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Abstract

In this paper, we generalized the notion of extended ide-
als and stable ideals associated to a subset B of a resid-
uated lattices L and, we discuss what kind of residuated
lattices have extended ideals. Then we investigate their
related properties. We show that if L is an involutive
residuated lattice, then EI(B) is a stable ideal relative to
B, and so EI(B) is the smallest stable ideal relative to
B. We also give a characterization of this extended ideal
in the complete Heyting algebra. We also prove that the
class S(B) of all stable ideals relative to B is a complete
Heyting algebra. Finally, we prove that the set of ex-
tended ideals and the set of extended filters on involutive
residuated lattices are one-to-one correspondence.
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1 Introduction

In modern fuzzy logic theory, residuated lattices and some related algebraic systems play an
essential role, because they provided an algebraic frameworks to fuzzy logic and fuzzy reasoning.
The residuated lattices were introduced by Ward and Dilworth in [23] as a generalization of ideal
lattices of rings. More studies on residuated lattices were developed by Jipsen, Kowalski, Ono and
Tsinakis, [12, 14]. By using the theory of residuated lattices, Pavelka built up a more generalized
logic systems and proved the semantical completeness of the  Lukasiewicz’s axiom system [17].
Residuated lattices are very basic and an essential algebraic structure, because the other logical
algebras are all particular cases of residuated lattices [1, 23], such as MV algebras by Chang [5],
BL-algebras by Hájek [9], R0-algebras by Wang [21]. Therefore, studying the algebraic structure
of residuated lattices is very meaningful.
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Involutive residuated lattices have received considerable attention from the logic and algebra
communities. From a logical perspective, they were the algebraic counterparts of the propositional
non-commutative linear logic without exponentials. From an algebraic perspective, they provided
a common framework within which a various of disparate structures, such as Boolean algebras,
MV-algebras, lattice-ordered groups and relation algebras, can be studied. In the meantime, ideal
theory is a very effectively tool for investigating these various algebraic and logic systems. The
ideal notion has been introduced in many algebraic structure such as lattices, rings, MV-algebras,
lattice implication algebras. In these algebraic structure, as filter, the ideal is in the center position.
Several [15, 16, 20] have claimed that the notion of an ideal is missing in BL-algebras. This has
been partially associated with the fact that there was no suitable algebraic addition in BL-algebras.
It is known the importance of ideals and congruences in classification problems, data organization
and formal concept analysis, so it is significant to make an intensive study of ideals in residuated
lattices. In residuated lattices, the notion of ideal was introduced as a natural generalization of
that of ideal in MV algebras. After many scholars’ research, many good results have been obtained.
Dana Piciu introduced minimal prime ideal in residuated lattices and they proved since mP (L),
the set of minimal prime ideals of L, and M(L), the set of maximal ideals of L, are subsets of
P (L), they endowed mP (L) and M(L) with the topology induced by the Zariski topology on P (L)
and they characterized these topological spaces for residuated [18]. S. Khosravi Shoar surveyed
the structure of various ideals and found some types of ideals, such as positive implicative ideals,
strong ideals and MV-ideals in residuated lattices. They also introduced the concept of quasi ideals
and showed that any ideal is a quasi ideal, but the converse does not hold in general [19]. Francis
Woumfoe introduced the notion of state ideal in the framework of state residuated lattices and
presented two types of state residuated lattices: state i-simple residuated lattices and state i-local
residuated lattices, and characterized them. Moreover, they proved that the lattice of all state
ideals of a given state residuated lattice is complete [24]. Holdon, Liviu, and Arsham Borumand
Saeid investigated some related results between the obstinate ideals and other types of ideals of
a residuated lattice, likeness Boolean, primary, prime, implicative, maximal and ⊙-prime ideals,
and they proved that an ideal is an ⊙-prime ideal if and only if its quotient algebra is an ⊙-
residuated lattice [11]. Wei Wang, and Bin Zhao investigated the topologies constructed by some
ideals on residuated lattices and some topologies induced by lattice ideals and distance functions
on involutive residuated lattices [22].

The notion of extended ideals in MV-algebras is introduced by F. Forouzesh [6]. They also
proved I is a stable ideal relative to B ⊆ A such that B ∩ I = ∅ if and only if A/I is a chain
MV-algebra, and the class S(B) of all stable ideals relative to B ⊆ A is also a complete Heyting
algebra, for an MV-algebra A. They also considered the quotient algebras induced by stable ideals
and proved some related theorems.

The organization of this paper is as follows. In Section 2, we recall some definitions and results
which will be used in the following. In Section 3, we introduce the notion of extended ideals
and stable ideals associated to a subset B of a residuated lattices L and we discuss what kind of
residuated lattices have extended ideals. Then, we investigate their related properties. We show
that if L is an involutive residuated lattice, then EI(B) is a stable ideal relative to B, and so
EI(B)=

⋂
{J : J is stable relative to B, and I ⊆ J}. Also, we consider the quotient algebras

induced by extended ideals and prove some related theorems. Finally, for some conclusions that
hold on MV-algebras, we prove corresponding counterexamples to prove that they do not hold
on involutive residuated lattices. In Section 4, We give a characterization of this extended ideal:
EI(B) = (B] → I in the complete Heyting algebra (Id(L),∧,∨,→, {0}, L). We also prove that the
class S(B) of all stable ideals relative to B ⊆ L is a complete Heyting algebra, and we prove that



Extended ideals in residuated lattices 153

the set of all extended ideals and the set of all extended filters on involutive residuated lattices are
one-to-one correspondence.

2 Preliminaries

Definition 2.1. [3] A residuated lattice is an algebra (L,∨,∧,⊙,→, 0, 1), where ∨, ∧, ⊙, → are
binary operations on L and 0,1 ∈ L such that:
(1) (L,∨,∧, 0, 1) is a bounded lattice;
(2) (L,⊙, 1) is a commutative monoid;
(3) For x, y, z ∈ L, x⊙ z ≤ y iff z ≤ x → y.

