ(a) · σ(b).

Thus we can write, for every a, b ∈ R and A ⊂ σ(a), B ⊂ σ(b),

σ(a)⊕ σ(b) = σ(a+ b) = σ(A+B), σ(a)⊗ σ(b) = σ(ab) = σ(A ·B)
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By induction, we extend these relations on finite sums and products. Thus, for every u ∈ U , we
have the relation σ(x) = σ(u) for all x ∈ u. Consequently

x ∈ γ(a) implies x ∈ σ(a) for every x ∈ R.

But σ is transitively closed, so we obtain:

x ∈ γ(x) implies x ∈ σ(a).

That means that γ is the smallest equivalence relation in R such that R/γ is a ring, i.e. γ = γ*.

An element is called single if its fundamental class is singleton.
Fundamental relations are used for general definitions. Thus [22], [24].

Definition 1.5. An Hv-ring (R,+, ·) is called Hv-field if R/γ* is a field. An Hv-module M over
an Hv-field F, instead of an Hv-ring R, it is called Hv-vector space.

Let ω* be the kernel of the canonical map from R to R/γ*; then we call reproductive Hv-field
any Hv-field (R,+, ·) if the following axiom is valid:

x(R− ω∗) = (R− ω∗)x = R− ω∗, ∀x ∈ R− ω∗.

From the above definition, a new class of hyperstructures introduced [30], [35], [36]:
The h/v-group is a generalization of the Hv-group since the reproductivity is not necessarily

valid. Sometimes a kind of reproductivity of classes is valid, i.e. if H is partitioned into equivalence
classes σ(x), then the quotient is reproductive: xσ(y) = σ(xy) = σ(x)y,∀x ∈ H. Similarly, the
h/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces etc, are defined.

An Hv-group is called cyclic [18], [19], [25], if there is an element, called generator, which the
powers have union the underline set, the minimal power with this property is the period of the
generator. If there exist an element and a special power, the minimum one, is the underline set,
then the Hv-group is called single-power cyclic.

Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set H. (·) is called smaller than (∗),
and (∗) greater than (·), iff there exists an

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

Then we write · ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a structure then it is
called basic structure and (H, ∗) is called Hb − structure.

Theorem 1.6. (The Little Theorem). Greater hopes than the ones which are WASS or COW, are
also WASS or COW, respectively.

This Theorem leads to a partial order on Hv-structures and mainly to a correspondence between
hyperstructures and posets. Using the partial ordering with the fundamental relations one can give
several definitions to obtain constructions used in several applications [28], [30], [33]:

Let (H, ·) be hypergroupoid. We remove h ∈ H, if we take the restriction of (·) in the set
H−{h}. h ∈ H absorbs h ∈ H if we replace h by h and h does not appear in the structure. h ∈ H
merges with h ∈ H, if we take as product of any x ∈ H by h, the union of the results of x with
both h, h, and consider h and h as one class with representative h.
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2 Some large classes and applications of Hv-structures

A class of Hv-structures, introduced in [21], [33] is the following:

Definition 2.1. An Hv-structure is called very thin iff all hopes are operations except one,
which has all hyperproducts singletons except only one, which is a subset of cardinality more than
one. Thus, in a very thin Hv-structure in H there exists a hope (·) and a pair (a, b) ∈ H2 for
which ab = A, with cardA > 1, and all the other products, with respect to any other hopes (so,
operations), are singletons.

Another large class of Hv-structures is the following [31], [34]:

Definition 2.2. Let (G, ·) be a groupoid (resp. hypergroupoid) and f : G → G be a map. We
define a hope (∂), called theta-hope, we write ∂-hope, on G as follows

x∂y = {f(x) · y, x · f(y)}, ∀x, y ∈ G. (resp. x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G)

If (·) is commutative then ∂ is commutative. If (·) is COW, then ∂ is COW.

Let (G, ·) be a groupoid (or hypergroupoid) and f : G→ P (G)−{∅} be any multivalued map.
We define the (∂), on G as follows

x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G

Let (G, ·) be a groupoid, fi : G→ G, i ∈ I, be a set of maps on G. The

f∪ : G→ P(G) : f∪(x) = {fi(x)|i ∈ I, }

is the union of fi(x). We have the union ∂-hope (∂), on G if we take f∪(x). If f ≡ f ∪ (id), then
we have the b-∂-hope.

