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Abstract

This paper introduces the concepts of reproduced general
hyperring and valued-orderable general hyperring and in-
vestigates some properties of these classes of general hy-
perrings. It presents the notions of zero divisors and zero
divisor graphs, which are founded on the absorbing ele-
ments of general hyperrings. General hyperrings can have
more than one zeroing element, and therefore, based on
the zeroing elements, multiple zero divisors can be ob-
tained. In this study, we discuss the isomorphism of zero
divisor graphs based on the diversity of divisors of zero
divisors. The non-empty intersection of the set of ab-
sorbing elements and the hyperproduct of zero divisors
of general hyperrings play a significant role in producing
zero divisor graphs. Indeed it investigated a type classi-
fication of zero divisor graphs based on the finite general
hyperrings. We discuss the finite reproduced general hy-
perrings, investigate their zero divisor graphs, and show
that an infinite reproduced general hyperring can have a
finite zero divisor graph.
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1 Introduction

The theory of Krasner hyperring as a generalization of the ring is a hyperstructure introduced
by Krasner as a hyperstructure endowed with a hyperaddition and a multiplication operation
that is distributive over the hyperaddition. Superring, another hyperstructure was introduced by
Mittas having both additive and multiplicative hyperstructures in 1973 [16]. Later on, Vougiouklis
[22] generalized the concept of superrings, introducing the hyperrings in the general sense, where
addition and multiplication are hyperoperations but only the weak version of distributivity. The
theory of general hyperrings is vital in real-world problems because it relates to the set of objects
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in different clustering via the systematic hyperoperations[10]. The combination of graphs and rings
was interesting for many researchers and investigated. In mathematics, and more specifically in
combinatorial commutative algebra, a zero-divisor graph is an undirected graph representing the
zero-divisors of a commutative ring. It has elements of the ring as its vertices and pairs of elements
whose product is zero as its edges. Let R be a commutative ring with 1, and let Z(R) be its set of
zero-divisors. It is associated a simple graph Γ(R) to R with vertices Z∗(R) = Z(R) \ {0}, the set
of nonzero zero-divisors of R, and for distinct x, y ∈ Z∗(R), the vertices x and y are adjacent if and
only if xy = 0. The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck
in [6], where he was mainly interested in colourings, and this idea in a commutative ring was then
continued by D. D. Anderson and M. Naseer in [7]. Later, some researchers investigated the zero
divisor graphs based on the ring structures, especially zero divisor graphs based on ideals in rings,
and gave important results in this regard. Some updated papers with titled graph of the ring based
on the zero divisors published in several versions such as the n-zero divisor graph of a commutative
semigroup[5], zero-one laws for random k-partite graphs [17], graphs derived from multirings [13],
the distant graph of the projective line over a finite ring with unity [9], spectra and topological
indices of comaximal graph of Zn [8], on derivable tree [12], on the extended zero-divisor graph
of strictly partial transformation semigroup [14], the Cayley graph of Neumann subgroups [15],
zero-divisor graph of a ring with respect to an automorphism [18], frequency assignment model of
zero divisor graph [19], implementation of single-valued neutrosophic soft hypergraphs on human
nervous system [3], intuitionistic fuzzy hypergraphs with applications [2], intuitionistic fuzzy left
k-ideals of semirings [1] and the Wiener index of the zero-divisor graph of a finite commutative ring
with unity [21]. Hamidi et al. introduced the graphs based on the hyperideal of special hyperrings
as an extension of graphs based on the ideals of rings. Indeed, they presented graphs based on
an ideal of rings to intersection graphs based on the hyperideal of hyperrings for modelling real
problems by absorbent elements of hyperrings [11].

Motivation and Advantage: In algebraic structures such as groups and rings, only two
elements can be connected to one element under one or more operations at a time. However, if we
want to connect two elements with more than one element simultaneously, it is necessary to extend
this theory to hyperstructures such as hypergroups or hyperrings. In algebraic hyperstructures,
regardless of the number of hyperoperations, we can have a more comprehensive relationship
between elements, and this is an essential advantage in modeling data in the real world. On
the other hand, graph theory has great importance and application in the real world and all
sciences, and the extraction of graphs from regular structures adds to the importance of these
sciences. Due to the limitation of the theory of rings in the simultaneous connection of more
than three elements and its development to the theory of hyperrings, our motivation in extracting
graphs has been created in this research. In mathematical modeling, we first convert the existing
data into a rule-mod system such as general hyperrings so that there are no restrictions on the
relationship of elements, and we extract graphs according to general hyperrings. Few works have
been done in extracting graphs based on hyperrings, and in this research, we are dealing with
graphs with zero-divisors based on general hyperrings. One of the most important advantages of
this research is that the general hyperrings of our context are general, and there is no limit on
the number of zeros of general hyperrings, which is more consistent with the reality of our world.
Since a general hyperring can have more than one zero-divisor, we can have a variety of graphs
with a zero-divisor base and even deal with the relationship between these types of graphs. In
fact, for both distinct zeros in general hyperrings, we have two types of graphs with a divisible
base of zeros, and considering the relationship between these two distinct zeros, we can discuss
the relationship between their graphs. Another advantage of this research in the type of graphs
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with zero divisors is that in the case of limiting general hyperrings to other hyperrings and even
rings, the same results are obtained. The aim of this research is the bring forward graphs based
on zero divisors from rings to special hyperrings, as a generalized problem in hyperstructures
and graphs. We have received our primary motivation for this work from problems related to
graphs and algebraic structures, such as zero divisor graph based on the group, graph derived
from modules, and extracted graph from ring structures. Therefore, in line with this goal, the
absorbing elements concerning hyperstructures equipping hyperoperations, are considered and the
properties of zero divisors via absorbing elements in general hyperrings are analyzed. We show
that for any given general hyperring, we can construct some (non) isomorphic zero divisor graphs
via the zero divisors that are related to hyperadditive absorbing elements. Also presented is an
infinite general hyperring such that its zero divisor graph is finite. Also, we inset a class of finite
hyperrings and analyzed their zero divisor graphs concerning divisors of the order of their elements.
We proved that for any given infinite general hyperrings, under special conditions, such as the type
of its hyperoperations or the type of zeroing elements, finite or infinite graphs can be extracted,
and these graphs can be complete, Eulerian, multipartite, or have any other special characteristics.

2 Preliminaries

In this section, we introduce the important and preliminary materials and concepts that we need
in our research from [4, 10, 20].

A simple graph G is a finite non-empty set V of objects called vertices (the singular is vertex)
together with a set E of 2-element subsets of V called edges and is showed with G = (V = V (G) =
{vi}ni=1, E = E(G) = {ei}mi=1). Two vertices u, v ∈ V of a graph G are adjacent if there is an edge
e = {u, v} joining them and a simple graph in which each pair of distinct vertices are adjacent
is a complete graph and denote the complete graph on n vertices by Kn. A path in G is a finite
distinct sequence of vertices and edges of the form x0, e1, x1, e2, x2, . . . , xn−1, en, xn and it is called
a cycle, if x0 = xn. A graph is connected if and only if there is a path between each pair of
vertices and is a bipartite graph if and only if each cycle of G has an even length. A graph is called
disconnected, if it is not connected and the number of connected components of graph G is denoted
by t(G). For the simple graph G and x, y ∈ V (G), d(x, y) is defined as the length of a shortest
path from x to y in G (d(x, x) = 0 and d(x, y) = ∞ if there is no such path). The diameter of G
is diam(G) = sup{d(x, y) | x and y are vertices of G } and the girth of G, denoted by gr(G), is
the length of a shortest cycle in G (gr(G) = ∞ if G contains no cycles). Two graphs G and H are
isomorphic (have the same structure) if there exists a bijective function φ : V (G) −→ V (H) such
that two vertices u and v are adjacent in G if and only if φ(u) and φ(v) are adjacent in H. The
function φ is then called an isomorphism and G and H are isomorphic, we write G ∼= H.