In a residuated lattice L, for every x, y ∈ L, we consider the following identities:
(div) x⊙ (x → y) = x ∧ y (divisibility);
(prel) (x → y) ∨ (y → x) = 1 (prelinearity);
(inv) x∗∗ = x (involutivity).
Note: We say that the element x ∈ L has order n and we write ord(x) = n, if n is the smallest
natural number such that nx = 1, where x⊕ y = (x∗ ⊙ y∗)∗ = x∗ → y.

Proposition 2.2. [2, 9, 23] Let L be a residuated lattice, then, for any x, y, z, ∈ L, we have:
(1) 1 → x = x, x → x = 1;

(2) x⊙ y ≤ x, y, hence x⊙ y ≤ x ∧ y, x ≤ y → x and x⊙ 0 = 0;

(3) x ≤ y if and only if x → y = 1;

(4) x → 1 = 1, 0 → x = 1;

(5) x ≤ (x → y) → y;

(6) x → y ≤ (z → x) → (z → y) ≤ z → (x → y);

(7) x → y ≤ (y → z) → (x → z) and (x → y) ⊙ (y → z) ≤ x → z;

(8) x ≤ y implies y → z ≤ x → z, z → x ≤ z → y, x⊙ z ≤ y ⊙ z, y∗ ≤ x∗, and x∗∗ ≤ y∗∗;

(9) x → (y → z) = (x⊙ y) → z = y → (x → z), in particular x → y∗ = y → x∗ = (x⊙ y)∗;

(10) x ≤ x∗∗, x∗∗∗ = x∗ and x ≤ x∗ → y;

(11) x⊙ x∗ = 0, x⊙ y = 0 iff x ≤ y∗;

(12) x∗ ⊙ y∗ ≤ (x⊙ y)∗ so, (x∗)n ≤ (xn)∗ , for every n ≥ 1;

(13) x∗∗ ⊙ y∗∗ ≤ (x⊙ y)∗∗ so, (x∗∗)n ≤ (xn)∗∗ , for every n ≥ 1;

(14) (x ∨ y)∗ = x∗ ∧ y∗;

(15) (x → y∗∗)∗∗ = x → y∗∗;

(16) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z);

(17) x → (y ∧ z) = (x → y) ∧ (x → z).

Here we define B(L) = {a ∈ L | a∧ b = 0 and a∨ b = 1,∃b ∈ L}, B⊥ = {a ∈ L | a∧ b = 0, ∀b ∈
B}, If f : L1 → L2 is an morphism of residuated lattices, then Ker(f) = {x ∈ L1 : f(x) = 0}.

Proposition 2.3. [10] Let L be an involutive residuated lattice, then, for any x, y ∈ L, we have:
(1) x → y = [x⊙ (y → 0)] → 0 = (y∗ ⊙ x)∗;
(2) (x ∧ y) → 0 = (x → 0) ∨ (y → 0);
(3) (x → y) ∨ (y → x) = 1 ⇔ x⊙ (y ∧ z) = (x⊙ y) ∧ (x⊙ z).
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Definition 2.4. [18] A residuated lattice L is an MV-algebra iff it satisfies the additional condition:
(x → y) → y = (y → x) → x for every x, y ∈ L.

Theorem 2.5. [18] A residuated lattice L is an MV-algebra iff it satisfies the additional condition:
(1) (x → y) ∨ (y → x) = 1;
(2) x⊙ (x → y) = x ∧ y;
(3) x∗∗ = x , for every x, y ∈ L.

Definition 2.6. [3] A nonempty subset I of a residuated lattice L is called an ideal of L if :
(1) If x ≤ y and y ∈ I, then x ∈ I;
(2) If x, y ∈ I, then x∗ → y ∈ I.

We denote by Id(L) the set of ideals of a residuated lattice L. An ideal I of L is proper iff
I ̸= L. For a nonempty subset S of L, we denote by (S] the ideal of L generated by S and for
x ∈ L we denote ({x}] by (x]. Also, for I ∈ Id(L) and x ∈ L, I(x) = (I ∪ {x}].

Proposition 2.7. [3, 4] Let L be a residuated lattice, S ⊆ L a nonempty subset, x, y ∈ L and
I ∈ Id(L), then:
(1) (S] = {x ∈ L : x ≤ s1 ⊕ . . .⊕ sn, for some n ≥ 1 and s1, . . . , sn ∈ S};
(2) (x] = {z ∈ L : z ≤ nx, for some n ≥ 1};
(3) I(x) = {z ∈ L : z ≤ i⊕ nx, for some i ∈ I and n ≥ 1};
(4) (Id(L),⊆) is a complete lattice, where for I1, I2 ∈ Id(L), I1 ∧ I2 = I1 ∩ I2 and I1 ∨ I2 =
(I1 ∪ I2]={x ∈ L : x ≤ i1 ⊕ i2, with i1 ∈ I1 and i2 ∈ I2}.

Definition 2.8. [8] A Heyting algebra is a lattice (A, ∨, ∧) with 0 such that for every a, b ∈ A,
there exists an element a → b ∈ A such that for every x ∈ A, a ∧ x ≤ b if and only if x ≤ a → b.

Note that in a Heyting algebra A, x ⊙ x = x, for x ∈ A, hence x ⊙ y = x ∧ y = x ⊙ (x → y),
for all x, y ∈ A.

Proposition 2.9. [8] Let A be a Heyting algebra, then, for any x, y, z ∈ A, we have:
(1) 1 → x = x, x → x = 1;
(2) x ≤ y implies z → x ≤ z → y;
(3) x → (y → z) = (x⊙ y) → z = y → (x → z);
(4) x → (y ∧ z) = (x → y) ∧ (x → z).

Proposition 2.10. [18] Let L be a residuated lattice, then (Id(L), ∨, ∧, →,{0}) is a Heyting
algebra, where for I, J ∈ Id(L), I ∧ J = I ∩ J , I ∨ J = (I ∪ J ] and I → J = {x ∈ A | I ∩ (x] ⊆ J}.

