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Abstract

The present study aims at introducing a new concept
of a layer of LB-valued general fuzzy automata (LB-
valued GFA) in which B is said to be a set of propo-
sitions concerning the GFA, where its underlying struc-
ture is a lattice-ordered monoid. Generally, it demon-
strates that the layer has a significant impact on the al-
gebraic study of LB-valued GFA by showing the concepts
of sub-automata and separated sub-automata of an LB-
valued GFA in terms of its layers. In the other words,
it highlights that every LB-valued general fuzzy automa-
ton at the least demonstrates one strongly related sub-
automaton. Specifically, the characterization of some al-
gebraic concepts like sub-automaton, retrievability and
connectivity of an LB-valued GFA in terms of its layers is
provided. In addition, it is shown that the maximal layer
of a cyclic LB-valued general fuzzy automaton as well as
the minimal layer of a directable LB-valued general fuzzy
automaton are found to be distinctive. Finally, we inves-
tigate the different poset structures which are connected
with an LB-valued general fuzzy automaton, demonstrat-
ing some of these posets as finite upper semilattice, and
introducing the isotone Galois connections between some
of the pairs of the posets/finite upper semilattices intro-
duced.
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1 Introduction

Galois connections originally appeared in the work of Ore [25] to provide a general type of corre-
spondence between structures, and are the generalization of Galois theory introduced by É. Galois
to interpret the relationship between field theory and group theory. Galois connections has offered
the structure-preserving passage between two worlds of our imagination (cf., Denecke, Erńı, and
Wismath [10]), and these two mentioned worlds would be so diverse that the least possible connec-
tion could be seldom ever imagined (cf., Garćıa-Pardo et al., [13]). Moreover, it has been pointed
out by Belohalavek [6], that Galois connections capture the very natural rules “the more objects,
the less common attributes”, and vice-versa. These days, Galois connections appear ubiquitary to
play a vital role in human reasoning involving hierarchies. For example, some of its applications
area covering situations or systems having (i) precise natures are; formal concept analysis (cf.,
Belohalavek and Konecny [7], Ganter and Wille [12], Wille [35]), category theory (cf., Herrlich
and Husek [15], Kerkhoff [21]), logic (cf., Cornejo et al., [9]), category theory, topology and logic
(cf., Denecke et al., (Eds) [10]); (ii) imprecise or uncertain natures are; mathematical morphology,
category theory (cf., Garćıa et al., [14]), fuzzy transform (cf., Perfilieva [27]), Soft computing (cf.,
Garćıa-Pardo et al., [13]); and (iii) vagueness natures; data analysis, reasoning having incomplete
information (cf., Järvinen [19]), Pawlak [26], Perfilieva [27]). Here, it is important to note that the
equivalence relations based on original Pawlak’s (cf., Pawlak [26]), approximation operators form
isotone Galois connections and turn out to be interior and closure operators.
The Galois connections provide the important and fundamental framework to establish interrela-
tionship between different structures involving hierarchies. The Galois connections between two
sets, precisely between their power sets equipped with the inclusion order, has two perspectives,
namely covariant and contravariant (cf., Birkhoff [8], Erné [10] page 1-138, Garćıa et al., [13],
Herrlich and Husek [15], Ore [25]). The co-variant Galois connection between two sets is a pair
of maps with order-preserving property, and therefore, the term isotone is also used for them.
An order-preserving (covariant or isotone) Galois connection is also referred to as adjunctions (cf.,
Erne [10] page 1-138). The contravariant Galois connection between two sets is a pair of maps with
order-reversing property and so the term antitone is also used for them. In Birkhoff [8], Erné [10]
page 1-138, Garćıa et al., [13], the terms polarity and axiality have been used for a contravariant
Galois connections and covariant Galois connections between power sets, respectively. Automata
are well known mathematical models of computations studied by several authors [16, 18].
The use of Zadeh [37] fuzzy sets generalize the notion of automata to fuzzy automata, Santos [30]
and Wee and Fu [34] initiated such studies and attracted researchers to develop fuzzy automata
theory in several directions (cf., [24, 28, 34, 36]). Malik and Mordeson [24], established a basic
framework for the algebraic aspects of the theory of fuzzy automata. Further, Ito [17], deals with
the algebraic view of fuzzy automata. Recently, following the work of Ito [18], Tiwari, Yadav and
Singh [32], studied fuzzy automata to explore its several algebraic properties the uniqueness of