Let R be a non-empty set and P∗(R) = {S | ∅ ̸= S ⊆ R}. Every map φ : R × R −→ P∗(R),
has been named as a hyperoperation, a hyperstructure (R,φ) is called a hypergroupoid and for all

non-empty subsets A,B of R, φ(A,B) =
⋃

a∈A,b∈B
(φ(a, b))(we identified the set {x} with to x, so

φ(x,B) = φ({x}, B), where x ∈ R). A hypergroupoid (R,φ) is called a semihypergroup, if for
all x, y, z ∈ R,φ(φ(x, y), z) = φ(x, φ(y, z)) and a semihypergroup (R,φ) is called a hypergroup,
if for all x ∈ R,φ(x,R) = φ(R, x) = R(reproduction axiom). A hypergroup (R,φ, θ) is called
commutative, if for any x, y ∈ R,φ(x, y) = φ(y, x). A general hyperring is a hyperstructure
(R,φ, θ), where

(i) (R,φ) is a hypergroup,
(ii) (R, θ) is a semihypergroup and



134 M. Hamidi

(iii) for any x, y, z ∈ R, θ(x, φ(y, z)) ⊆ φ(θ(x, y), θ(x, z)) and θ(φ(x, y), z) ⊆ φ(θ(x, z), θ(y, z)).
A general hyperring (R,φ, θ) is called commutative (with unit element), if for all x, y ∈ R, θ(x, y) =
θ(y, x) (if there exists an element 1 ∈ R in such a way that for all x ∈ R, θ(1, x) = θ(x, 1) = {x}).
A non-empty subset I of R is called a (right)left hyperideal, if (1)(I, φ) is a subhypergroup of (R,φ)
and (2)(θ(R, I) ⊆ I)(θ(R, I) ⊆ I. A hyperideal I is both a left and right hyperideal.

From now on, we use the symbols ⊕ and ⊙ instead of the symbols φ and θ, respectively as
hyperaddition and hypermultiplication(φ(x, y) = ⊕(x, y) = x⊕ y and θ(x, y) = ⊙(x, y) = x⊙ y).

Theorem 2.1. [4] Assume p ̸= 2 is a prime number. Then (Zp,+, ·) is a (⊕,⊙)-reproduced general
hyperring.

3 Graphs based on general hyperrings

In this section, we consider an arbitrary general hyperring and introduce the concepts of zero
divisor elements and zero divisor graph based on zero divisor elements via the absorbing elements.
Also, we prove the conditions of how two zero divisor graphs are isomorphic.

Definition 3.1. Let (R,+, ·) be a ring. Then R is said to be a (⊕,⊙)-reproduced general hyperring
(reproduced general hyperring), if there are hyperoperations “⊕” and “⊙”, that (R,⊕,⊙) is a
general hyperring and ⊕,⊙ are dependent to + and ·, respectively (it means that for any x, y ∈
R, x+ y ∈ x⊕ y and x · y ∈ x⊙ y).

In [4], Hamidi et al. constructed a type of general hyperring as the following theorem.

Theorem 3.2. Let (R,+, 0, ·) be a ring and | R |≥ 2. Then (R,+, 0, ·) is a (⊕,⊙)-reproduced
general hyperring, where ⊕(x, y) = {x, y, x+ y} and ⊙ (x, y) = {x · y, 0}.

Corollary 3.3. Any ring is a reproduced general hyperring.

Definition 3.4. Let (R,⊕,⊙) be a general hyperring. We say that

(i) α ∈ R is a (⊕)-absorbing element of R, if for all r ∈ R, r ∈ ⊕(α, r) ∩ ⊕(r, α);

(ii) α ∈ R is a (⊙)-absorbing element of R, if for all r ∈ R, α ∈ ⊙(α, r) ∩ ⊙(r, α);

(iii) α ∈ R is an absorbing element of R, if it is both (⊕)-absorbing element and (⊙)-absorbing
element of R.

From now on, we set the all (⊕)-absorbing elements of R by O(⊕)
R , all (⊙)-absorbing elements of

R by O(⊙)
R and absorbing elements of general hyperring R by OR. It is clear that OR = O(⊕)

R ∩O(⊙)
R .

Definition 3.5. Assume (R,⊕,⊙) is a general hyperring and α ∈ O(⊕)
R . Then

(i) an element x ∈ R \ {α} is called a zero divisor, if there exists y ∈ R \ {α} such that α ∈ x⊙y
and α ∈ y ⊙ x. We will denote the set of all zero divisors by Z(α)(R).

(ii) The zero divisor graph is a simple graph G(α)(R) = (V = V (Z(α)(R)\{α}), E = E(G(α)(R))
in such a way that for any given distinct x, y ∈ Z(α)(R) \ {α}, the vertices x and y are

adjacent if and only if O(⊕)
R ∩ ⊙(x, y) ∩ ⊙(y, x) ̸= ∅.

Let (R,⊕,⊙) be a general hyperring. If O(⊕)
R = ∅, then G(α)(R) is not defined, so on all the

following general hyperrings R, O(⊕)
R ̸= ∅. In the following, we present some examples for clarifying

the definition of zero divisor graph of general hyperrings.
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⊕ 2 4 6 8 10

2 2 {2, 4} {2, 6} {8, 2} {2, 10}
4 {2, 4} 4 {4, 6} {8, 4} {4, 10}
6 {2, 6} {4, 6} 2 {8, 6} {6, 10}
8 {8, 2} {8, 4} {8, 6} 4 {8, 10}
10 {2, 10} {4, 10} {6, 10} {8, 10} 2

⊙ 2 4 6 8 10

2 4 2 4 2 4
4 2 4 2 4 2
6 4 2 4 2 4
8 2 4 2 4 2
10 4 2 4 2 4

.

Table 1: Hypergroups (R,⊕), (R,⊙) and general hyperring (R,⊕,⊙).

Example 3.6. Let R = {2, 4, 6, 8, 10}. Then (R,⊕,⊙) is a general hyperring in Table 1. Clearly,

O(⊕)
R = {2, 4} and for any α ∈ O(⊕)

R , Z(α)(R) \ {α} = R \ {α}. Hence G(2)(R) ∼= G(4)(R) ∼= K4

are shown in Figure 1.

•4 •6

•
10

•
8

(a)
G(2)(R)

•2 •6

•
10

•
8

(b)
G(4)(R)

Figure 1: Zero divisor graphs G(2)(R) and G(4)(R)

Let m ∈ N and (R,⊕,⊙) be a general hyperring. Define for all x ∈ R, 1x = {x},mx =
⊕(x, . . . , x︸ ︷︷ ︸

m−times

), x1 = {x} and xm = ⊙(x, . . . , x︸ ︷︷ ︸
m−times

).

Theorem 3.7. Let (R,⊕,⊙) be a general hyperring and α ∈ O(⊕)
R .

(i) If Z(α)(R) \ {α} ≠ ∅, then |Z(α)(R) \ {α}| ≥ 2.

(ii) If (R,⊙) is a commutative hypergroup and α ̸∈ O(⊙)
R , then | Z(α)(R) \ {α} |≥ 2.

Proof. (i) Let x ∈ Z(α)(R) \ {α}. Then there exists y ∈ R \ {α} in such a way that α ∈ ⊙(x, y) ∩
⊙(y, x). It follows that y ∈ Z(α)(R) \ {α} and so | Z(α)(R) \ {α} |≥ 2.

(ii) Let α ∈ R. Since α ̸∈ O(⊙)
R , there exists a, b ∈ R\{α} in such a way that α ∈ ⊙(a, b)∩⊙(b, a),

because of reproduction axiom and commutativity of hypergroup R. It follows that Z(α)(R)\{α} ≠
∅, and so by item (i), {a, b} ⊆ Z(α)(R) \ {α}.

Example 3.8. Let R = {0, 1, 2, 3, 4, 5}. Then by Theorem 3.2, (R,⊕,⊙) is a general hyperring as

Table 4. Clearly, O(⊕)
R = R, Z(0)(R)\{0} = R\{0}, Z(1)(R)\{1} = Z(3)(R)\{3} = Z(5)(R)\{5} =

∅, Z(2)(R) \ {2} = {4, 5} and Z(4)(R) \ {4} = {2, 5}. Hence,
G(0)(R) ∼= G(3)(R) ∼= K5, G

(2)(R) ∼= G(4)(R) ∼= K2. We see that (R,⊙) is not a hypergroup

based on the Table 3, and O(⊙)
R = {0}, while | Z(0)(R) \ {0} |=| R | −1. It shows that the converse

of Theorem 3.7, is not necessarily true.