Proposition 2.11. [18] Let L be a residuated lattice and I1, I2 ∈ Id(L), then:
(1) I1 → I2 ∈ Id(L);
(2) If I ∈ Id(L), then I1 ∩ I ⊆ I2 iff I ⊆ I1 → I2, that is, I1 → I2 = sup {I ∈ Id(L) : I1 ∩ I ⊆ I2}.

Definition 2.12. [15] Let I be a proper ideal of a residuated lattice L. I is said to be a prime
ideal of the first kind if for any x, y ∈ L, (x → y)∗ ∈ I or (y → x)∗ ∈ I.

Definition 2.13. [15] Let I be a proper ideal of a residuated lattice L. I is said to be a prime
ideal of the second kind if for any x, y ∈ L, x ∧ y ∈ I implies x ∈ I or y ∈ I.

Proposition 2.14. [15] Let L be a residuated lattice. Every prime ideal of the first kind of L is
also a prime ideal of the second kind of L. If L satisfies prelinearity, then every prime ideal of the
second kind of L is also a prime ideal of the first kind of L.
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Definition 2.15. [7, 13] Let L be a residuated lattice, F be a filter of L and B ⊆ L. We define
the extended filter of F associated with B as follows: EF (B) = {x ∈ L | x ∨ b ∈ F,∀b ∈ B}.

Theorem 2.16. [6] Let A be an MV-algebra, B ⊆ A and I be an ideal of A, then I is a stable
ideal relative to B such that B ∩ I = ∅ if and only if A/I is a chain.

Theorem 2.17. [6] Let A be an MV-algebra, then A is a chain if and only if for x, y ∈ A, x∧y = 0,
implies x = 0 or y = 0.

3 Extended ideals in residuated lattices

In this Section, we introduce the notion of extended ideals and stable ideals associated to a subset
B of a residuated lattices L and, we discuss what kind of residuated lattices have extended ideals.
Then, we investigate their related properties. We show that if L is an involutive residuated lattice,
then EI(B) is a stable ideal relative to B and so EI(B) is the smallest stable ideal relative to
B. Also, we consider the quotient algebras induced by extended ideals and prove some related
theorems.

Definition 3.1. Let L be a residuated lattice, I be an ideal of L and B ⊆ L. We denote the set of
I associated with B as follows: EI(B) = {x ∈ L | x ∧ b ∈ I, ∀b ∈ B}.
If EI(B) is an ideal of L, then EI(B) is called an extended ideal of L.

Example 3.2. Let L = {0, a, b, c, d, 1} with 0 ≤ a, b, c ≤ d ≤ 1, where a,b and c are incomparable.
Define operations ⊙ and → on L as follows.

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 0 b
c 0 0 0 0 0 c
d 0 0 0 0 0 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d d 1 1
b d d 1 d 1 1
c d d d 1 1 1
d d d d d 1 1
1 0 a b c d 1

Then L is a residuated lattice, and clearly, I = {0} is an ideal of L. Let B = {c}. Then
EI(B) = {0, a, b} is not an ideal of L. Thus, EI(B) = {0, a, b} is not an extended ideal of L.

Remark 3.3. Example 3.2 shows that EI(B) is not an extended ideal of L. Since a∗ → b = d /∈ I,
EI(B) = {0, a, b} is not an ideal of L. This means that Definition 3.1 is reasonable.

Example 3.4. Let L = {0, a, b, c, 1} with 0 ≤ a, b ≤ c ≤ 1, where a and b are incomparable.
Define operations ⊙ and → on L as follows.

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1
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Then L = {0, a, b, c, 1} is a residuated lattice, and it is clear I = {0, a} is an ideal of L. Let
B1 = {c} and B2 = {a}. Then EI(B1) = {0, a} and EI(B2) = L. Thus, EI(B1) = {0, a} and
EI(B2) = L is are extended ideals of L.

Example 3.5. Let L = {0, n, a, b, c, d,m, 1} with 0 ≤ n ≤ a, b ≤ c ≤ m ≤ 1, where a and b be
incomparable and b ≤ c, d ≤ m ≤ 1, where c and d are incomparable. Define operations ⊙ and →
on L as follows.

⊙ 0 n a b c d m 1
0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 n
a 0 0 a 0 a 0 a a
b 0 0 0 0 0 b b b
c 0 0 a 0 a b c c
d 0 0 0 b b d d d
m 0 0 a b c d m m
1 0 n a b c d m 1

→ 0 n a b c d m 1
0 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1
a d d 1 d 1 d 1 1
b c c c 1 1 1 1 1
c b b c d 1 d 1 1
d a a a c c 1 1 1
m n n a b c d 1 1
1 0 n a b c d m 1

Then L = {0, n, a, b, c, d,m, 1} is a residuated lattice and it is clear I1 = {0, n, a} and I2 =
{0, n, b} are ideals of L. Let B = {c}. Then EI1(B) = {0, n, a} and EI2(B) = {0, n, b, d}. Thus,
EI1(B) = {0, n, a} and EI2(B) = {0, n, b, d} is an extended ideal of L.

From Example 3.2, we can see that there may be no extended ideal on a residuated lattice.
Now, we discuss what kind of residuated lattices have extended ideals.

Theorem 3.6. Let L be an involutive residuated lattice, I be an ideal of L and B ⊆ L, then EI(B)
is an extended ideal of L.

Proof. We have 0 ∧ b = 0 ∈ I , for all b ∈ B and so 0 ∈ EI(B). For x, y, z ∈ L, we have

(x⊙ y) ∨ z = (x⊙ y) ∨ z ∨ z ∨ z

≥ (x⊙ y) ∨ (z ⊙ y) ∨ (z ⊙ x) ∨ (z ⊙ z)

= ((x ∨ z) ⊙ y) ∨ ((x ∨ z) ⊙ z)

= (x ∨ z) ⊙ (y ∨ z).