the maximal layer of cyclic automata and minimal layers of directable fuzzy automata along with
relationships between upper semilattices and fuzzy automata were established.
The studies concerning algebraic automata has been carried out by several researchers in various
forms (cf., eg., [4, 5, 16, 17, 18, 31, 33]). In [5], for instance, some specific notions such as sepa-
rateness, connectedness and retrievability of automata have been established and investigated in
detail. Further in [16], the concepts as decompositions and several products of automata have
been examined. Moreover, [18] has been regarded as one of the most recent contributions in this
realm which establishes the structure of an automaton. In another study [5], it has been reported
that the investigations on such notions of automata obviously result in a deeper understanding of
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automata structure and also their applications. In [16], on the other hand, it has been emphasized
that these concepts have been emerged from a desire to recognize a certain behavior of a system in
an environment and its significant role in the enhancement of the fundamentals which are related
to the computer science.
In [17], (i) it is shown that corresponding to every automaton there exists a poset which is isomor-
phic to a given poset, (ii) the sub-automata of a given automaton can be characterized by means
of layers of the automaton. (iii) it has been also proved that for a given upper semilattice, there
exists an automaton which induces an upper semilattice set of all sub-automata, isomorphic to
the given upper semilattice, while Atani and Bazari [4], investigate conditions which determine
whether for a given finite upper semilattice, there exists an automaton which induces a finite upper
semilattice over class of it’s all sub-automata under set inclusion, isomorphic to the given finite
upper semilattice.
Concerning the above mentioned descriptions, the investigation on the algebraic fuzzy automata
has been initially conducted by Malik [23] (cf., [24] for details), and subsequently a number of other
studies have been performed in this area (cf., e.g., [17]). In addition, a certain study in [31] has
demonstrated that it was possible to locate (fuzzy) topologies on the state-sets of fuzzy automata
in some natural ways. Further, it concluded that these (fuzzy) topologies could be applied to
establish some of the algebraic results of fuzzy automata which have been examined in [24] with
less difficulty. From a completely different perspective, a much recent work on fuzzy automata has
been carried out in [22] as well.
Doostfatemeh and Kremer [11], have explicated the notion of fuzzy automata, through which
they proposed the concept of general fuzzy automata. Regarding that, the key impetus was the
inadequacy of the obtain able literature to deal with certain applications which employed fuzzy
automata in the form of a modeling tool which allocates membership values to active states of
related fuzzy automaton. A zero-weight transition has meant no transition in all types of conven-
tional automata. In this approach that we have employed for general fuzzy automata, however, a
zero-weight transition have not necessarily required no transition. It has been the main reason that
we apply [0, 1] as the fuzzy interval. The concept known as (LB-valued general fuzzy automata
(LB-valued GFA) has also been established in the studies by Abolpour and Zahedi [2], in which
B is considered as a set of propositions concerning the general fuzzy automata, and where its
underlying structure is a complete ifinitely distiributive lattice. In addition, in their works, Zahedi
and Abolpour and also a number of other researchers in the field have studied the procedures of
how fuzzy automata theory have been developed [1, 2, 3, 28, 31, 32].
This present study aims at investigating the algebraic properties of LB-valued general fuzzy au-
tomata and characterizing isotone Galois connections between some pairs of posets/upper semi-
lattices induced by given LB-valued general fuzzy automaton. This study is therefore structured
as follows:
In Section 2, the concepts such as separateness, connectedness and retrievability of LB-valued
general fuzzy automata are examined. Section 3 is towards the description of algebraic concepts
of LB-valued GFA concerning to its layers. In Section 4, the isotone Galois Connections be-
tween the finite upper semilattices (S,⊑) and (Ls(E),⊆); finite upper semilattices (Ls(E),⊆) and
(G(Ls(S)),⊆); and posets (E,⪯) and (G(Ls(E)),⊆) associated with a given LB-valued general
fuzzy automaton are established and characterized.
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2 Preliminaries

In the following section, some essential concepts which are related to LB-valued general fuzzy
automata, lattice-ordered monoid and isotone Galois connection, which have been recalled from
[1, 2, 20, 29, 32, 33] are introduced and characterized.