Definition 3.9. Let n ∈ N, (H,⊕,⊙) be a hyperring and α ∈ O(⊕)
R . We will call
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⊕ 0 1 2 3 4 5

0 0 {1, 0} {0, 2} {0, 3} {0, 4} {0, 5}
1 {0, 1} {1, 2} {1, 2, 3} {1, 3, 4} {1, 4, 5} {1, 5, 0}
2 {0, 2} {1, 2, 3} {2, 4} {2, 3, 5} {2, 4, 0} {2, 5, 1}
3 {0, 3} {1, 3, 4} {5, 2, 3} {3, 0} {3, 4, 1} {3, 5, 2}
4 {0, 4} {1, 4, 5} {0, 2, 4} {1, 3, 4} {4, 2} {4, 5, 3}
5 {0, 5} {1, 5, 0} {1, 2, 5} {5, 3, 2} {5, 4, 3} {5, 4}

Table 2:
(R,⊕)

⊙ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 {0, 1} {0, 2} {0, 3} {0, 4} {5, 0}
2 0 {0, 2} {0, 4} 0 {2, 0} {0, 4}
3 0 {0, 3} 0 {3, 0} 0 {3, 0}
4 0 {0, 4} {0, 2} 0 {4, 0} {0, 2}
5 0 {5, 0} {0, 4} {0, 3} {0, 2} 0

.

Table 3: (R,⊙)

Table 4: Hypergroups (R,⊕), (R,⊙) and general hyperring (R,⊕,⊙) of order 6.

(i) x ∈ R is an (α, 2)-orderable, if α ∈ x2.

(ii) (H,⊕,⊙) is a locally (α, 2)-orderable, if has some (α, 2)-orderable elements and is an (α, 2)-
orderable, if all its elements are (α, 2)-orderable elements,

(iii) (H,⊕,⊙) is free of (α, 2)-orderable, if it is not a locally (α, 2)-orderable hyperring.

Example 3.10. (i) Consider the hyperring (R,⊕,⊙) in Table 4. One can see that (R,⊕,⊙)
is a (0, 2)-orderable, while it is a locally (1, 2)-orderable, a locally (3, 2)-orderable and a locally
(4, 2)-orderable.

(ii) Consider the hyperring (R,⊕,⊙) in Table 12. One can see that (R,⊕,⊙) is a (0, 2)-
orderable, while it is a locally (1, 2)-orderable and a locally (4, 2)-orderable.

Theorem 3.11. Let (R,⊕,⊙) be a finite general hyperring, O(⊕)
R = R and α ∈ O(⊕)

R \ O(⊙)
R .

(i) If (R,⊙) is a commutative hypergroup and (R,⊕,⊙) is an (α, 2)-orderable, then |Z(α)(R) \
{α}| = |R| − 1.

(ii) If (R,⊙) is a commutative hypergroup and (R,⊕,⊙) is free of (α, 2)-orderable, then G(α)(R)
is a connected graph.

Proof. (i) SinceO(⊕)
R = R, α ∈ O(⊕)

R \O(⊙)
R and (R,⊙) is a finite commutative hypergroup, applying

Theorem 3.7 (ii), for all α ∈ R, there exists x ∈ R in such a way that x ∈ Z(α)(R) \ {α}. Since
(R,⊙) is a finite commutative (α, 2)-orderable, for any x ∈ R \ {α}, x2 ∩ Z(α)(R) \ {α} ̸= ∅. It
follows that |Z(α)(R) \ {α}| = |R| − 1.

(ii) Using Theorem 3.7, | Z(α)(R) \ {α} |≥ 2. Since (R,⊕,⊙) is free of (α, 2)-orderable, for all
x ∈ H,α ̸∈ x2. It follows that there exist y ̸= z ∈ R \ {x} such that α ̸∈ ⊙(y, z)∩⊙(z, y) and so x
is adjacent with other vertices and so G(α)(R) is a connected graph.

Theorem 3.12. Let (R,⊕,⊙) be a finite general hyperring. If (R,⊕,⊙) is locally (α, 2)-orderable
and |Z(α)(R) \ {α}| is an odd, then G(α)(R) is a disconnected graph.

Proof. Let Z(α)(R) \ {α} = {x1, x2, . . . , xn}, which n is an odd. Since (R,⊕,⊙) is locally (α, 2)-
orderable, there exists a unique 1 ≤ j ≤ n such that α ∈ x2j . It follows that for any 1 ≤ j ̸= k ≤ n,

xj is not adjacent with xk and so G(α)(R) is a disconnected graph.

In what follows, for any k ≤ n ∈ N, the number of combinations of k objects from n objects

is denoted by

(
n

k

)
and for any r ∈ R, the ceiling function of r by ⌈r⌉ and the floor function of r

by ⌊r⌋.
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Theorem 3.13. Let (R,⊕,⊙) be a commutative general hyperring, α ∈ O(⊕)
R and | Z(α)(R)\{α} |=

n. If (R,⊕,⊙) is free of (α, 2)-orderable, then

(i) | E(G(α)(R)) |≥ ⌈n2 ⌉.

(ii) For n ≥ 3 is an odd, then there exists x ∈ R in such a way that deg(x) ≥ 2.

Proof. (i) Let Z(α)(R) \ {α} = {x1, x2, . . . , xn}. Then for any 1 ≤ i ≤ n, there exists at least 1 ≤
j ≤ n in such a way that j ̸= i and α ∈ ⊙(xi, xj)∩⊙(xi, xj) and so ⊙(xi, xj)∩⊙(xi, xj)∩O(⊕)

R ̸= ∅,
because α ∈ O(⊕)

R and (R,⊕,⊙) is free of (α, 2)-orderable. It follows that there exists ⌈n2 ⌉ numbers

of edges as {xi, xj} in such a way that {xi, xj} ∈ E(G(α)(R)).
(ii) Let n ∈ N be an odd and Z(α)(R) \ {α} = {x1, x2, . . . , xn}. In a similar way of item (i), for

any 1 ≤ j ≤ n, there exists at least 1 ≤ i ≤ n in such a way that j ̸= i and α ∈ ⊙(xi, xj)∩⊙(xi, xj)

and so ⊙(xi, xj)∩⊙(xi, xj)∩O(⊕)
R ̸= ∅. Since for all xi ∈ Z(α)(R)\{α}, α ̸∈ x2i , there exists at least

distinct xi, xj , xk ∈ Z(α)(R)\{α} in such a way that α ∈ ⊙(xi, xj)∩⊙(xi, xj)∩⊙(xi, xk)∩⊙(xk, xi)
and so deg(xi) ≥ 2.

Definition 3.14. Let (R,⊕,⊙) be a general hyperring and ∅ ̸= ∆ ⊆ R. Then we say R is a
∆-general hyperring, if for all x, y ∈ R, x⊙ y = y ⊙ x = ∆.

Theorem 3.15. Let (R,⊕,⊙) be a finite ∆-general hyperring and α ∈ ∆ ⊆ O(⊕)
R . Then

(i) Z(α)(R) \ {α} = R \ {α},

(ii) | E(G(α)(R)) |=
(
|R| − 1

2

)
,

(iii) G(α)(R) ∼= K|R|−1.

Proof. (i) Let x ∈ R. Then x ∈ Z(α)(R) \ {α} if and only if x ̸= α and there exists α ̸= y ∈ R in

such a way that ⊙(x, y) ∩ ⊙(y, x) ∩ O(⊕)
R ̸= ∅. Thus x ∈ Z(α)(R) \ {α} if and only if x ∈ R \ {α},

because of ⊙(x, y) ∩ ⊙(y, x) ∩ O(⊕)
R = ∆ ∩∆ ∩ O(⊕)

R = ∆ ̸= ∅.
(ii) Let R = {x1, x2, . . . , xn−1, xn} and ∆ = {x1, x2, . . . xm} ⊆ O(⊕)

R . Applying the item (i), for
any 1 ≤ i ≤ m,Z(xi)(R)\{xi} = R\{xi}. Then for any 1 ≤ k ≤ n, there exists at least 1 ≤ j ≤ n in

such a way that i ̸= k and xi ∈ ⊙(xk, xj)∩⊙(xj , xk) and so ⊙(xk, xj)∩⊙(xj , xk)∩O
(⊕)
R ̸= ∅, because

(R,⊕,⊙) is a ∆-general hyperring. Thus, for all xi, xj ∈ Z(α)(R)\{α},⊙(xi, xj)∩⊙(xi, xj)∩O(⊕)
R ̸=

∅. It follows that E(G(α)(R)) = (R \ {xi})× (R \ {xi}) and so | E(G(α)(R)) |=
(
|R| − 1

2

)
.