So (x⊙ y) ∨ z ≥ (x ∨ z) ⊙ (y ∨ z). Suppose that x, y ∈ EI(B). Then x ∧ b, y ∧ b ∈ I, for all b ∈ B.
Since I is an ideal, so (x ∧ b)∗ → (y ∧ b) ∈ I. Then, we have

(x∗ ⊙ y∗) ∨ b∗ ≥ (x∗ ∨ b∗) ⊙ (y∗ ∨ b∗)

⇔ (x∗ ⊙ y∗) ∨ b∗ ≥ (x ∧ b)∗ ⊙ (y ∧ b)∗

⇔ (x∗ ⊙ y∗)∗ ∧ b ≤ ((x ∧ b)∗ ⊙ (y ∧ b)∗)∗

⇔ (x∗ → y) ∧ b ≤ (x ∧ b)∗ → (y ∧ b).

Since (x ∧ b)∗ → (y ∧ b) ∈ I, we conclude (x∗ → y) ∧ b ∈ I. This results x∗ → y ∈ EI(B). Now,
let x ≤ y, y ∈ EI(B). It is clear that x ∈ EI(B). Thus. EI(B) is an ideal of L. Also, let x ∈ I.
Since x ∧ b ≤ x, for all b ∈ B. Since I is an ideal, we obtain x ∧ b ∈ I, for all b ∈ B. This means
x ∈ EI(B). So I ⊆ EI(B).

Definition 3.7. An ideal I is a stable relative to a subset B of L if I = EI(B).
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Example 3.8. In Example 3.4, I = {0, a} is a stable ideal relative to B = {c} and in Example
3.5, I1 = {0, n, a} is a stable ideal relative to B = {c}.

Theorem 3.9. Let L be an involutive residuated lattice, I and J be ideals of L, and B ⊆ L. Then
(1) EI(B) = L if and only if B ⊆ I;
(2) If EI(B) is an extended ideal of L, x ∈ L is a finite order and x ∈ EI(B), then EI(B) = L;
(3) If I ⊆ J , then EI(B) ⊆ EJ(B);
(4) If x, y ∈ EI(B), then x∗ → y ∈ EI(B);
(5) B ⊆ EI (EI(B));
(6) If I ⊆ J , then EI(J) ∩ J = I;
(7) EI (EI(B)) ∩ EI(B) = I;
(8) If B ⊆ C, then EI(C) ⊆ EJ(B);
(9) B⊥ ⊆ EI(B);
(10) If 1 ∈ B, then I is stable relative to B;
(11) EI(B) → EJ(B) ⊆ I → EJ(B);
(12) EI→J(B) ⊆ EI→EJ (B)(B).

Proof. (1) Let EI(B) = L and b ∈ B. Since b ∈ B, B ⊆ L and EI(B) = L, so b ∈ EI(B), then
b = b ∧ b ∈ I. Thus, B ⊆ I. Conversely, B ⊆ I, x ∈ L and b ∈ B. Since x ∧ b ≤ b, B ⊆ I and I is
an ideal, we obtain x ∧ b ∈ I, for all b ∈ B. This means x ∈ EI(B). Thus, EI(B) = L.
(2) Let x ∈ L be a finite order, then there exists n ∈ N such that nx = 1. Suppose that x ∈ EI(B).
Since EI(B) is an ideal, nx = 1 ∈ EI(B). Hence, b = 1 ∧ b ∈ I, for all b ∈ B and so B ⊆ I. Using
(1), we get EI(B) = L.
(3) Let I ⊆ J and x ∈ EI(B). Then x ∧ b ∈ I ⊆ J , for all b ∈ B. So, x ∈ EJ(B). Thus,
EI(B) ⊆ EJ(B).
(4) Let x, y ∈ EI(B). Then x ∧ b ∈ I and y ∧ b ∈ I, for all b ∈ B. Since I is an ideal of L. So
(x ∧ b)∗ → (y ∧ b) ∈ I. By the proof of Theorem 3.6, we have (x∗ → y) ∧ b ≤ (x ∧ b)∗ → (y ∧ b).
Hence, (x∗ → y) ∧ b ∈ I. Thus, x∗ → y ∈ EI(B).
(5) Let x ∈ B and y ∈ EI(B). Then x ∧ y = y ∧ x ∈ I. This means x ∈ EI (EI(B)).
(6) Let x ∈ EI(J) ∩ J . Hence x = x ∧ x ∈ I. Conversely, let x ∈ I and y ∈ J . Then, we have
x ∧ y ≤ x. Since I is an ideal and I ⊆ J , we get x ∈ EI(J) ∩ J . Thus, EI(J) ∩ J = I.
(7) Let x ∈ EI (EI(B))∩EI(B). Then x = x∧x ∈ I. Conversely, let x ∈ I and y ∈ EI(B). Clearly,
x ∈ I ⊆ EI(B). Since I is an ideal and x∧y ≤ x, we have x∧y ∈ I. Hence, x ∈ EI (EI(B))∩EI(B).
(8) Let x ∈ EI(C) and B ⊆ C. Then x∧ c ∈ I, for all c ∈ C and so x∧ c ∈ I for all c ∈ B. Hence,
x ∈ EI(B).
(9) Let a ∈ B⊥. Then a ∧ b = 0 ∈ I, for all b ∈ B. Hence a ∈ EI(B).
(10) Let 1 ∈ B and x ∈ EI(B). Then x = x ∧ 1 ∈ I. Hence, EI(B) ⊆ I. Since I ⊆ EI(B). Thus,
I = EI(B).
(11) Let x ∈ EI(B) → EJ(B). Hence, (x] ∩ I ⊆ (x] ∩ EI(B) ⊆ EJ(B). Thus, x ∈ I → EJ(B).
(12) Let x ∈ EI→J(B). Then x∧ b ∈ I → J , for all b ∈ B. It follows that (x∧ b]∩ I ⊆ J ⊆ EJ(B).
Hence, x ∧ b ∈ I → EJ(B), for all b ∈ B. Thus, x ∈ EI→EJ (B)(B).