Definition 2.1. Given a poset (S,⪯) and x, y ∈ S, x ̸= y, we call x the predecessor of y, and y
the successor of x if x ⪯ z ⪯ y and z ∈ S ⇒ z = x or z = y, and subsequently denote this relation
as < x, y >. Given x, y ∈ S, the element z = x∨y ∈ S is called the least upper bound or supremum
of x and y if x ⪯ z and y ⪯ z and z ⪯ w ∈ S whenever x ⪯ w and y ⪯ w for every w ∈ S. The
greatest lower bound or infimum x ∧ y is defined in a similar way.

Definition 2.2. A poset is called a lattice if ∀x, y ∈ S, ∃ both a least upper bound and a greatest
lower bound of x and y and an upper semilattice, if for all x, y ∈ S, ∃ supremum of x and y.

Definition 2.3. We denote by D(S) the directed graph of poset (S,⪯) having its vertices as
elements of S, if x, y are two distinct vertices, then there is an edge (x, y) from vertex x to vertex
y if and only if < x, y >, for an vertex y its in-degree is defined as deg−y = number of edges going
to y.

Definition 2.4. Given a poset (S,⪯), a non-empty subset A of S is called a lower set, if for
x ∈ S and y ∈ A and x ⪯ y implies x ∈ A. Further, for every x ∈ S, the set defined as
< x >= {y ∈ S : y ⪯ x} is called the principle lower set.
The family of all lower sets of a poset (S,⪯) is denoted by Ls(S).

Proposition 2.5. Let (S,⪯) be a poset, then (S,⪯) ∼= (G(Ls(S)),⊆).

Definition 2.6. Let (R,≤R) and (S,≤S) be posets. A pair (φ,ψ) of mappings φ : R→ S, ψ : S →
R is called isotone Galois connection between R and S if the following equivalence is satisfied for
all r ∈ R and s ∈ S, φ(r) ≤S s if and only if r ≤R ψ(s).
This notion is also called adjunction. The mapping φ is called a lower (or left) adjoint of ψ, and
the mapping ψ is called an upper (or right) adjoint of φ.

Proposition 2.7. Let φ : R → S and ψ : S → R be two maps between the posets (R,≤R) and
(S,≤S). The pair (φ,ψ) is an isotone Galois connection if and only if (i) ψ and φ are order-
preserving; (ii) r ≤R ψ(φ(r)), for all r ∈ R; (iii) φ(ψ(r)) ≤S s, for all s ∈ S.

Definition 2.8. An algebra L = (L,≤,∧,∨,⊗, 0, 1) is regarded as a lattice-ordered monoid if
1) L = (L,≤,∧,∨,⊗, 0, 1) has been a lattice with the least element 0 and the greatest element 1.
2) (L,⊗, e) has been a monoid with identity e ∈ L such that for all a, b, c ∈ L
(i) a⊗ 0 = 0⊗ a = 0,
(ii) a ≤ b⇒ ∀x ∈ L, a⊗ x ≤ b⊗ x and x⊗ a ≤ x⊗ b,
(iii) a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c) and (b ∨ c)⊗ a = (b⊗ a) ∨ (c⊗ a).

Definition 2.9. A monoid (L,⊗, e) is considered as a monoid without zero divisors if for all
a, b ∈ L, a ̸= 0, b ̸= 0 ⇒ a⊗ b ̸= 0.

Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be a general fuzzy automaton. In the case we fix an input bk ∈ Σ
at time t the proposition γ|bk can be calculated by µt(q) if the general fuzzy automaton F̃ is in
the state q at time t otherwise γ|bk is 0 if F̃ is not in the active state q. Consequently, for each
state q ∈ Q it is possible to examine the truth value of γ|bk , it is designated by γ|bk(q). As it has



An algebraic study of LB-valued general fuzzy automata: On the concept of the layers 111

been explicated before γ|bk(q) ∈ [0, 1]. This section therefore aims at establishing the B, which is
a set of propositions about the general fuzzy automaton F̃ .
We can assign the order ≤ on B as follows:
For γ, η ∈ B, γ ≤ η if and oly if γ(q) ≤ η(q) for all q ∈ Q. Also, we define γ ⊗ η = min(γ(q), η(q))
for all γ, η ∈ B and q ∈ Q. One can immediately check that the contradiction, i.e., the proposition
with constant truth value 0, is the least element and the tautology, i.e., the proposition with
constant truth value 1 is the greatest component of B. Thus, B = (B,≤,∧,∨,⊗, 0, 1) is a lattice-
ordered monoid.
We can characterize LB-valued subset of Q× Σ×Q, i.e., a map δ : Q× Σ×Q → LB. The range
set LB allows us to deduce LB as a map which assigns each (qi, ak, qj) to δ(qi, ak, qj) : B → L. This
interpretation of transition map δ will permit us to signify it as the family {δα|α ∈ B} of L-valued
sets δα ∈ LQ×Σ×Q of Q×Σ×Q which is ordered by the elements of B, in which the L-valued sets
δα have been characterized by