Motivation for the definition of the theta-hope is the map derivative where we can use only the
product. The basic property is that if (G, ·) is a semigroup then ∀f, the (∂) is WASS.

Consider the group of integers (Z,+) and n 6= 0 be a natural number. Take the map f such
that f(0) = n and f(x) = x, ∀x ∈ Z− {0}. Then

(Z, ∂)/β* ∼= (Zn,+)

Theorem 2.3. (a) Take the ring of integers (Z,+, ·) and fix n 6= 0 a natural number. Consider
the map f such that f(0) = n and f(x) = x, ∀x ∈ Z− {0}. Then (Z, ∂+, ∂·), where ∂+ and ∂· are
the ∂-hopes refereed to the addition and the multiplication respectively, is an Hv-near-ring, with

(Z, ∂+, ∂·)/γ* ∼= Zn.

(b) Consider the (Z,+, ·) and n 6= 0 a natural. Take the map f such that f(n) = 0 and f(x) = x,
∀x ∈ Z− {n}. Then (Z, ∂+, ∂·) is an Hv-ring, moreover,

(Z, ∂+, ∂·)/γ* ∼= Zn.

Special case of the above is for n = p, prime, then (Z, ∂+, ∂·) is an Hv-field.
In classical hypergoups, were introduced and studied the P-hopes. In Hv-structures they gave

very interesting results and applications [2], [9], [18], [19], [20], [24], [35], [36], [39].
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Definition 2.4. Let (G, ·) be a groupoid, then for every P ⊂ G, P 6= ∅, we define the following
hopes called P-hopes: ∀x, y ∈ G,

P : xPy = (xP )y ∪ x(Py), P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy).

The (G,P ), (G,P r) and (G,P l) are called P-hyperstructures. The most usual case is if (G, ·) is
semigroup, then xPy = (xP )y∪x(Py) = xPy and (G,P ) is a semihypergroup but we do not know
about (G,P r) and (G,P l). In some cases, depending on the choice of P, the (G,P r) and (G,P l)
can be associative or WASS.

During last decades hyperstructures there is a variety of applications in other branches of math-
ematics and other sciences. These applications are on biomathematics -conchology, inheritance-
and hadronic physics to mention but a few. The hyperstructures theory is closely related to fuzzy
theory; consequently, hyperstructures can be widely applicable in industry and production, too. In
several books and extensive papers [1], [2], [6], [9], [24], [35], one can find numerous applications.

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic Mechanics problems.
Santilli proposed a ’lifting’ of the n-dimensional trivial unit matrix of a normal theory into a
nowhere singular, symmetric, real-valued, positive-defined, n-dimensional new matrix. The original
theory is reconstructed such as to admit the new matrix as left and right unit. The isofields needed
in this theory correspond to the hyperstructures were introduced by Santilli & Vougiouklis in
1996[14] and they are called e-hyperfields. The Hv-fields can give e-hyperfields which can be used
in the isotopy theory. We present the main definitions and results restricted in the Hv-structures
[7], [14], [15], [34].

Definition 2.5. (H, ·) is called e-hyperstructure, if it contains a unique scalar unit e. We assume
that ∀x, there exists an, not necessarily unique, inverse x−1, i.e. e ∈ x · x−1 ∩ x−1 · x.

Definition 2.6. A hyperstructure (F,+, ·), where (+) is an operation and (·) is a hope, is called
e-hyperfield if the following axioms are valid:

1. (F,+) is an abelian group with the additive unit 0,

2. (·) is WASS,

3. (·) is weak distributive with respect to (+),

4. 0 is absorbing element: 0 · x = x · 0 = 0,∀x ∈ F ,

5. exist a multiplicative scalar unit 1, i.e. 1 · x = x · 1 = x,∀x ∈ F ,

6. ∀x ∈ F there exists a unique inverse x−1, such that 1 ∈ x · x−1 ∩ x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. If 1 = x · x−1 = x−1 · x, is valid,
then we have a strong e-hyperfield.

Now we present a general construction based on the partial ordering of the Hv-structures and
on the Little Theorem.