Proposition 3.10. Let f : L → M be an onto residuated lattice-homomorphism, then EKer(f)(B)=
f−1(E{0}(C)), for B ⊆ L and C ⊆ M such that f(B) = C.

Proof. Clearly.

Theorem 3.11. Let L be a residuated lattice, I be a proper ideal of L and B ⊆ L. Then EI(B)∩
B ⊆ I.
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Proof. Let x ∈ EI(B) ∩ B. Then x ∈ EI(B) and x ∈ B. So, x ∧ b ∈ I, for all b ∈ B. Now, let
b = x ∈ B. Hence, x = x ∧ x ∈ I. Thus EI(B) ∩B ⊆ I.

Corollary 3.12. Let 0 ∈ B. Then E{0}(B) ∩B = {0}.

Theorem 3.13. Let L be an involutive residuated lattice, I be a proper ideal of L and B ⊆ L.
Then the following statements hold:
(1) E{0}/I(B/I) = EI(B)/I,
(2) If EI(B(L)) ⊆ B(L), then EI(B(L)) = I and B(L/EI(B(L)) = B(L)/EI(B(L)).

Proof. (1) x/I ∧ b/I = 0/I ⇔ x ∧ b ∈ I ⇔ x ∈ EI(B) ⇔ x/I ∈ EI(B)/I.
(2) Let EI(B(L)) ⊆ B(L). By Theorem 3.11, we have EI(B(L)) = I and

B(L)/EI(B(L)) = {e/EI(B(L)) : e ∈ B(L)} ,
= {e/EI(B(L)) : e ∨ e∗ = 1} ,
= {e/EI(B(L)) : e/EI(B(L)) ∨ e∗/EI(B(L)) = 1/EI(B(L))} ,
= B (L/EI(B(L)).

Proposition 3.14. Let A,B be involutive residuated lattices, A′ ⊆ A and B′ ⊆ B. If f : A → B
be a homomorphism such that f (A′) = B′, then the following statements hold:
(1) If I is a stable ideal relative to a subset B′, then f−1(I) is a stable ideal relative to A′.
(2) If f is onto, I is a stable ideal relative to A′ and Ker(f) ⊆ I, then f(I) is a stable ideal relative
to B′.

Proof. (1) Let I be a stable relative to B′. Then I = EI(B′). We show that f−1(I) = f−1 (EI (B′)) =
Ef−1(I) (A′)

x ∈ Ef−1(I)

(
A′) ⇔ x ∧ a ∈ f−1(I), for all a ∈ A′

⇔ f(x) ∧ f(a) ∈ I, for all a ∈ A′,

⇔ f(x) ∧ b ∈ I, for all b = f(a) ∈ B′,

⇔ f(x) ∈ EI

(
B′) ,

⇔ x ∈ f−1
(
EI

(
B′)) ,

⇔ x ∈ f−1(I).

(2) Let I be a stable relative to A′. Then I = EI(A′). We show that Ef(I) (B′) = f (EI (A′)) =
f(I).
Let x ∈ f (EI (A′)). Then there exists t ∈ EI (A′) such that x = f(t). So, t ∧ a ∈ I, for all a ∈ A′.
Hence, x ∧ b = f(t) ∧ f(a) = f(t ∧ a) ∈ f(I), for all b = f(a) ∈ B′. Thus, x ∈ Ef(I) (B′).
Conversely, let x ∈ Ef(I) (B′), since f is onto, there exists s ∈ A such that f(s) = x. We have

x ∈ Ef(I)

(
B′)

⇔ x ∧ b ∈ f(I), for all b ∈ B′,

⇔ f(s) ∧ f (c) ∈ f(I), for all b = f (c) , c ∈ A′,

⇔ f (s ∧ c) = f(t), ∃t ∈ I, for all c ∈ A′,

⇔ (s ∧ c) ⊙ t∗ ∈ Kerf ⊆ I, ∃t ∈ I, for all c ∈ A′,

⇔ s ∧ c ≤ t ∨ (s ∧ c) = t∗ → (t∗ ⊙ (s ∧ c)) ∈ I, for all c ∈ A′,
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⇔ s ∧ c ∈ I, for all c ∈ A′,

⇔ s ∈ EI

(
A′) ,

⇔ x ∈ f
(
EI

(
A′)) .

Thus, f(I) is a stable relative to B′.

Theorem 3.15. Let L be an involutive residuated lattice, I be an ideal of L and B ⊆ L. Then
EI(B) is stable relative to B and so EI(B)=

⋂
{J : J is stable relative to B and I ⊆ J}.

Proof. By Theorem 3.6, we have EI(B) ⊆ EEI(B)(B). Conversely, let x ∈ EEI(B)(B). Then
x ∧ b ∈ EI(B), for all b ∈ B. Hence, (x ∧ b) ∧ b ∈ I, for all b ∈ B. So x ∧ b ∈ I, for all b ∈ B.
Thus, x ∈ EI(B). Hence EEI(B)(B) ⊆ EI(B). So EEI(B)(B) = EI(B). Therefore, EI(B) is stable
relative to B.
Now, let J be a stable relative to B such that I ⊆ J . By Theorem 3.9(3), we have EI(B) ⊆
EJ(B) = J . So EI(B)=

⋂
{J : J is stable relative to B and I ⊆ J}.

Theorem 3.16. Let L be an involutive residuated lattice, I be an ideal of L and B ⊆ L, then
EEI(B)/I(B/I) =

(
EEI(B)(B)

)
/I = EI(B)/I.

Proof. Let a/I ∈ EEI(B)/I(B/I). Then a/I ∧ b/I ∈ EI(B)/I, for all b/I ∈ B/I, so (a∧ b)/I = t/I,
for some t ∈ EI(B). Since t ∈ EI(B), hence a ∧ b ≤ t ∨ (a ∧ b) = t∗ → (t∗ ⊙ (a ∧ b)) ∈ EI(B), so
a ∧ b ∈ EI(B), for all b ∈ B. Thus, a ∈ EEI(B)(B). Therefore, a/I ∈

(
EEI(B)(B)

)
/I.