δα(qi, ak, qj) = δ(qi, ak, qj)(α) =

{
α|ak(qi) ∨ α|ak(qj), if qi, qj ∈ Qact(ti) upon input ak

1, otherwise.

Definition 2.10. An LB-valued general fuzzy automaton is a 8-tuple F̃ = (Q,Σ, R̃, Z, δ̃, w, F1, F2),
where δ̃ is an LB-valued subset of (Q× L) × Σ ×Q, i.e., a map δ̃ : (Q× L) × Σ ×Q → LB such
that:

δ̃α((q, µt(q)), ak, p) = F1(µ
t(q), δα(q, ak, p)).

Let Σ∗ be a monoid generated by a nonempty set Σ. Define a map δ̃∗ : (Q × L) × Σ∗ × Q → LB

such that:

δ̃∗α((q, µt(q)),∧, p) =

{
1, if q = p

0, otherwise
, and

∀q, p ∈ Q,∀u ∈ Σ∗,∀x ∈ Σ and ∀α ∈ B

δ̃∗α((q, µti(q)), ux, p) = ∨{δ̃∗α((q, µti(q)), u, q′)⊗ δ̃α((q′, µtj (q′)), x, p)|q′ ∈ Qpred(p, x)}.

To simplify notation; δ̃∗ is also denoted by δ̃.

Definition 2.11. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued general fuzzy automaton,
α ∈ B and Q′ ⊆ Q. The successor and the predecessor of Q′ are, respectively, the sets:

Sα(Q′) = {p ∈ Q|δ̃α((q, µt(q)), x, p) > 0 for some x ∈ Σ and q ∈ Q′},

Pα(Q′) = {q ∈ Q|δ̃α((q, µt(q)), x, p) > 0 for some x ∈ Σ and p ∈ Q′}.

Definition 2.12. An LB-valued general fuzzy automaton F̃ ′ = (Q′,Σ, R̃′, Z, δ̃′, w′, F1, F2) is called
a sub-automaton of an LB-valued general fuzzy automaton F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) if Q′ ⊆ Q,
q0 ∈ Q′, w′ = w|Q′, Sα(Q′) = Q′ and δ̃′ = δ̃|(Q′×L)×Σ×Q′. Further, this sub-automaton regarded
as separated if Sα(Q−Q′) ∩Q′ = ∅.

Definition 2.13. An LB-valued general fuzzy automaton F̃ is called
(i) strongly connected if ∀p, q ∈ Q, q ∈ Sα(p),
(ii) connected if F̃ has no separated proper sub-automaton,
(iii) retrievable if δ̃α((q, µti(q)), a, p) > 0, for some (q, a, p) ∈ Q× Σ×Q, then

δ̃α((p, µtj (p)), b, q) > 0 for some b ∈ Σ.
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Definition 2.14. A homomorphism from an LA-valued GFA F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) to an
LB-valued GFA F̃ ′ = (Q′,Σ, R̃′, Z, w′, δ̃′, F1, F2) is a pair (h, k) of maps, where h : Q → Q′ and
k : A → B are functions such that:
(i) δ̃

′k(α)((h(q), µt(h(q))), u, h(p)) ≥ δ̃α((q, µt(q)), u, p),
(ii) w(q) = z ⇔ w(h(q)) = z,
(iii) h(q0) = q′0.

Proposition 2.15. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued general fuzzy automaton
and Q′ ⊆ Q. Then Sα(Q−Q′) = Q−Q′ if and only if Pα(Q′) = Q′.

Definition 2.16. An LB-valued general fuzzy automaton F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) is called
cyclic if for all p ∈ Q, there exists q ∈ Q and u ∈ Σ∗ such that δ̃α((q, µt(q)), u, p) > 0.