Definition 2.7. The Main e-Construction. Given a group (G, ·), where e is the unit, then we
define in G, a large number of hopes (⊗) as follows:

x⊗ y = {xy, g1, g2, ...},∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e}

g1, g2,... are not necessarily the same for each pair (x,y). Then (G,⊗) is an Hb-group, an e-
hypergroup which contains the (G, ·). If ∀x, y with xy = e, so x ⊗ y = xy, then (G,⊗) becomes a
strong e-hypergroup.
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The proof is immediate since we enlarge the results of the group by putting elements from G
and applying the Little Theorem. The unit e is unique scalar and ∀x ∈ G, there is a unique inverse
x−1, such that 1 ∈ x ·x−1 ∩x−1 ·x and if this condition is valid then we have 1 = x ·x−1 = x−1 ·x.
Thus, the hyperstructure (G,⊗) is strong e-hypergroup.

Example 2.8. Take the quaternion group Q = {1,−1, i,−i, j,−j, k,−k} whose product is given
by i2 = j2 = −1, ij = −ji = k. On this we define hopes and e-groups: For example, denoting
i = {i,−i}, j = {j,−j}, k = {k,−k} we define the (∗) by (−1) ∗ k = k ∗ (−1) = k, and in the
rest cases (∗) coincides to the original operation. (Q, ∗) is strong e-hypergroup because 1 is scalar
unit and the -1, i, -i, j, -j, k and -k have unique inverses the elements -1, -i, i, -j, j, -k and k,
respectively, which are the inverses in the basic group.

A generalization of P-hopes is the following needed in Santilli’s theory is the following:

Construction 2.9. Let (G, ·) be an abelian group and P a subset of G. We define the hope ×P
by:

x×p y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and y 6= e

x · y if x = e or y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is an abelian Hv-group.

An important new application, which combines hyperstructure theory and fuzzy theory, is to
replace in questionnaires the scale of Likert by the bar of Vougiouklis & Vougiouklis [11], see also
[10], [37], [38]. The suggestion is the following:

Definition 2.10. In every question substitute the Likert scale with ’the bar’ whose poles are defined
with ’0’ on the left end, and ’1’ on the right end:

0 1

The subjects/participants are asked instead of deciding and checking a specific grade on the scale,
to cut the bar at any point they feels expresses their answer to the specific question.

The use of the bar of Vougiouklis & Vougiouklis bar instead of a scale has several advantages
during both the filling-in and the research processing [19]. The final suggested length of the bar,
according to the Golden Ratio, is 6.2cm.

3 Representation theory of hyperstructures

We abbreviate representations by rep. Reps of Hv-groups can be considered either by generalized
permutations [23], [24] or by Hv-matrices [19], [20], [24], [27], [29], [34], [35]. We present here the
hypermatrix rep in Hv-structures and the same is for the h/v-structures.

An introduction on the rep problem is by Generalized Permutations (we write gp):

Definition 3.1. Let X be a set, then a map f : X → P (X)− {∅}, is a gp of X if⋃
x∈X

f(x) = f(X) = X,

i.e. it is reproductive. Denote by MX the set of all gps on X. For an Hv-group (X, ·) and
a ∈ X, the gp fa defined by fa(x) = ax is an inner gp. Arrow of f is any (x, y) ∈ X2 with
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y ∈ f(x). f2 ∈ MX contains f1 ∈ MX or f1 is a sub-gp of f2, if f1(x) ⊂ f2(x), ∀x ∈ X, then
we write f1 ⊂ f2. If, moreover, f1 6= f2, then f1 is a proper sub-gp of f2. An f ∈ MX is called
minimal if it has no proper sub-gp. Denote MX the set of all minimal gps of MX . The gp t with
t(x) = X,∀x ∈ X, is called universal and contains all elements of MX . The converse of a gp f is
the gp f defined by f(x) = {z ∈ X : f(z) 3 x}, thus f is obtained by reversing arrows. We call
associated to f ∈MX the gp f ◦ f , where (◦) is the map composition. The union f =

⋃
i∈I fi of a

family of gps {fi : i ∈ I}, is defined by f(x) =
⋃
i∈I fi(x), ∀x ∈ X.

For finite X, we reach a minimal gp, by the deleting arrows method.

Theorem 3.2. Let f ∈MX , then f ∈MX if and only if, the following condition is valid: if a 6= b
and f(a) ∩ f(b) 6= ∅, then f(a) = f(b) and f(a) is a singleton.