(iii) It is clear by item (ii).

Example 3.16. Let R = {1, 3, 5, 7, 9}. Then (R,⊕,⊙) is a ∆-general hyperring, where ∆ = {1, 3}
in Table 5. Clearly, O(⊕)

R = R and for any α ∈ O(⊕)
R \ {5, 7, 9}, Z(α)(R) \ {α} = R \ {α}. Hence

G(1)(R) ∼= G(3)(R) ∼= K4, where is shown in Figure 2.

Theorem 3.17. Let (R,⊕,⊙) be a finite ∆-general hyperring and α, β ∈ ∆ ⊆ O(⊕)
R . Then

G(α)(R) ∼= G(β)(R).

Proof. Let α, β ∈ ∆ ⊆ O(⊕)
R . Then | O(⊕)

R |≥ 2 and there exist x, y ∈ R in such a way that
α ∈ ⊙(β, x) and β ∈ ⊙(α, x) and so β ∈ Z(α)(R) \ {α}, β ∈ Z(α)(R) \ {α}. In addition there exist
z, w, z′, w′ ∈ R in such a way that α ∈ ⊙(z, w) and β ∈ ⊙(z′, w′), since (R,⊙) is a commutative



138 M. Hamidi

⊕ 1 3 5 7 9

1 1 {1, 3} {1, 5} {7, 1} {1, 9}
3 {1, 3} 3 {3, 5} {7, 3} {3, 9}
5 {1, 5} {3, 5} 5 {7, 5} {5, 9}
7 {7, 1} {7, 3} {7, 5} 7 {7, 9}
9 {1, 9} {3, 9} {5, 9} {7, 9} 9

,

⊙ 1 3 5 7 9

1 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}
3 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}
5 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}
7 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}
9 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}

.

Table 5: Hypergroups (R,⊕), (R,⊙) and ∆-general hyperring (R,⊕,⊙).

•3 •5

•
9

•
7

(a)
G(1)(R)

•1 •5

•
9

•
7

(b)
G(3)(R)

Figure 2: Zero divisor graphs of (R,⊕,⊙).

hypergroup. It follows that (Z(α)(R)\{α})\(Z(β)(R)\{β}) = {β} and (Z(β)(R)\{β})\(Z(α)(R)\

{α}) = {α}. Now, define a map f : Z(α)(R)\{α} → Z(β)(R)\{β} by f(x) =

{
α if x = β

x if x ̸= β
. Using

Theorem 3.15, f is a bijection, because α and β are’t adjacent, we get that f is a homomorphism
and so G(α)(R) ∼= G(β)(R).

Theorem 3.18. Let (R,⊕,⊙) be a finite commutative general hyperring and α, β ∈ O(⊕)
R . If for

all x ∈ R, x⊙ α = x⊙ β = O(⊕)
R , then G(α)(R) ∼= G(β)(R).

Proof. Let α, β ∈ O(⊕)
R . Since for all x ∈ R, x⊙α = x⊙β = O(⊕)

R , β ∈ Z(α)(R)\{α}, β ∈ Z(α)(R)\
{α}. In addition there exist z, w, z′, w′ ∈ R in such a way that α ∈ ⊙(z, w) and β ∈ ⊙(z′, w′),
since (R,⊙) is a commutative hypergroup. It follows that (Z(α)(R) \ {α}) \ (Z(β)(R) \ {β}) = {β}
and (Z(β)(R)\{β})\ (Z(α)(R)\{α}) = {α}. Now, define a map f : Z(α)(R)\{α} → Z(β)(R)\{β}

by f(x) =

{
α if x = β

x if x ̸= β
. Using Theorem 3.15, f is a bijection, because α and β are’t adjacent,

we get that f is a homomorphism and so G(α)(R) ∼= G(β)(R).

Corollary 3.19. Let (R,⊕,⊙) be a finite commutative general hyperring and α, β ∈ O(⊕)
R . If for

all x ∈ R, x⊙ α = x⊙ β ⊇ O(⊕)
R , then G(α)(R) ∼= G(β)(R).

3.1 Zero divisor graph on (⊕,⊙)-reproduced general hyperring (Zn,+, ·)

In this subsection, we consider the finite (⊕,⊙)-reproduced general hyperrings (Zn,+, ·) and com-
pute them zero divisor graphs.

In [4], Hamidi et al. constructed a type of (⊕,⊙)-reproduced general hyperring as follows.

Theorem 3.20. Let n ∈ N be an even. Then (Zn,+, ·) is a (⊕,⊙)-reproduced general hyperring,
which ⊕(x, y) = x+a y = {x+ y, x+ y + a},⊙(x, y) = x · y = {xy, xy + a} and a ̸= 0, x, y ∈ Zn.
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Example 3.21. Consider the general hyperring (Z2,⊕,⊙), based on Theorem 3.20. It is clear that

O(⊕)
Z2

= {0, 1}, Z(0)(Z2)\{0} = {1}, Z(1)(Z2)\{1} = {0}, G(0)(Z2,⊕,⊙) = K1 and G(1)(Z2,⊕,⊙) =
K1.

Based on the above hyperoperations in Theorem 3.20, we have the following results.

Theorem 3.22. Let 3 ≤ n ∈ N be an even. Then

(i) O(⊕)
Zn

= {0, ⌊n2 ⌋}.

(ii) For any α ∈ O(⊕)
Zn

, Z(α)(Zn) \ {α} = Zn \ {α}.

(iii) G(0)(Zn,⊕,⊙) ∼= G(⌊n
2
⌋)(Zn,⊕,⊙) ∼= K1,n−2.

Proof. (i) Let x, y ∈ Zn and α ∈ Zn. Since ⊕(x, y) = x+⌊n
2
⌋ y = {x+ y, x+ y + ⌊n2 ⌋}, we get that

α ∈ O(⊕)
Zn

if and only if α = 0 or α = ⌊n2 ⌋. Hence O(⊕)
Zn

= {0, ⌊n2 ⌋}.
(ii) Let x, y ∈ Zn and α ∈ O(⊕)

Zn
. Then ⊙(x, y) = x ·⌊n

2
⌋ y = {xy, xy + ⌊n2 ⌋} and so for any

α ∈ O(⊕)
Zn

and x ∈ Zn, we get that x ∈ Z(α)(Zn) \ {α}, if there exists x ̸= y ∈ Zn in such

a way that α ∈ {xy, xy + ⌊n2 ⌋}. If α = 0, then x is a divisor of Zn or n | (xy + ⌊n2 ⌋). If

α = ⌊n2 ⌋, then in a way similar, we get x is a divisor of Zn or n | (xy + ⌊n2 ⌋). It follows that

Z(α)(Zn) \ {α} = {x | ∃ y ∈ Zn in such a way that n | xy or n | (xy + ⌊n2 ⌋)} = Zn \ {α}.
(iii) Using Theorem 3.18, G(0)(Zn,⊕,⊙) ∼= G(⌊n

2
⌋)(Zn,⊕,⊙), because of

⊙(0, x) = ⊙(x, 0) = ⊙(⌊n
2
⌋, x) = ⊙(x, ⌊n

2
⌋) = {0, ⌊n

2
⌋} = O(⊕)

Zn
.

Let x, y ∈ Zn and α ̸= β ∈ O(⊕)
Zn

. Indeed, for any x ∈ Zn,⊙(x, 0) = ⊙(0, x) = {0, ⌊n2 ⌋} and

⊙(x, ⌊n2 ⌋) = ⊙(⌊n2 ⌋, x) = {0, ⌊n2 ⌋}. Then for any x ∈ Z(α)(Zn) \ {α}, there exists β ̸= y ∈ Zn in
such a way that α ∈ ⊙(x, β) ∩ ⊙(β, x) and for any β ̸= y, α ̸∈ ⊙(x, y) ∩ ⊙(y, x). Now, define a

map f : Z(⌊n
2
⌋)(R) \ {⌊n2 ⌋} → V (K1,n−2) by f(x) =

{
x0 if x = 0

xi if x = xi ̸= 0
, which V (K1,n−2) = V1 ∪

V2, V1 = {x0} and V2 = {x1, x2, . . . , xn−1}\{x⌊n
2
⌋} and Z(⌊n

2
⌋)(R)\{⌊n2 ⌋} = {1, 2, . . . , n− 1}\{⌊n2 ⌋}.