3 Layers of LB-valued general fuzzy automata

In what follows, the notion of a layer of an LB-valued general fuzzy automaton is presented. It is
shown that the layer has a great impact on the algebraic study of LB-valued GFA by explicating
some significant concepts such as sub-automata and separated sub-automata of an LB-valued
GFA in terms of its respected layers. It is also demonstrated that every cyclic LB-valued GFA
encompasses a unique maximal layer and every directable LB-valued GFA encompasses a unique
minimal layer. In the following, first, the concept of layers of an LB-valued GFA is introduced.
Let F̃ = (Q,Σ, R̃, Z, δ̃, w, F1, F2) be an LB-valued general fuzzy automaton. Define a relation R
on Q as:
(p, q) ∈ R if and only if δ̃α((p, µti(p)), u, q) > 0, and δ̃α((q, µtj (q)), v, p) > 0, for some u, v ∈ Σ∗.
Subsequently, R is an equivalent relation on Q. For p ∈ Q, we call the set Lp = {q ∈ Q|(p, q) ∈ R}
a layer of F̃ . For two layers Lp and Lq of Q, define Lp ⪯ Lq if δ̃α((q, µti(q)), u, p) > 0, for
some u ∈ Σ∗. Now, it will not be difficult to observe that ⪯ is a partial order. By E, we mean
({Lp|p ∈ Q},⪯), which is certainly a poset.

Proposition 3.1. Let F̃ = (Q,Σ, R̃, Z, δ̃, w, F1, F2) be an LB-valued general fuzzy automaton.
Then
(i) if F̃ is retrievable, then for all q ∈ Q and α ∈ B, Sα(q) is a layer of F̃ , and
(ii) if F̃ is strongly connected, subsequently Q itself is a layer of F̃ .

Proof. It has been proved from the definition which is related to retrievable and strongly connected
LB-valued general fuzzy automata.

Proposition 3.2. Let E = {Lp|p ∈ Q} be the set of all layers of an LB-valued general fuzzy au-
tomaton F̃ = (Q,Σ, R̃, Z, δ̃, w, F1, F2) . Then F̃ ′ = (Q′,Σ, R̃′, Z, δ̃′, w′, F1, F2) is a sub-automaton
of F̃ if and only if
(i) ∃Lp1 , Lp2 , . . . , Lpr ∈ E such that Q′ = {q ∈ Q|Lp ⪯ Lpi}, for some i ∈ {1, 2, . . . , r}, and
(ii) δ̃

′
((q, µt(q)), ak, p) = δ̃((q, µt(q)), ak, p), ∀p, q ∈ Q′ and ∀ak ∈ Σ.

Proof. Let F̃ ′ = (Q′,Σ, R̃′, Z, δ̃′, w′, F1, F2) be a sub-automaton of F̃ . Then Q′ ⊆ Q, Sα(Q′) = Q′

and δ̃|(Q′×L)×Σ×Q′ = δ̃′. Now, Sα(Q′) = Q′ ⇒ Q′ = {q ∈ Q|δ̃α((p, µt(p)), u, q) > 0 for some (u, p) ∈
Σ∗×Q′}, or that ∃Lpi ∈ E′ = {Lp|p ∈ Q′} such thatQ′ = {q ∈ Q|Lq ⪯ Lpi}, i.e., ∃Lp1 , Lp2 , . . . , Lpr

∈ E such that Q′ = {q ∈ Q|Lq ⪯ Lpi , for some i ∈ {1, 2, . . . , r}}. Also, as δ̃′ = δ̃|(Q′×L)×Σ×Q′ (ii)
follows obviously.
On the contrary, let conditions as (i) and (ii) be held. To demonstrate that F̃ ′ is a sub-automaton
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of F̃ it is enough to illustrate that Sα(Q′) ⊆ Q′. For this, let q ∈ Sα(Q′). Then there exist
p ∈ Q′ and u ∈ Σ∗ such that δ̃α((p, µt(p)), u, q) > 0. Now, p ∈ Q′ implies that Lp ⪯ Lpi ,
for some i ∈ {1, 2, . . . , r}, i.e., there exists v ∈ Σ∗ such that δ̃α((pi, µ

t(pi)), v, p) > 0. Also,
δ̃α((pi, µ

t(pi)), vu, q) ≥ δ̃α((pi, µ
t(pi)), v, q) ∧ δ̃α((p, µt(p)), u, q) > 0 implies that Lq ⪯ Lpi , or that

q ∈ Q′. Thus, Sα(Q′) ⊆ Q′.