Corollary 3.3. If f ∈MX then f ∈MX . Explicit description of MX :

(f ◦ f)(x) = f{u : f(u) 3 x} =
⋃

f(u)3x

f(u), ∀x ∈ X

So (f ◦f)(x) = {y : ∃u ∈ X, {x, y} ⊂ f(u)} and if I is the identity permutation, then I ⊂ f ◦f,∀f ∈
MX .

Remark that there is a direct relation of β* and the associated gp f ◦ f . We see this relation,
for finite X, in the following theorem:

Theorem 3.4. If f ∈MX then (f ◦ f)(x) = {y ∈ X : f(y) = f(x)}.

In the classical theory of reps, we have the following definitions.

Definition 3.5. Let G be a group and V be a finite dimensional vector space over the field F. A
representation of G is a homomorphism ρ : G → Aut(V) of G into the set of automorphisms of
V

Analogous definitions are given for complicate structures: Let L be a Lie algebra then a rep of
L is a homomorphism ρ : L→ gl(V), from L into linear transformations on V over F.

The problem of the Hv-matrix representations is the following [19], [20], [24]:

Definition 3.6. Hv-matrix is called a matrix with entries from an Hv-ring or Hv-field. The
hyperproduct of two Hv-matrices (aij) and (bij), of type m×n and n× r respectively, is defined in
the usual manner, and it is a set of m× r Hv-matrices.

The sum of products of elements of the Hv-ring is the union of the sets obtained with all possible
parentheses put on them, called n-ary circle hope on the hyperaddition [36]. The hyperproduct of
Hv-matrices is not nessesarily WASS.

Let (H, ·) be an Hv-group. Find an Hv-ring (R,+, ·), a set MR = {(aij)|aij ∈ R} and a map

T : H →MR : h 7→ T (h) such that T (h1h2) ∩ T (h1)T (h2) 6= ∅,∀h1, h2 ∈ H.

T is called Hv-matrix rep. If the T (h1h2) ⊂ T (h1)(h2),∀h1, h2 ∈ H, then T is called inclusion rep.
If T (h1h2) = T (h1)(h2) = {T (h)|h ∈ h1h2}, ∀h1, h2 ∈ H, then T is called good rep and then an
induced rep T* for the hypergroup algebra is obtained. If T is one to one and good then it is a
faithful rep.

The problem of reps is complicated because the cardinality of the product of Hv-matrices is
very big. It can be simplified in special cases such as:
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1. The Hv-matrices are over Hv-rings with 0 and 1 and if these are scalars.

2. The Hv-matrices are over very thin Hv-rings.

3. The case of 2×2 Hv-matrices, since the circle hope coincides with the hyperaddition.

The main theorem of reps is the following:

Theorem 3.7. A necessary condition in order to have an inclusion rep T of an Hv-group (H, ·)
by n× n Hv-matrices over the Hv-ring (R,+, ·) is the following:
For all classes β*(x), x ∈ H there must exist elements aij ∈ H, i, j ∈ {1, ..., n} such that

T (β*(a)) ⊂ {A = (a′ij)|a′ij ∈ γ*(aij), i, j ∈ {1, ..., n}}

So every inclusion rep T : H → MR : a 7→ T (a) = (aij) induces an homomorphic T* of the
group H/β* over the ring R/γ* by setting T*(β*(a)) = [γ*(aij)],∀β*(a) ∈ H/β*, where the
γ*(aij) ∈ R/γ* is the ij entry of T*(β*(a)). Then T* is called fundamental induced representation
of T .

Denote trφ(T (x)) = γ∗(T (xii)) the fundamental trace, then the mapping

XT : H → R/γ∗ : x 7→ XT (x) = trφ(T (x)) = trT ∗(x)

is called fundamental character. There are several types of traces.
Reps Hv-structures can be faced in several ways [29], [34], [15]:

Definition 3.8. Let M = Mm×n be a module of m× n matrices over a ring R and P = {Pi : i ∈
I} ⊆M. We define, a kind of, a P-hope P on M as follows

P : M×M→ P(M) : (A,B)→ APB = {AP tiB : i ∈ I} ⊆M

where P t denotes the transpose of the matrix P.