Clearly, f is a bijection, since 0 and ⌊n2 ⌋ are’t adjacent, we get that f is a homomorphism and so

G(⌊n
2
⌋)(Zn,⊕,⊙) ∼= K1,n−2.

Corollary 3.23. Let 3 ≤ n ∈ N be an even. Then

(i) diam(G(0)(Zn,⊕,⊙) = diam(G(⌊n
2
⌋)(Zn,⊕,⊙) = 2.

(ii) gr(G(0)(Zn,⊕,⊙) = gr(G(⌊n
2
⌋)(Zn,⊕,⊙) = ∞.

Example 3.24. By Theorem 3.20, (Z6,+, ·) is a (⊕,⊙)-reproduced general hyperring by the Table

8. Clearly O(⊕)
Z6

= {0, 3} and for any α ∈ O(⊕)
Z6

, Z(α)(Z6) \ {α} = Z6 \ {α}. Hence G(0)(Z6) ∼=
G(3)(Z6) ∼= K1,4 are shown in Figure 3.

Let x, y ∈ Zp. Define

x +{p,a} y =

{
0 x = y = 0

{x+ y, x+ y + a} otherwise
and x ·{p,a} y =

{
0 x = 0 or y = 0

Zp otherwise
, so have

the following results.
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⊕ 0 1 2 3 4 5

0 {0, 3} {1, 4} {2, 5} {3, 0} {4, 1} {5, 2}
1 {1, 4} {2, 5} {3, 0} {4, 1} {5, 2} {0, 3}
2 {2, 5} {3, 0} {4, 1} {5, 2} {0, 3} {1, 4}
3 {3, 0} {4, 1} {5, 2} {0, 3} {1, 4} {2, 5}
4 {4, 1} {5, 2} {0, 3} {1, 4} {2, 5} {3, 0}
5 {5, 2} {0, 3} {1, 4} {2, 5} {3, 0} {1, 4}

Table 6:
(Z6,⊕)

⊙ 0 1 2 3 4 5

0 {0, 3} {0, 3} {0, 3} {0, 3} {0, 3} {0, 3}
1 {0, 3} {1, 4} {2, 5} {3, 0} {4, 1} {5, 2}
2 {0, 3} {2, 5} {4, 1} {0, 3} {2, 5} {4, 1}
3 {3, 0} {0, 3} {3, 0} {0, 3} {3, 0} {0, 3}
4 {0, 3} {4, 1} {2, 5} {0, 3} {4, 1} {2, 5}
5 {0, 3} {5, 2} {4, 1} {3, 0} {2, 5} {1, 4}

.

Table 7: (Z6,⊙)

Table 8: Hypergroups (Z6,⊕), (Z6,⊙) and general hyperring (Z6,⊕,⊙).
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•
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•
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•
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•
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(a)

G(0)(Z6)
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•
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•
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•
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•
5

(b)

G(3)(Z6)

Figure 3: Zero divisor graphs G(0)(Z6) and G(3)(Z6).

Theorem 3.25. Let p ∈ N be a prime and a ∈ (Zp,+{p,a}, ·{p,a}).

(i) O(+{p,a})

Zp
= {0, p− a}.

(ii) For any α ∈ O(⊕)
Zp

, Z(α)(Zp) \ {α} = Zp \ {α}.

(iii) G(0)(Zp,+{p,a}, ·{p,a}) ∼= G(p−1)(Zp,+{p,a}, ·{p,a}) ∼= Kp−1.

(iv) diam(G(0)(Zp,+{p,a}, ·{p,a}) = diam(G(p−1)(Zp,+{p,a}, ·{p,a})) = 1, which p ≥ 5.

(v) gr(G(0)(Zp,+{p,a}, ·{p,a})) = gr(G(p−1)(Zp,+{p,a}, ·{p,a})) = 3, which p ≥ 5.

Proof. (i) Let x, y ∈ Zp and α ∈ Zp. Since x +{p,a} y =

{
0 x = y = 0

{x+ y, x+ y + a} otherwise
, we get

that α ∈ O(+{p,a})

Zp
if and only if α = 0 or α = p− a. Hence O(+{p,a})

Zp
= {0, p− a}.

(ii) Let x, y ∈ Zp and α ∈ O(+{p,a})

Zp
. Then x ·{p,a} y =

{
0 x = 0 or y = 0

Zp otherwise
and so for any

α ∈ O(+{p,a})

Zp
and x ∈ Zp, we get that x ∈ Z(α)(Zp) \ {α}, if there exists x ̸= y ∈ Zp in such a way

that α ∈ {0,Zp}. It follows that Z(α)(Zp) \ {α} = Zp \ {α}.
(iii) Using Theorem 3.18, G(0)(Zn,+{p,a}, ·{p,a}) ∼= G(⌊n

2
⌋)(Zn,+{p,a}, ·{p,a}), because by defini-

tion, we have

·{p,a}(0, x) = ·{p,a}(x, 0) = {0}, ·{p,a}(p− a, x) = ·{p,a}(x, p− a) ⊇ {0, p− a}.

Let x, y ∈ Zp and α ∈ O(+{p,a})

Zp
. Indeed, x ·{p,a} y = y ·{p,a} x ⊆ O(+{p,a})

Zp
and so for any

x ∈ Z(α)(Zp) \ {α}, there exists x ̸= y ∈ Zp in such a way that α ∈ (x ·{p,a} y) ∩ (y ·{p,a} x). It
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follows that any x, y ∈ Zp are adjacent and so G(0)(Zp,+{p,a}, ·{p,a}) ∼= G(p−1)(Zp,+{p,a}, ·{p,a}) ∼=
Kp−1.

Example 3.26. By Theorem 2.1, (Z5,+{1,5}, ·{1,5}) is a general hyperring by Table 9. Clearly

+{1,5} 0 1 2 3 4

0 {0} {1, 2} {2, 3} {3, 4} {4, 0}
1 {1, 2} {2, 3} {3, 4} {4, 0} {0, 1}
2 {2, 3} {3, 4} {4, 0} {0, 1} {1, 2}
3 {3, 4} {4, 0} {0, 1} {1, 2} {2, 3}
4 {4, 0} {0, 1} {1, 2} {2, 3} {3, 4}

,

·{1,5} 0 1 2 3 4

0 {0} {0} {0} {0} {0}
1 {0} Z5 Z5 Z5 Z5

2 {0} Z5 Z5 Z5 Z5

3 {0} Z5 Z5 Z5 Z5

4 {0} Z5 Z5 Z5 Z5

.

Table 9: Hypergroups (Z5,+{1,5}), (Z5, ·{1,5}) and general hyperring (Z5,+{1,5}, ·{1,5}).

O(+{p,a})

Z5
= {0, 4} and for any α ∈ O(+{p,a})

Z5
, Z(α)(Z5) \ {α} = Z5 \ {α}. Hence G(0)(Z5) ∼=

G(4)(Z5) ∼= K4 are shown in Figure 4.

•1 •2

•
3

•
4

(a)

G(0)(Z5)

•0 •1

•
2

•
3

(b)

G(4)(Z5)

Figure 4: Zero divisor graph G(0)(Z5) and G(4)(Z5).

It is clear to see that (Zn,+, 0, ·) is a (⊕,⊙)-reproduced general hyperring, where ⊕(x, y) =
x+′y = {x, y, x+ y} and ⊙(x, y) = x·′y = {xy, 0}. From now on, based the above hyperoperations,
we have the following results.

Theorem 3.27. Let 4 ≤ n ∈ N and consider (Zn,⊕,⊙).

(i) O(⊕)
Zn

= Zn.

(ii) For α = 0, Z(α)(Zn) \ {α} = Zn \ {α}.

(iii) G(0)(Zn,⊕,⊙) ∼= Kn−1.

(iv) diam(G(0)(Zn,⊕,⊙) = 1.