Conversely, let a/I ∈
(
EEI(B)(B)

)
/I. Then a ∈ EEI(B)(B), and so a∧b ∈ EI(B), for all b ∈ B.

Hence, a/I ∧ b/I = a ∧ b/I ∈ EI(B)/I, for all b/I ∈ B/I. This results a/I ∈ EEI(B)/I(B/I),
so EEI(B)/I(B/I) =

(
EEI(B)(B)

)
/I. It follows from Theorem 3.15 that EEI(B)/I(B/I) =(

EEI(B)(B)
)
/I = EI(B)/I.

Theorem 3.17. Let L be a residuated lattice, I be a prime ideal of the first kind of L and B ⊆ L.
Then extended ideal EI(B) is a prime ideal of L.

Proof. Let I be a prime ideal of the first kind of L. Then (x → y)∗ ∈ I or (y → x)∗ ∈ I, for all
x, y ∈ L. Since (x → y)∗ ∧ b ≤ (x → y)∗ ∈ I or (y → x)∗ ∧ b ≤ (y → x)∗ ∈ I, for all x, y ∈ L,
b ∈ B. So (x → y)∗ ∈ EI(B) or (y → x)∗ ∈ EI(B), for all x, y ∈ L.

Theorem 3.18. Let L be a residuated lattice, I be a prime ideal of the second kind of L and
B ⊆ L, then so is the extended ideal EI(B).

Proof. Let I be a prime ideal of the second kind of L and x ∧ y ∈ EI(B). Then (x ∧ y) ∧ b ∈ I,
for all b ∈ B. Since I is a prime ideal of the second kind of L. So x ∈ I or y ∧ b ∈ I, hence
x ∧ b ≤ x ∈ I or y ∧ b ∈ I. Thus x ∈ EI(B) or y ∈ EI(B).

Theorem 3.19. Let L be an involutive residuated lattice, I be a prime ideal of the second kind of
L and B ⊆ L. Then I is stable relative to B.

Proof. Assume I is not a stable relative to B. Then EI(B) ̸= I. There exists x ∈ EI(B) such that
x /∈ I. Hence x ∧ b ∈ I, for all b ∈ B. Since I is a prime ideal of the second kind of L, so b ∈ I.
Hence B ⊆ I. By Theorem 3.9(1), we have EI(B) = L, which is a contradiction.

Remark 3.20. Let L be an involutive residuated lattice, B ⊆ L, I be a maximal ideal and EI(B)
be a proper ideal of L. Then EI(B) is a maximal ideal and I is a stable relative to B.
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Theorem 3.21. Let L be an involutive residuated lattice, B ⊆ C ⊆ L and I be a stable ideal
relative to B. Then I is a stable ideal relative to C.

Proof. Since I is a stable ideal relative to B, we get I = EI(B). By Theorem 3.6 and Theorem
3.9(8), we have I ⊆ EI(C) ⊆ EI(B) = I. So I = EI(C). Thus, I is a stable ideal relative to
C.

Theorem 3.22. Let L be a residuated lattice, I be an ideal of L and B ⊆ L. Then
(1) EI(B) = EI((B]), where (B] is the ideal generated by B.
(2) If B ⊆ I, then (B] ∩ EI((B]) = (B].
(3) a ∈ EI(B) if and only if a/I ∈ (B/I)⊥.

Proof. (1) Since B ⊆ (B], by using Theorem 3.9(8), we obtain EI((B]) ⊆ EI(B). Suppose that
x ∈ EI(B) and z ∈ (B]. Then x∧ b ∈ I, for all b ∈ B and there exists b1, b2, · · · , bn ∈ B such that
z ≤ b1 ⊕ · · · ⊕ bn. Thus, x ∧ z ≤ x ∧ (b1 ⊕ · · · ⊕ bn) ≤ (x ∧ b1) ⊕ · · · ⊕ (x ∧ bn), since x ∧ bi ∈ I, for
all 1 ≤ i ≤ n and I is an ideal of L, we get x ∧ z ∈ I. Thus, x ∈ EI((B]).
(2) Since B ⊆ I, by using Theorem 3.9(1), we have EI(B) = L. Using (1), we get EI(B) = EI((B]),
so EI((B]) = L. Thus, (B] ∩ EI((B]) = (B].
(3) We have

a ∈ EI(B) ⇔ a ∧ x ∈ I, ∀x ∈ B

⇔ (a ∧ x)/I = 0/I, ∀x ∈ B

⇔ a/I ∧ x/I = 0/I, ∀x/I ∈ B/I

⇔ a/I ∈ (B/I)⊥

Theorem 3.23. Let L be an involutive residuated lattice, B,C ⊆ L and I be an ideal of L. Then
EEI(B)(C) = EEI(C)(B).

Proof. Let L be an involutive residuated lattice, B,C ⊆ L and I be an ideal of L. Then, we have

x ∈ EEI(B)(C)

⇔ x ∧ c ∈ EI(B), for all c ∈ C,

⇔ (x ∧ c) ∧ b ∈ I, for all c ∈ C, b ∈ B,

⇔ (x ∧ b) ∧ c ∈ I, for all c ∈ C, b ∈ B,

⇔ x ∧ b ∈ EI(C), for all b ∈ B,

⇔ x ∈ EEI(C)(B).

Theorem 3.24. Let L be an involutive residuated lattice, {Ij}j∈J be a family of ideals of L and
B ⊆ L. Then
(1)

⋂
j∈J EIj (B) = E∩Ij (B).

(2) If {Ij}j∈J is a chain of ideals, then
⋃

j∈J EIj (B) = E∪Ij (B).
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Proof. (1) Let x ∈
⋂

j∈J EIj (B). Then

x ∈
⋂
j∈J

EIj (B) ⇔ x ∈ EIj (B), ∀j ∈ J,

⇔ x ∧ b ∈ Ij , ∀b ∈ B, ∀j ∈ J,

⇔ x ∧ b ∈
⋂

Ij , ∀b ∈ B,

⇔ x ∈ E∩Ij (B).