Proposition 3.3. Let E = {Lp|p ∈ Q} be the set of all layers of an LB-valued general fuzzy
automaton F̃ = (Q,Σ, R̃, Z, δ̃, w, F1, F2) . Then F̃ ′ = (Q′,Σ, R̃′, Z, δ̃′, w′, F1, F2) is a separated
sub-automaton of F̃ if and only if
(i) ∃Lp1 , Lp2 , . . . , Lpr ∈ E such that Q′ = {q ∈ Q|Lq ⪯ Lpi and Lpj ⪯ Lq, for some i, j ∈
{1, 2, . . . , r}}, and
(ii) δ̃′((q, µt(q)), ak, p) = δ̃α((q, µt(q)), ak, p), ∀p, q ∈ Q′ and ∀ak ∈ Σ.

Proof. Based on Definition 2.12 and Proposition 2.15 and 3.2, It is only necessary to explain that
Pα(Q′) = Q′ if and only if q ∈ Q′ such that Lpj ⪯ Lq, for some j ∈ {1, 2, . . . , r}. For this, let

Pα(Q)′ = Q′. Then Q′ = {q ∈ Q|δ̃α((q, µt(q)), u, p) > 0, for some (u, p) ∈ Σ∗ × Q′}, or that
∃Lpj ∈ E′ = {Lp|p ∈ Q′} such that Lpj ⪯ Lq, for some j ∈ {1, 2, . . . , r}.
Conversely, let q ∈ Q′ such that Lpj ⪯ Lq, for some j ∈ {1, 2, . . . , r}. Also, let p ∈ Pα(Q)′. Then

there exist q ∈ Q′ and u ∈ Σ∗ such that δ̃α((p, µt(p)), u, q) > 0. Now, q ∈ Q′ implies that Lpj ⪯ Lq,

for some j ∈ {1, 2, . . . , r}, i.e., there exists v ∈ Σ∗ such that δ̃α((q, µt(q)), v, pj) > 0. Also,

δ̃α((p, µt(p)), vu, pj) ≥ δ̃α((p, µt(p)), v, q) ∧ δ̃α((q, µt(q)), u, pj) > 0,

implies that Lpj ⪯ Lp, or that p ∈ Q′. Thus, Pα(Q)′ ⊆ Q′, which together with Q′ ⊆ Pα(Q′),
shows that Pα(Q′) = Q′.

Proposition 3.4. Every LB-valued general fuzzy automaton contains at least one strongly con-
nected sub-automaton.

Proof. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued GFA, p ∈ Q and Lp ∈ E be a minimal
layer (with regard to the partial order ⪯). Therefore for q ∈ Sα(Lp), there exist u ∈ Σ∗ and
r ∈ Lp such that δ̃α((r, µt(r)), u, q) > 0. Now, r ∈ Lp implies that there exists v ∈ Σ∗ such that
δ̃α((p, µt(p)), v, r) > 0. Thus, δ̃α((p, µt(p)), vu, q) ≥ δ̃α((p, µt(p)), v, r) ∧ δ̃α((r, µt(r)), u, q) > 0.
Also, by minimality of Lp, Lq ⪯ Lq, which shows that δ̃α((q, µt(q)), w, p) > 0, for some w ∈ Σ∗.
Thus, for all q ∈ Sα(Lp), q ∈ Lp, or that (Lp,Σ, Lq0 , Z, w, δ̃|(Lp×L)×Σ×Lp

, F1, F2) is a sub-automaton

of F̃ . Moreover, let q, r ∈ Lp. Thus, there will be u, v ∈ Σ∗ such that δ̃α((p, µt(p)), u, q) > 0
and δ̃α((r, µt(r)), v, p) > 0, or that δ̃α((r, µt(r)), vu, q) > 0, i.e., q ∈ Sα(r), whereby the sub-
automaton (Lp,Σ, Lq0 , Z, w, δ̃|(Lp×L)×Σ×Lp

, F1, F2) is strongly connected. Hence, every LB-valued
general fuzzy automaton has at least one strongly connected sub-automaton.

Proposition 3.5. F̃ be a cyclic LB-valued general fuzzy automaton if and only if F̃ has a unique
maximal layer which is maximum in E.