The hope P , is a generalization of Rees operation where, instead of one sandwich matrix, a set
of sandwich matrices is used. P is strong associative and the inclusion distributivity is valid:

AP (B + C) ⊆ APB +APC for all A,B,C in M

Thus, (M,+, P ) defines a multiplicative hyperring, only the product is hope, on non-square ma-
trices.

Definition 3.9. Let M = Mm×n be a module of m × n matrices over R and let us take sets
S = {sk : k ∈ K} ⊆ R, Q = {Qj : j ∈ J} ⊆ M, P = {Pi : i ∈ I} ⊆ M. Define three hopes as
follows

S : R×M→ P(M) : (r,A)→ rSA = {(rsk)A : k ∈ K} ⊆M

Q
+

: M×M→ P(M) : (A,B)→ AQ
+
B = {A+Qj +B : j ∈ J} ⊆M

P : M×M→ P(M) : (A,B)→ APB = {AP tiB : i ∈ I} ⊆M

Then (M, S,Q
+
, P ) is a hyperalgebra over R called general matrix P-hyperalgebra.

In the rep theory can be used hopes on any type of ordinary matrices. The new hopes can be
defined which are called, helix hopes [8], [17], [40], [41].
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4 The Hv-Lie algebra

Since the algebras are defined on vector spaces, we now present a proof for the fundamental relation
analogous to Theorem 1.3, in the case of an Hv-module [9], [32], [34]:

Theorem 4.1. Let (M,+) be an Hv-module over the Hv-ring R. Denote by U the set of all
expressions consisting of finite hopes either on R and M or the external hope applied on finite sets
of elements R and M. We define the relation ε in M as follows:

xεy iff {x, y} ⊂ u where u ∈ U

Then the relation ε* is the transitive closuer of the relation ε

Proof. Let ε be the transitive closure of ε, and denote by ε(x) the class of the element x. First we
prove that the quotient set M/ε is a module over R/γ*.

In M/ε the sum (⊕) and the external product (⊗), using the γ* classes in R, are defined in
the usual manner:

ε(x)⊕ ε(y) = {ε(z) : z ∈ ε(x) + ε(y)},

γ*(a)⊗ ε(x) = {ε(z) : z ∈ γ*(a) · ε(x)}, ∀a ∈ R, x, y ∈M

Take x′ ∈ ε(x), y′ ∈ ε(y). Then we have x′εx iff ∃x1, ..., xm+1 with x1 = x′, xm+1 = x and
u1, ..., um ∈ U such that {xi, xi+1} ⊂ ui, i = 1, ...,m, and y′εy iff ∃y1, ..., yn+1 with y1 = y′, yn+1 = y
and v1, ..., vn ∈ U such that {yj , yj+1} ⊂ vj , i = 1, ..., n. From the above we obtain

{xi, xi+1}+ y1 ⊂ ui + v1, i = 1, ...,m− 1,

xm+1 + {yj , yj+1} ⊂ um + vj , j = 1, ..., n.

The sums
ui + v1 = ti, i = 1, .., .m− 1 and um + vj = tm+j−1, j = 1, ..., n

are also elements of U, thus, tk ∈ U for all k ∈ {1, ...,m+ n− 1}. Now, take elements z1, ..., zm+n

such that
zi ∈ xi + y1, i = 1, ..., n and zm+j ∈ xm+1 + yj+1, j = 1, ..., n,

therefore, using the above relations we obtain {zk, zk+1} ⊂ tk, k = 1, ...,m + n − 1. Thus, every
element z1 ∈ x1 + y1 = x′+ y′ is ε equivalent to every element zm+n ∈ xm+1 + yn+1 = x+ y. Thus
ε(x)⊕ ε(y) is a singleton so we can write

ε(x)⊕ ε(y) = ε(z) for all z ∈ ε(x) + ε(y)

In a similar way, using the properties of γ* in R, one can prove that

γ*(a)⊗ ε(x) = ε(z) for all z ∈ γ*(a) · ε(x)

The WASS and the weak distributivity on R and M guarantee that the associativity and the
distributivity are valid for the quotient M/ε over R/γ*. Therefore M/ε is a module over R/γ*.

Now let σ be an equivalence relation in M such that M/σ is a module over R/γ*. Denote
σ(x) the class of x. Then σ(x)⊕ σ(y) and γ*(a)⊗ σ(x) are singletons for all a ∈ R and x, y ∈M,
i.e.