(2) Let {Ij}j∈J be a chain of ideals. It is easy to see that
⋃

j∈J Ij is an ideal of L. Let x ∈⋃
j∈J EIj (B). Then there exists j ∈ J such that x ∈ EIj (B), there exists j ∈ J such that

x ∧ b ∈ Ij , for all b ∈ B. Thus, x ∧ b ∈ ∪Ij , for all b ∈ B, and so x ∈ E∪Ij (B). Therefore,⋃
j∈J EIj (B) ⊆ E∪Ij (B).

Conversely, let x ∈ E∪Ij (B). Then x ∧ b ∈ ∪Ij , for all b ∈ B. Since {Ij}j∈J a chain of ideals,
there exists j ∈ J such that x ∧ b ∈ Ij , for all b ∈ B. Hence, x ∈ EIj (B), for some j ∈ J and so
x ∈

⋃
j∈J EIj (B). Therefore, E∪Ij (B) ⊆

⋃
j∈J EIj (B).

The Theorem 2.16 is not true in involutive residuated lattices, now we provide a counterexample
to illustrate it.

Example 3.25. Let L = {0, a, b, c, d, 1} with 0 ≤ a ≤ b, c ≤ d ≤ 1, where b and c are incomparable.
Define operations ⊙ and → on L as follows.

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 a a b
c 0 0 a 0 a c
d 0 0 a a a d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 1 1 1
b b d 1 d 1 1
c c d d 1 1 1
d a d d d 1 1
1 0 a b c d 1

We have verified that L is an involutive residuated lattice, but it is not an MV -algebra.
Since (b → c) ∨ (c → b) = d ̸= 1, it is not satisfied prelinearity. Now we have I = {0} is
a stable ideal relative to B = {d} such that B ∩ I = ∅. However, L/I is not a chain. Since
[b]≈I → [c]≈I = [b → c]≈I = [d]≈I ̸= [1]≈I , [c]≈I → [b]≈I = [c → b]≈I = [d]≈I ̸= [1]≈I , where [b]≈I

and [c]≈I are not incomparable. So L/I is not a chain.
In Theorem 2.16, the sufficiency of the conclusion about MV-algebra is correct. We now provide
the following proof.

Proposition 3.26. Let L be an involutive residuated lattice , B ⊆ L and I be an ideal of L such
that B ∩ I = ∅. If L/I be a chain, then I is a stable ideal relative to B.

Proof. Let L/I be a chain and a ∈ EI(B). Hence, a ∧ x ∈ I, for x ∈ B. This results a/I ∧ x/I =
(a∧x)/I = 0/I. Since L/I is chain, a/I = 0/I or x/I = 0/I and so a ∈ I or x ∈ I. By assumption,
since B ∩ I = ∅, hence, a ∈ I. Thus, EI(B) ⊆ I. Also, by Theorem 3.6, we have I ⊆ EI(B).
Therefore EI(B) = I and so I is a stable ideal relative to B.

The theory in Theorem 2.17 is not trulutive residuated lattices, now we provide a counterex-
ample to illustrate it.
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Example 3.27. In Example 3.25, let x ∧ y = 0, for x, y ∈ L. We will discuss the following two
situations: (1) if x = 0 or y = 0, then proposition is true. However, L is not a chain. (2) if
x, y ̸= 0, then x, y ∈ {a, b, c, d, 1} such that x ∧ y = 0, hence, x = 0 or y = 0, however L is not a
chain.

In Theorem 2.17, the necessity of the conclusion about MV-algebra is correct. We now provide
the following proof.

Proposition 3.28. Let L be an involutive residuated lattice. If L is a chain. Then x ∧ y = 0
implies x = 0 or y = 0.

Proof. Clearly.

4 The structure of extended ideals

In this Section, We give a characterization of this extended ideal: EI(B) = (B] → I in the
complete Heyting algebra (Id(L),∧,∨,→, {0}, L). We also prove that the class S(B) of all stable
ideals relative to B ⊆ L is a complete Heyting algebra, and we prove that the set of extended ideals
and the set of extended filters on involutive residuated lattices are one-to-one correspondence.

Theorem 4.1. Let L be an involutive residuated lattice, I be an ideal of L and B ⊆ L. Then
(S(B),⊓,⊔) is a lattice, where S(B) = {EI(B) | I ∈ Id(L)}.

Proof. By Theorem 3.15, we get EI(B) is a stable ideal relative to B. For all elements EI(B),
EJ(B) ∈ S(B), we define two operations ⊓ and ⊔ as follows: EI(B)⊓EJ(B)= EI∧J(B) and EI(B)⊔
EJ(B) = EI∨J(B), where EI∧J(B) (or EI∨J(B) ) is infimum (supremum) of EI(B), EJ(B)
in S(B). It is easy to show that EI(B) ⊓ EJ(B) = EI∧J(B). We show that EI∨J(B) is a
supremum of EI(B), EJ(B) in S(B). By Theorem 3.9(3), we get EI(B), EJ(B) ⊆ EI∨J(B).
For any stable ideal relative to B, EK(B), such that EI(B), EJ(B) ⊆ EK(B), we prove that
EI∨J(B) ⊆ EK(B). Let x ∈ EI∨J(B). Then x ∧ b ∈ I ∨ J , for all b ∈ B. Hence, x ∧ b ≤ a⊕ c, for
some a ∈ I ⊆ EI(B), c ∈ J ⊆ EJ(B). We obtain x ∧ b ∈ EI(B) ∨ EJ(B) ⊆ EK(B), for all b ∈ B.
Thus, x ∈ EEK(B)(B) = EK(B). This means that EI∨J(B) is the supremum of {EI(B), EJ(B)}
in S(B). Thus, (S(B),⊓,⊔) is a lattice.