Proof. Let F̃ be a cyclic LB-valued GFA and Lp be a maximal layer in E. Then, there exists
q ∈ Q such that δ̃α((q, µt(q)), u, p) > 0, for some u ∈ Σ∗; and therefore Lp ⪯ Lq. Also, Lp = Lq,
because Lp ̸= Lq implies that Lp ≺ Lq, which contradicts the maximality of Lp. Hence, Lp ∈ E is
a unique maximal layer.
Conversely, Let Lp be a unique maximal layer in E. Then for all q ∈ Q we have Lq ⪯ Lp, i.e.,
δ̃α((p, µt(p)), u, q) > 0 for some u ∈ Σ∗. Hence, F̃ is a cyclic LB-valued general fuzzy automaton.
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Before starting the next part, we first establish the notion of a directable LB-valued general
fuzzy automaton, which in turn it generalizes the concept of a directable automaton which has
been examined in [17].

Definition 3.6. An LB-valued general fuzzy automaton F̃ is regarded as directable if for all p, q ∈
Q there exist r ∈ Q and u ∈ Σ∗ such that δ̃α((p, µt(p)), u, r) > 0 and δ̃α((q, µt(q)), u, r) > 0.

Example 3.7. Consider the GFA in Figure 1, it is specified as F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2),
where Q =

{
q0, q1, q2

}
is the set of states, Σ =

{
a, b

}
is the set of input symbols, R̃ =

{
(q0, 1)

}
, Z =

∅ and ω is not applicable. We check operation of the GFA in Example 3.7 upon input ”a2b2”.

Fig 1.The GFA of Example 3.7

If we choose F1(µ, δ) = δ, F2(µ, δ) = µt+1(qm) = ∧n
i=1(F1(µ

t(qi), δ(qi, ak, qm)), then we have:
µt0(q0) = 1,
µt1(q1) = F1(µ

t0(q0), δ(q0, a, q1)) = δ(q0, a, q1) = 0.7,
µt2(q2) = F1(µ

t1(q1), δ(q1, a, q2)) = δ(q1, a, q2) = 0.9,
µt3(q1) = F1(µ

t2(q2), δ(q2, b, q1)) = δ(q2, b, q1)) = 0.6,
µt4(q0) = F1(µ

t3(q1), δ(q1, b, q0) = δ(q1, b, q0) = 0.3.

The set B =
{
0, α0, α1, α2, α3, α4, 1

}
of possible propositions concerning the general fuzzy au-

Table 1: Active states and their membership values (mv) at different times in Example 3.7
time t0 t1 t2 t3 t4
input ∧ a a b b

Qact(ti) q0 q1 q2 q1 q0
mv 1 0.7 0.9 0.6 0.3

tomaton F̃ is as follows:
-0 means that the GFA is not in active states of Q,
-α0 means that the GFA has not been in active states at time t0,
-α1 means that the GFA has been in active states at time t1,
-α2 means that the GFA has been in active states at time t2,
-α3 means that the GFA has been in active states at time t3,
-α4 means that the GFA has been in active states at time t4,
-1 means that the GFA has been in at least one active state at time ti for any i ≥ 0.
Here, α(qi) is the maximum membership value of active states at time ti for any i ≥ 0. Then we
have 0 = (0, 0, 0), α0 = (1, 0, 0), α1 = (0, 0.7, 0), α2 = (0, 0, 0.9), α3 = (0, 0.6, 0), α4 = (0.3, 0, 0), 1 =
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(1, 0.7, 0.9).

δ̃α1((q1, µ
t1(q1)), a, q2) = F1(µ

t1(q1), δ
α1(q1, a, q2)) = δα1(q1, a, q2)

= α1|a(q1) ∨ α1|a(q2) = 0.7 ∨ 0 = 0.7,

δ̃α1((q2, µ
t2(q2)), b, q1) = F1(µ

t2(q2), δ
α1(q2, b, q1)) = δα1(q2, b, q1)

= α1|b(q2) ∨ α1|b(q1) = 1 ∨ 1 = 1,

δ̃α2((q0, µ
t0(q0)), a

2, q2) = F1(µ
t0(q0), δ

α2(q0, a, q1)) ∨ F1(µ
t1(q1), δ

α2(q1, a, q2))

= δα2(q0, a, q1) ∨ δα2(q1, a, q2)