σ(x)⊕ σ(y) = σ(z) for all z ∈ σ(x) + σ(y),

γ*(a)⊗ σ(x) = σ(z) for all z ∈ γ*(a) · σ(x).
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Thus we can write, for every a ∈ R, x, y ∈M and A ⊂ γ*(a), X ⊂ σ(x),Y ⊂ σ(x)

σ(x)⊕ σ(y) = σ(x+ y) = σ(X + Y), γ*(a)⊗ σ(x) = σ(ax) = σ(A ·X)

By induction, we extend these relations on finite sums and products. Thus, ∀u ∈ U, we have
σ(x) = σ(u) for all x ∈ u. Consequently

x′ ∈ ε(x) implies x′ ∈ σ(x) for every x ∈M.

But σ is transitively closed, so we obtain:

x′ ∈ ε(x) implies x′ ∈ σ(x).

That means that ε is the smallest equivalence relation in M such that M/ε is a module over R/γ*,
i.e. ε = ε*.

The general definition of an Hv-Lie algebra was given in [15], [32],[32] as follows:

Definition 4.2. Let (L,+) be an Hv-vector space over the (F,+, ·), φ : F → F/γ* the canonical
map and ωF = {x ∈ F : φ(x) = 0}, where 0 is the zero of the fundamental field F/γ*. Similarly,
let ωL be the core of the canonical map φ′ : L → L/ε* and denote by the same symbol 0 the zero
of L/ε*. Consider the bracket (commutator) hope:

[, ] : L× L→ P (L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.
[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,
∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y ∈ L

This is a general definition thus one can use special cases in order to face problems in applied
sciences. We can see theta hopes in Hv-vector spaces and Hv-Lie algebras:

Theorem 4.3. Let (V,+, ·) be an algebra over the field (F,+, ·) and f : V → V be a map.
Consider the ∂-hope defined only on the multiplication of the vectors (·), then (V,+, ∂) is an Hv-
algebra over F, where the related properties are weak. If, moreover f is linear then we have more
strong properties.

Theorem 4.4. Let (A,+, ·) be an algebra over the field F. Take any map
f : A→ A, then the ∂-hope on the Lie bracket [x, y] = xy − yx, is defined as follows

x∂y = {f(x)y − f(y)x, f(x)y − yf(x), xf(y)− f(y)x, xf(y)− yf(x)}.

then (A,+, ∂) is an Hv-algebra over F, with respect to the ∂-hopes on Lie bracket, where the weak
anti-commutativity and the inclusion linearity is valid.
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5 The ’Judging from the results’ proof and applications

The uniting elements method was introduced by Corsini-Vougiouklis [3] in 1989. This leads,
through hyperstructures, to structures satisfying additional properties.

The uniting elements method is described as follows: Let G be an algebraic structure and
d, a property which is not valid. Suppose that d is described by a set of equations; then, consider
the partition in G for which it is put together, in the same class, every pair of elements that
causes the non-validity of the property d. The quotient by this partition G/d is an Hv-structure.
Then, quotient out of the Hv-structure G/d by the fundamental relation β*, is a stricter structure
(G/d)β* for which d is valid, is obtained.

An interesting application of the uniting elements is when more than one property is desired.
It is better to apply the straightforward classes followed by the others. We can do this because:

Theorem 5.1. Let (G, ·) be a groupoid, and

F = {f1, ..., fm, fm+1, ..., fm+n}

be a system of equations on G consisting of two subsystems

Fm = {f1, ..., fm} and Fn = {fm+1, ..., fm+n}.

Let σ, σm be the equivalence relations defined by the uniting elements procedure using the systems
F and Fm respectively, and let σn be the equivalence relation defined using the induced equations
of Fn on the groupoid Gm = (G/σm)/β*. Then

(G/σ)/β* ∼= (Gm/σn)/β*

Theorem 5.2. Let (S, ·) be a commutative semigroup which has at least one element u such that
the set uS is finite. Consider the transitive closure L* of the relation R∗ of the relation R defined
as follows:

xRy iff ∃x ∈ S such that xs1 = xs2.

Then < S/R∗,◦> /β∗ is finite commutative group.

Proof. The proof follows the one on the fundamental relation. It is the special proof that depends
on the way that it can be in an analytical way but counting the fact that the classes depend on
the results.