Theorem 4.2. Let L be an involutive residuated lattice, B ⊆ L and I be an ideal of L. Then, we
have EI(B) = (B] → I in the complete Heyting algebra (Id(L),∧,∨,→, {0}, L).

Proof. Let x ∈ EI(B). We prove that x ∈ (B] → I. It is sufficient to show that (x] ∩ (B] ⊆ I.
Suppose that t ∈ (B] ∩ (x]. Then there exists bi ∈ B and n ∈ N such that t ≤ b1 ⊕ · · · ⊕ bk
and t ≤ nx. We have t = t ∧ t ≤ (b1 ⊕ · · · ⊕ bk) ∧ nx ≤ (nx ∧ b1) ⊕ · · · ⊕ (nx ∧ bk). Since
x ∈ EI(B) ∈ Id(L), we have nx ∈ EI(B). This results (nx) ∧ bi ∈ I, (1 ≤ i ≤ k). This means
t ≤ (nx ∧ b1)⊕· · ·⊕(nx ∧ bk) ∈ I. Hence, t ∈ I. Thus, (B]∩(x] ⊆ I and we get EI(B) ⊆ (B] → I.

Conversely, let x ∈ (B] → I. Hence, (b ∧ x] = (b] ∩ (x] ⊆ (B] ∩ (x] ⊆ I, for all b ∈ B. We
obtain that x∧ b ∈ I, for all b ∈ B and thus x ∈ EI(B). So (B] → I ⊆ EI(B). Therefore, we have
EI(B) = (B] → I in the Heyting algebra Id(L).

Theorem 4.3. Let L be an involutive residuated lattice, I be an ideal of L and B ⊆ L. Then(
S(B),∧,⊔,→, E{0}(B), L

)
is a complete Heyting algebra.
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Proof. By Theorem 3.24, we have
∧

j∈J EIj = E∧Ij (B) and so S(B) is complete. We only show
that for all EI(B), EJ(B), EK(B) ∈ S(B),
(1) EI(B) → EJ(B) ∈ S(B),
(2) EI(B) ⊓ EJ(B) ⊆ EK(B) ⇔ EI(B) ⊆ EJ(B) → EK(B).
By Theorem 4.2, we obtain EI(B) → EJ(B) = ((B] → I) → ((B] → J) = (B] → [((B] → I) →
J ] = [(B] ⊙ ((B] → I)] → J = ((B] ∧ I)) → J = ((B] ⊙ I)) → J = (B] → (I → J) ∈ S(B) For the
case of (2), it follows from Theorem 4.2 that

EI(B) ⊓ EJ(B) ⊆ EK(B) ⇔ EI∧J(B) ⊆ EK(B),

⇔ (B] → I ∧ J ⊆ (B] → K

⇔ (B] ∧ ((B] → I ∧ J) ⊆ K,

⇔ (B] ∧ I ∧ J ⊆ K,

⇔ (B] ∧ I ⊆ J → K,

⇔ (B] → ((B] ∧ I) ⊆ (B] → (J → K),

⇔ ((B] → (B]) ∧ ((B] → I) ⊆ (B] → (J → K),

⇔ (B] → I ⊆ (B] → (J → K),

⇔ EI(B) ⊆ EJ(B) → EK(B).

Thus, S(B) of all stable ideals relative to B is the Heyting algebra.

Theorem 4.4. If L is an involutive residuated lattice and B ⊆ L, then {EI(B) | I ∈ I(L)} and
{EF (B) | F ∈ F (L)} are one-to-one correspondence.

Proof. Let ϕ : EI(B) → EF (B) be a map such that ϕ (EI(B)) = EI∗(B), and

I∗ = {a∗ | a∗ = a → 0, ∀a ∈ I} .

Now, we prove that I∗ is a filter of L. Let a ∈ I∗ and a ≤ b. Then a∗ ∈ I. Since L is an involutive
residuated lattice, so b∗ ≤ a∗. Since I is an ideal of L, so b∗ ∈ I. Thus, b ∈ I∗. Let a, b ∈ I∗. Then
a∗, b∗ ∈ I. Since I is an ideal of L, so (a∗)∗ → b∗ = a → b∗ ∈ I. Thus (a → b∗)∗= a ⊙ b ∈ I∗.
So I∗ is a filter of L. Let φ : EF (B) → EI(B) be a map such that φ (EF (B))=EF ∗(B), where
F ∗ = {b∗ | b∗ = b → 0,∀b ∈ F}. We can prove that F ∗ is an ideal of L, similarly. Then

φ(ϕ(EI(B))) = φ(EI∗(B)) = EI∗∗(B) = EI(B),

ϕ(φ(EF (B))) = ϕ(EF ∗(B)) = EF ∗∗(B) = EF (B).

So {EI(B) | I ∈ I(L)} and {EF (B) | F ∈ F (L)} are one-to-one correspondence.

5 Conclusion

In this paper, motivating by the previous research on MV-algebras, we extend the concept of
extended ideals and stable ideals associated to a subset B to the more general fuzzy structures,
namely residuated lattices.This provides us with a great way to find ideals of residuated lattices,
and we can characterize some special residuated lattices by extended ideals. We have proven the
existence of extended ideals on involutive residuated lattices. Moreover, we have studied some
of their related properties. We show that if L is an involutive residuated lattice, then EI(B) is
a stable ideal relative to B and So EI(B)=

⋂
{J : J is stable relative to B and I ⊆ J}. We
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also give a characterization of this extended ideal: EI(B) = (B] → I in the complete Heyting
algebra (Id(L),∧,∨,→, {0}, L). We also prove that the class S(B) of all stable ideals relative to
B ⊆ L is a complete Heyting algebra. And we prove that the set of extended ideals and the set
of extended filters on involutive residuated lattices are one-to-one correspondence. Finally, for
some conclusions that hold on MV -algebras, we prove corresponding counterexamples to prove
that they do not hold on involutive residuated lattices. This also makes our work meaningful.
We attempt to fuzzify the extended ideals on residuated lattices and study their properties in the
future.
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