(v) gr(G(0)(Zn,⊕,⊙) = 3.

Proof. (i) Let x, y ∈ Zn and α ∈ Zn. Since ⊕(x, y) = {x, y, x+ y}, we get that α ∈ O(⊕)
Zn

if and

only if α ∈ Zn, hence O(⊕)
Zn

= Zn.

(ii) Let x, y ∈ Zn and α = 0. Then ⊙(x, y) = {xy, 0} and so for any x ∈ Zn, we get that
x ∈ Z(α)(Zn)\{α}, if and only if there exists x ̸= y ∈ Zn in such a way that α ∈ {0, xy}. It follows
that Z(α)(Zn) \ {α} = Zn \ {α}.
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(iii) Let x, y ∈ Zn and α = 0. Indeed, ⊙(x, y) = ⊙(y, x) = {0, xy} and so for any x ∈
Z(α)(Zn) \ {α}, there exists x ̸= y ∈ Zn in such a way that α ∈ ⊙(x, y) ∩ ⊙(y, x). It follows that

V (G(0)(Zn,⊕,⊙))) = Zn \ {0}. Since for any x, y ∈ Zn, 0 ∈ ⊙(x, y), get that x, y are adjacent and

so E(G(0)(Zn,⊕,⊙))) = (Zn \ {0})× (Zn \ {0}), thus G(0)(Zn,⊕,⊙)) ∼= Kn−1.

Let m ∈ N. Then in the general hyperring (Zn,⊕,⊙), for x ∈ Zn, we have mx = {x,mx} and
xm = {0, xm}.

Theorem 3.28. Let 3 ≤ p ∈ N be a prime and consider (Zp,⊕,⊙). Then

(i) |Z(α)(Zp) \ {α}| = p− 2.

(ii) G(1)(Zp,⊕,⊙)) is a disconnected graph.

(iii) diam(G(1)(Zp,⊕,⊙)) = ∞.

(iv) gr(G(1)(Zp,⊕,⊙)) = ∞.

Proof. (i) By Theorem 3.27, 1 ∈ O(⊕)
Zn

. Let x ∈ Zp and α = 1. Because p is a prime, there exists
y ∈ Zp in such a way that α ∈ ⊙(x, y) ∩ ⊙(y, x). In addition, for all x ∈ Zp,

α ∈ x2 = ⊙(x, x) ⇔ p | (x2 − 1) ⇔ x ∈ {1, p− 1}.

Hence for all x ∈ Zp, there exists x ̸= y ∈ Zp in such a way that α ∈ ⊙(x, y) ∩ ⊙(y, x). Thus
Z(α)(Zp) \ {α} = Zp \ {α, 0} and so |Z(α)(Zp) \ {α}| = p− 2.

(ii) By item (i), |Z(α)(Zp) \ {α}| = p− 2 is an odd, since p is a prime. Applying Theorem 3.12,

G(1)(Zp,⊕,⊙)) is a disconnected graph.

(iii, iv) Since G(1)(Zp,⊕,⊙)) is a disconnected graph, by definition diam(G(1)(Zp,⊕,⊙)) = ∞
and gr(G(1)(Zp,⊕,⊙)) = ∞.

Theorem 3.29. Let 3 ≤ p ∈ N be a prime and consider (Zp,⊕,⊙). Then t(G(1)(Zp,⊕,⊙))) = ⌊p
2
⌋.

Proof. Applying Theorem 3.28, G(1)(Zp,⊕,⊙)) is a disconnected. Let x ∈ Zp and α = 1. Because
p is a prime, there exists a unique y ∈ Zp in such a way that α ∈ ⊙(x, y) ∩ ⊙(y, x). In addition,

1 ∈ p− 1
2
, thus, p− 1 is an isolated vertex. Assume that Z(1)(Zp)\{1} = {x1, x2, . . . , xp−3, xp−2},

because of |Z(α)(Zp) \ {α}| = p− 2 by Theorem 3.28. Hence, G(1)(Zp,⊕,⊙)) has ⌈p−1
2 ⌉ subgraphs

Gi = (Vi, Ei), such as
G1 = ({x1, x2}, {x1, x2}), G2 = ({x3, x4}, {x3, x4}) . . . G⌈ p−2

2
⌉−1 = ({xp−4, xp−3}, {xp−4, xp−3})

and G⌈ p−2
2

⌉ = ({xp−2}, {xp−2}) by a rearrangement. Then t(G(1)(Zp,⊕,⊙))) = ⌊p
2
⌋.

Example 3.30. Let R = {0, 1, 2, 3, 4}. Then by Theorem 3.2, (R,⊕,⊙) is a general hyperring as

Table 12. Clearly, O(⊕)
R = R, Z(0)(R) \ {0} = R \ {0}, Z(1)(R) \ {1} = {2, 3, 4}, Z(2)(R) \ {2} =

{3, 4}, Z(3)(R) \ {3} = {2, 4}, and Z(4)(R) \ {4} = {2, 3}. Hence,
G(0)(R) ∼= K4, G

(2)(R) ∼= G(3)(R) ∼= G(4)(R) ∼= K2 and G(1)(R) ∼= G as shown in Figure 5.

We see that (R,⊙) is a commutative hypergroup based on the Table 11, and O(⊙)
R = {0}.

In what follows, for any x, y ∈ Z, we consider the congruence modulo p, by x
p
≡ y or x ∼=

y (mod p).
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•
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•
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Figure 5:
Graph
G(1)(R)

⊕ 0 1 2 3 4

0 0 {1, 0} {0, 2} {0, 3} {0, 4}
1 {0, 1} {1, 2} {1, 2, 3} {1, 3, 4} {1, 4, 0}
2 {0, 2} {1, 2, 3} {2, 4} {2, 3, 0} {2, 4, 1}
3 {0, 3} {1, 3, 4} {0, 2, 3} {3, 1} {3, 4, 2}
4 {0, 4} {1, 4, 0} {1, 2, 4} {2, 3, 4} {4, 3}

Table 10: (R,⊕)

⊙ 0 1 2 3 4

0 0 0 0 0 0
1 0 {0, 1} {0, 2} {0, 3} {0, 4}
2 0 {0, 2} {0, 4} {0, 1} {3, 0}
3 0 {0, 3} {0, 1} {4, 0} {0, 2}
4 0 {0, 4} {0, 3} {0, 2} {1, 0}

.

Table 11: Hypergroup (R,⊙)

Table 12: General hyperring (R,⊕,⊙) of order 5 and graph G(1)(R).

Theorem 3.31. Let p ∈ N be a prime, consider (Zp,⊕,⊙), x, y ∈ Zp and α ∈ O(⊕)
Zp

.

(i) If 0 ∈ ⊕(x, y) ∩ ⊕(y, x), then x2
p
≡ y2.

(ii) If α ∈ x2, then α ∈ {0, 1, 4, 9, . . . , (⌊p2⌋)
2 + 2− p, (⌊p2⌋)

2}.

(iii) If Jα = {x | x2
p
≡ α, x ∈ Zp}, then | Jα |≤ 2.

Proof. (i) Let x, y ∈ Zp. If x = 0 or y = 0, then it is clear. If 0 ̸∈ {x, y}, then 0 ∈ ⊕(x, y)∩⊕(y, x)
if and only if 0 ∈ {x, y, x+ y} if and only if y = p − x. It follows that {0, x2} = x2 = ⊙(x, x) =

⊙(y + p), (y + p)) = {0, (y + p)(y + p)} = {0, y2} and so x2 = y2 or x2
p
≡ y2.

(ii) Let x ∈ Zp. By definition there exists a unique y ∈ Zp in such a way that 0 ∈ ⊕(x, y).

If I = {x | ∃ y in such a way that 0 ∈ ⊕(x, y), x, y ∈ Zp}, then I ̸= ∅(| I |= ⌊p2⌋ + 1)

and by item (i), for any x ∈ I, there exists y ∈ Zp, in such a way that x2
p
≡ y2. If an :

0, 1 · 1, 2 · 2, . . . , (p− 1) · (p− 1), then we obtain that an
p
≡ n2 and it follows that for any x ∈ I,

we get that x2 ⊆ {0, 1, 4, 9, . . . , (⌊p2⌋)2 + 2− p, (⌊p2⌋)
2}.