It is clear that, the fundamental structure it is very important, mainly if it is known from
the beginning. This is the problem to construct hyperstructures with desired fundamental struc-
tures. Combining the uniting elements procedure with the enlarging theory we can obtain stricter
structures.

Theorem 5.3. In the ring (Zn,+, ·), with n = ms we enlarge the multiplication only in the product
of the special elements 0 ·m by setting 0⊗m = {0,m} and the rest results remain the same. Then

(Zn,+,⊗)/γ∗ ∼= (Zm,+, ·).

Proof. First, we remark that the only expressions of sums and products which contain more than
one elements are the expressions which have at least one time the hyperproduct 0 ⊗m. Adding
to this special hyperproduct the element 1, several times we have the modm equivalence classes.
On the other side, since m is zero divisor, adding or multiplying elements of the same class the
results are remaining in one class, the class obtained by using only the representatives. Therefore,
γ*-classes form a ring isomorphic to (Zm,+, ·).
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Corollary 5.4. In the ring (Zn,+, ·), with n = ps where p is prime, we enlarge only the product
0 · p by 0⊗ p = {0, p} and the rest remain the same. Then (Zn,+,⊗) is very thin Hv-field.

In [28] the ’enlarged’ hyperstructures were examined in the sense that a new element appears in
one result. The enlargement or reduction is on Hv-structures with the same fundamental structure.

Theorem 5.5. Attach Construction. Let (H, ·) be an Hv−semigroup and v /∈ H. Then, we extend
the hope (·) in the set H = H ∪ {v} as follows: x · v = v · x = v,∀x ∈ H, and v · v = H. Since
v · v = H we obtain that all elements of H are β-equivalent in (H, ·). Therefore, there are two
β-equivalent classes: H and {v}. The products of those classes are scalars, so (H, ·)/β∗ ∼= Z2.
Therefore (H, ·) is h/v-group and v is a single.

The core of (H, ·) is obviously the set H. Moreover, all scalar elements of (H, ·) are scalars in
(H, ·) and any unit of (H, ·) is unit of (H, ·).

Theorem 5.6. Attached h/v field. Let (H, ·) be Hv-semigroup, v /∈ H and (H, ·) be its attached
h/v-group. Consider an element 0 /∈ H and define in Ho = H ∪ {v, 0} two hopes as follows:
hypersum (+): ∀x, y ∈ H

0 + 0 = x+ v = v + x = 0, 0 + v = v + 0 = x+ y = v, 0 + x = x+ 0 = v + v = H.

hyperproduct (·): the hope remains the same as in H and

0 · 0 = v · x = x · 0 = 0,∀x ∈ H

Then (Ho,+, ·) is h/v-field with (Ho,+, ·)/γ∗ ∼= Z3. The hope (+) is associative, (·) is WASS and
weak distributive with respect to (+). 0 is zero absorbing and single element but not scalar in (+).

(Ho,+, ·) is called the attached h/v-field of the Hv-semigroup (H, ·).

Proof. See [28], [33]

The magic single elements!
Recall that, an element is called single if its fundamental class is singleton. Thus, in an Hv-

group if s is single then β∗(s) = {s}. Denote SH the set of singles. If SH 6= ∅, then we can
answer to the very hard problem, that is to find the fundamental classes. The following theorems
are proved [24], [25], [35]:

Theorem 5.7. Let (H, ·) be an Hv-group and s ∈ SH 6= ∅. Let a ∈ H, take any element v ∈ H
such that s ∈ av, then β∗(a) = {h ∈ H : hv = s}, and the core of H is ωH = {u ∈ H : us = s} =
{u ∈ H : su = s}.

Theorem 5.8. Let (H, ·) be an Hv-group and s ∈ SH 6= ∅. Then

sx = β∗(sx) and xs = β∗(xs) for all x ∈ H.

6 Conclusions

Two elements a,b are in the fundamental relation β if there are two elements x,y who bring a,b in
the relation β. That means that the fundamental relation β* ’depends’ on the results. This fact
leads to a special proof where we need to discover the ’reason’ to have the results. Every relation
needs even the last one result to characterize its classes. However, if there are special elements, as
the singles, which are strictly formed and carry inside them the relation, then these elements form
the fundamental classes.
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