(iii) If α = 0, then by items (i), (ii), we get that x2
p
≡ α, it implies that x = α and so | Jα | = 1.

If α ̸= 0, then by items (i), (ii), we get that x2
p
≡ α, it implies that there exists k ∈ Zp in such a

way that k
2 p
≡ α and p− k

2 p
≡ α and so | Jα | = 2.

Theorem 3.32. Let p ∈ N be a prime and α ∈ O(⊕)
Zp

\ {0, 1}.

(i) If Jα = ∅, then |Z(α)(Zp) \ {α}| = p− 3, which p ≥ 5.

(ii) If Jα ̸= ∅, then |Z(α)(Zp) \ {α}| = p− 5, which p ≥ 7.

Proof. (i) Since Jα = ∅, for all k ∈ Zp, k
2 ̸

p
≡ α and (p− k)2 ̸

p
≡ α. Hence in similar to Theorem 3.28

and using Theorem 3.31, we get that Z(α)(Zp) \ {α} = Zp \ {α, 0, 1} and for all x ∈ Zp there exists
x ̸= y ∈ Zp in such a way that α ∈ ⊙(x, y) ∩ ⊙(y, x). It follows that |Z(α)(Zp) \ {α}| = p− 3.

(ii) Since Jα ̸= ∅, there exist k ∈ Zp in such a way that k2
p
≡ α and (p − k)2

p
≡ α. Hence in

similar to Theorem 3.28 and using Theorem 3.31, we get that Z(α)(Zp)\{α} = Zp\{α, 0, 1, k, p− k}
and for all x ∈ Zp there exists x ̸= y ∈ Zp in such a way that α ∈ ⊙(x, y)∩⊙(y, x). It follows that
|Z(α)(Zp) \ {α}| = p− 5.

Corollary 3.33. Let 7 ≤ p ∈ N be a prime and α ∈ O(⊕)
Zp

\ {0, 1}.

(i) G(α)(Zp,⊕,⊙)) is a disconnected graph.
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(ii) diam(G(1)(Zp,⊕,⊙)) = ∞.

(iii) gr(G(1)(Zp,⊕,⊙)) = ∞.

Proof. The proof is similar to Theorem 3.28 and is obtained from Theorem 3.32.

Corollary 3.34. Let 7 ≤ p ∈ N be a prime and consider (Zp,⊕,⊙). Then

(i) If Jα = ∅, then t(G(1)(Zp,⊕,⊙))) = ⌊p− 3

2
⌋.

(ii) If Jα ̸= ∅, then t(G(1)(Zp,⊕,⊙))) = |p− 5|.

Proof. The proof is similar to Theorem 3.29 and is obtained from Theorem 3.32.

Proposition 3.35. Let 3 ≤ n ∈ N, consider (Zn,⊕,⊙), x ∈ Zn and α ∈ O(⊕)
Zn

.

(i) If 0 ∈ ⊕(x, y) ∩ ⊕(y, x), then x2
n≡ y2.

(ii) If α ∈ x2, then α ∈ {0, 1, 4, 9, . . . , ⌊n
2
⌋2}.

(iii) If gcd(α, n) = 1, then there exists r ∈ Z in such a way that x ∈ (rx⊙ α) ∩ (α⊙ rx).

Proof. (i),(ii) Are similar to Theorem 3.31(i).
(iii) Since gcd(α, n) = 1, there exists r, s ∈ Z in such a way that 1 = rα + sn and so for any

x ∈ Zn, get x ∈ (1⊙ x ∩ 1⊙ x) ⊆ (rx⊙ α ∩ α⊙ rx).

Let n ∈ N. From now on, φ(n) is the Euler phi-function(the indicator or totient).

Consider (Zn,⊕,⊙), x ∈ Zn and 0 ̸= α ∈ O(⊕)
Zn

. We set Iα = {x ∈ Zn | gcd(x, n) | α}, Jα =

{x ∈ Zn | x2
n≡ α} and Kα = {x ∈ Zn | α ∈ x⊙ α}, so have the following results. In general

hyperring (Z16,⊕,⊙), we have I7 = {1, 3, 5, 7, 9, 11, 13, 15},K7 = {1} and J7 = ∅.

Proposition 3.36. Let n ∈ N, consider (Zn,⊕,⊙) and 0 ̸= α ∈ O(⊕)
Zn

. Then

(i) |Iα| ≥ φ(n) and |Kα| ≥ 1.

(ii) If there exists x ∈ Zn in such a way that α ∈ x2, then |Jα| = 1 or |Jα| = 2k, where k ∈ N.

(iii) If n = p ≥ 5 is a prime, then |Iα| = p− 1, |Kα| = 1 and (|Jα| = 2 or |Jα| = 0).

Proof. (i) Let n ∈ N. Then there exists m < n in such a way that gcd(m,n) = 1. Thus |Iα| ≥ φ(n).
In addition, |Kα| ≥ 1, because of 1 ∈ Kα.

(ii) Let x ∈ Zn and α ∈ x2. Then α = x2 and so x2
n≡ α. Hence x2

n≡ α
n≡ (n−x). If n−x = x

then |Jα| = 1, but n − x ̸= x implies that n− x ∈ Jα and so |Jα| ≥ 2. Because for any x ∈ Zn,
there exists y ∈ Zn in such a way that 0 ∈ ⊕(x, y) ∩ ⊕(y, x), by Proposition 3.35, we get that

x2
n≡ y2 and so there exists k ∈ N in such a way that |Jα| = 2k.
(iii) Immediate by items (i), (ii).

Theorem 3.37. Let n ∈ N, consider (Zn,⊕,⊙) and 0 ̸= α ∈ O(⊕)
Zn

. Then

|Z(α)(Zn) \ {α}| = |Iα \ (Jα ∪Kα ∪ {α})|.
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Proof. Let x ∈ Z(α)(Zn)\{α}. Then there exists y ̸∈ {x, α} in such a way that α ∈ ⊙(x, y)∩⊙(y, x).

It follows that xy
n≡ α and so x ∈ Iα. Since y ̸= x and y ̸= α, we get that x ̸∈ Jα and

x ̸∈ Kα, respectively. Hence Z(α)(Zn) \ {α} = Iα \ (Jα ∪Kα ∪ {α}), and so V (G(α)(Zn,⊕,⊙))) =
Iα \ (Jα ∪Kα ∪ {α}).

Corollary 3.38. Let 3 ≤ n ∈ N, consider (Zn,⊕,⊙) and α ∈ O(⊕)
Zn

\ {1}. If gcd(α, n) = 1, then

(i) |Iα| = φ(n), |Jα| = 0 and |Kα| = 1.

(ii) |Z(α)(Zn) \ {α}| = φ(n)− 2.

(iii) G(α)(Zn,⊕,⊙) ∼= Kφ(n)−2, which n ≤ 8.

(iv) diam(G(α)(Zn,⊕,⊙)) = 1 and gr(G(α)(Zn,⊕,⊙)) = 3, which n ≤ 8.

(v) G(α)(Zn,⊕,⊙) ∼= Kφ(n)−2 is disconnected, which n ≥ 9.

(vi) diam(G(α)(Zn,⊕,⊙)) = gr(G(α)(Zn,⊕,⊙)) = ∞, which n ≥ 9.

Example 3.39. Consider the general hyperring (Z16,⊕,⊙).
(i) If α = 7, then by Corollary 3.38, G(α)((Z16,⊕,⊙)) ∼= G as depicted in Figure 7. If α = 14,

then by Theorem 3.37, x ∈ Z(α)(Z16)\{14} if and only if gcd(x, 16) | 14 if and only if gcd(12, 16) ∈
{1, 2} if and only if x ∈ {2, 3, 5, 6, 7, 10, 11, 13, 15}, hence |Z(14)(Z16)\{14}| = 9 ̸= φ(16)−2, because
of gcd(14, 16) ̸= 1.

(ii) If α = 9, then by Theorem 3.37, x ∈ Z(α)(Z16) \ {α}) if and only if x ∈ {3, 13, 5, 11, 7, 15}
(because of x2

16≡ 9
16≡ 25). Hence G(α)(Z16,⊕,⊙) ∼= G as depicted in Figure 7.

•
15

•
2

•
7

•
13

•
6

•
5

•
3

•
10

(a)

G(14)(Z16)

•3•5 •9

•
11

•
15

•
13

(b)

G(7)(Z16)

•3 •5 •7 •15

•
11

•
13

(c)

G(9)(Z16)

Figure 7: Zero divisor graphs G(14)(Z5), G
(7)(Z5) and G(9)(Z5).

3.2 Zero divisor graph on (Z,⊕,⊙)

In this subsection, we consider the infinite general hyperrings (Z,⊕,⊙) and compute them zero
divisor graphs based on Theorem 3.20.

Let n ∈ N. Then, from now on, we set D(n) = {k ∈ Z | k | n} as the set of all divisors of
n(positive and negative integers).

Theorem 3.40. Let 2 ≤ k ∈ N and p be a prime. Then

(i) O(⊕)
Z = Z.
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(ii) Z(0)(Z) \ {0} = Z \ {0}.

(iii) Z(α)(Z) \ {α} = D(α) \ {1, α}, where α = pk.

(iv) |Z(pk)(Z) \ {pk}| = 2k.

Proof. (i), (ii) Let x ∈ Z. Then for all y ∈ Z, x ∈ {x, y, x + y} = ⊕(x, y) ∩ ⊕(y, x), so O(⊕)
Z = Z.

In addition, for all y ̸= x ̸= 0, 0 ∈ {0, xy} = ⊙(x, y) ∩ ⊙(y, x) imply that Z(0)(Z) \ {0} = Z \ {0}.
(iii) Let α = pk and x ∈ Z(α)(Z) \ {α}. Then there exists y ̸∈ {1, pk} in such a way that

pk = xy. Hence pk ̸∈ {x, y} and x ∈ {−1,±(pm),−p2k | 1 ≤ m ̸= k ≤ 2k − 1}, because of x | pk,
respectively. Thus Z(α)(Z) \ {α} = D(α) \ {1, α}.

(iv) It is clear by (iii).

Theorem 3.41. Let 2 ≤ k ∈ N and p be a prime.

(i) G(0)(Z,⊕,⊙) is an infinite complete graph.

(ii) G(p2k)(Z,⊕,⊙) is a disconnected graph.

Proof. (i) Let x, y ∈ Z. Then 0 ∈ ⊙(x, y) ∩ ⊙(y, x) implies that O(⊕)
Z ∩ ⊙(x, y) ∩ ⊙(y, x) ̸=

∅. It follows that for any given α ∈ Z, we get that E(G(α)(Z,⊕,⊙)) = V (G(α)(Z,⊕,⊙)) ×
V (G(α)(Z,⊕,⊙)).

(ii) Since Z(α)(Z) \ {α} = D(α) \ {1, α}, for any x ∈ D(α) \ {1, α} there exists a unique
y ∈ D(α) \ {1, α} such that α = xy. Thus for any z ̸∈ {x, y}, z is not adjacent to x, y and so

G(p2k)(Z,⊕,⊙) is a disconnected graph.

Corollary 3.42. Let 2 ≤ k ∈ N and p be a prime. Then

(i) if k is an odd, then t(G(p2k)(Z,⊕,⊙)) = k.

(ii) if k is an even, then t(G(p2k)(Z,⊕,⊙)) = k + 1.

Proof. They are obtained by Theorems 3.12 and 3.41.

Let n, k ∈ Z, and n =
k∏

i=1

prii , where p1, p2, . . . , pk are primes and r1, r2, . . . , rk ∈ Z≥1. Then

from now on, will denote P(n) = {r1, r2, . . . , rk}.

Theorem 3.43. Let k, k′ ∈ N, p, q be primes and α, β ∈ O(⊕)
Z . Then

(i) G(p2k)(Z,⊕,⊙) ∼= G(p2k
′+1)(Z,⊕,⊙) if and only if k − k′ = 1.

(ii) G(pk)(Z,⊕,⊙) ∼= G(pk
′
)(Z,⊕,⊙) if and only if k = k′, where k, k′ are odd or k, k′ are even.

(iii) G(α)(Z,⊕,⊙) ∼= G(β)(Z,⊕,⊙) if and only if P(α) = P(β).

Proof. (i) If k − k′ = 1, then p2k = p2(k
′+1) and using Theorem 3.41, and so G(p2k)((Z,⊕,⊙)) ∼=

K4k′+2
∼= G(p2k

′+1)((Z,⊕,⊙)). If G(p2k)((Z,⊕,⊙)) ∼= G(p2k
′+1)((Z,⊕,⊙)), then

| Z(p2k)(Z) \ {p2k} | =| Z(p2k
′+1)(Z) \ {p2k′+1}.

It follows that 4k − 2 = 2(2k′ + 1 + 1− 1) and so k − k′ = 1.
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(ii) Let either k ̸∈ E(even integer) and k′ ̸∈ E. Then by item (i),

G(pk)((Z,⊕,⊙)) ∼= G(pk
′
)((Z,⊕,⊙)) if and only if | Z(pk)(Z)\{pk} |=| Z(pk

′
)(Z)\{pk′} | (because

of complete graphs) if and only if 2(k + 1) = 2(k′ + 1) if and only if k = k′.

(iii) Let α, β ∈ O(⊕)
Z , α = ±(

k∏
i=1

prii ) and β = ±(
m∏
i=1

qsii ). ThenG(α)((Z,⊕,⊙)) ∼= G(β)((Z,⊕,⊙))

if and only if | Z(α)(Z) \ {pk} | =| Z(β)(Z) \ {β} | if and only if 2((

k∏
i=1

(ri + 1)) − 1) =

2((
m∏
i=1

(si+1))−1) if and only if k = m and for any 1 ≤ i ≤ m, ri = si if and only if P(α) = P(β).

Corollary 3.44. Let n ∈ N, p, q be primes and α ∈ O(⊕)
Z .

(i) G(p)(Z,⊕,⊙) ∼= G(p)(Z,⊕,⊙) ∼= K2.

(ii) G(pn)(Z,⊕,⊙) ∼= G(qn)(Z,⊕,⊙).

(iii) G(p2n)(Z,⊕,⊙) ≇ G(−p2n)(Z,⊕,⊙).

(iv) G(α)(Z,⊕,⊙) ∼= G(−α)(Z,⊕,⊙) if and only if α ∈ O(⊕)
Z \ {1, p2k}.

(v) G(p2n+1)(Z,⊕,⊙) ∼= G(−p2n+1)(Z,⊕,⊙).

Corollary 3.45. Let 2 ≤ k ∈ N and p be a prime.

(i) diam(G(0)(Z,⊕,⊙)) = ∞ and gr(G(0)(Z,⊕,⊙)) = 3.

(ii) diam(G(p2k)(Z,⊕,⊙) = gr(G(p2k)(Z,⊕,⊙) = ∞.

4 Conclusions

In this paper, we defined and considered the notion of graphs based on zero divisors of general
hyperrings via absorbing elements. We try to consider the graphs based on finite general hyperrings
and investigate some graphs based on infinite general hyperrings. We show that there exists infinite
general hyperring in such a way that related diameters of their zero divisor graph are finite. In
any general hyperrings, there can be several zeroing elements, based on which several zero divisors
are created and specific graphs are produced accordingly. Also, we have counted the number of
these zero divisor graphs in terms of isomorphism. Also

(i) introduced the notion of reproduced general hyperring and proved that any ring is a repro-
duced general hyperring.

(ii) The set of zero divisors of any general hyperring has at least two elements, in case of existence.

(iii) The concepts of locally (α, 2)-orderable and free of (α, 2)-orderable are introduced and is
proved that If (R,⊙) is a commutative hypergroup and (R,⊕,⊙) is free of (α, 2)-orderable,
then G(α)(R) is a connected graph.

(iv) The notion of ∆-general hyperring is introduced and is shown that under some conditions,
the zero divisor graphs based on ∆-general hyperring are isomorphic.
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(v) We defined the hyperoperations on finite commutative rings such that their zero divisor
graphs are bipartite.

(vi) It is to classify the diameters of zero divisor graphs of any given reproduced general hyper-
rings.

In future studies, we will try to obtain more results regarding zero divisor graphs based on fuzzy
general hyperring, intersection graphs based on graded general hyperrings, zero divisor graphs
based on graded general hyperrings, and fuzzy zero divisor graphs and their applications.
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