= 0 ∨ 0.9 = 0.9,

δ̃α2((q2, µ
t2(q2)), b

2, q0) = F1(µ
t2(q2), δ

α2(q2, b, q1)) ∨ F1(µ
t3(q1), δ

α2(q1, b, q0))

= δα2(q2, b, q1) ∨ δα2(q1, b, q0)

= 1 ∨ 1 = 1,

δ̃α3((q0, µ
t0(q0)), a, q1) = F1(µ

t0(q0), δ
α3(q0, a, q1))

= δα3(q0, a, q1)

= α3|a(q0) ∨ α3|a(q1) = 1 ∨ 1 = 1,

δ̃α3|b((q1, µ
t3(q1)), b, q0) = F1(µ

t3(q1), δ
α3(q1, b, q0))

= δα3(q1, b, q0)

= α3|b(q1) ∨ α3(q0) = 0.6 ∨ 0 = 0.6.

Then, by the Definition 3.6 F̃ is a directable.

Proposition 3.8. Every directable LB-valued GFA contains a unique minimal layer.

Proof. Let F̃ be a directable LB-valued GFA. Also, let Lp, Lq be two distinct layers of F̃ , where
p, q ∈ Q. Then, there dose not exist any r ∈ Q and u ∈ Σ∗ such that δ̃α((p, µt(p)), u, r) > 0
and δ̃α((q, µt(q)), u, r) > 0 (as Lp ∩ Lq = ∅), and consequently a contradiction. Therefore, every
directable LB-valued general fuzzy automaton encompasses a unique minimal layer.
The following explains the construction of an LB-valued general fuzzy automaton containing sin-
gleton which is a unique minimal layer from a given LB-valued GFA with a unique minimal layer.
It is noteworthy to state that the obtained LB-valued GFA is a homomorphic image of the original
LB-valued GFA.
Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued general fuzzy automaton having unique mini-
mal layer Lp. Construct an LB-valued general fuzzy automaton F̃ ′ = (((Q\Lp) ∪ {r}),Σ, Lq0 , Z,
w′, δ̃′, F1, F2), where r is a new state and δ̃′ : [((Q\Lp) ∪ {r})× L]× Σ× ((Q\Lp) ∪ {r}) → L is a
map such that

δ̃
′α((q, µt(q)), ak, q

′) =

{
δ̃α((q, µt(q)), ak, q

′), if q, q′ ∈ Q\Lp

1, otherwise.

Then, from the definition of F̃ ′, it is clear that {r} is a unique minimal layer of F̃ ′.
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Proposition 3.9. The LB-valued general fuzzy automaton F̃ ′ is a homomorphic image of F̃ .

Proof. Let h : F̃ → F̃ ′ be a map such that ∀q ∈ Q,

h(q) =

{
q, if q ∈ Q\Lp

r, otherwise.

Then for, cases will arise.
Case 1. If q, q′ ∈ Q\Lp, then δ̃

′α((h(q), µt(h(q))), ak, h(q
′)) = δ̃α((q, µt(q)), ak, q

′).
Case 2. If q, q′ ∈ Lp, then δ̃

′α((h(q), µt(h(q))), ak, h(q
′)) = δ̃α((r, µt(r)), ak, r) = 1

≥ δ̃α((q, µt(q)), ak, q
′).

Case 3. If q ∈ Q\Lp, q
′ ∈ Lp, then δ̃

′α((h(q), µt(h(q))), ak, h(q
′)) = δ̃α((q, µt(q)), ak, r) = 1 ≥

δ̃α((q, µt(q)), ak, q
′).

Case 4. If q′ ∈ Q\Lp, q ∈ Lp, then δ̃
′α((h(q), µt(h(q))), ak, h(q

′)) = δ̃α((r, µt(r)), ak, q
′) = 1 ≥

δ̃α((q, µt(q)), ak, q
′).

Thus, ∀((q, µt(q)), ak, q′) ∈ (Q× L)×Σ×Q, δ̃
′α((h(q), µt(h(q))), ak, h(q

′)) ≥ δ̃α((q, µt(q)), ak, q
′).

Also, from the definition of f , it is clear that f is onto. Hence, F̃ ′ is a homomorphic image of
F̃ .

4 Galois connections between lattices associated with an LB-valued
GFA

As it has been shown in the previous section, the set of all layers of an LB-valued general fuzzy
automaton F̃ together with a partial order defined on it, has been a poset which is indicated by
(E,⪯). We denote the family of all sub-automata of F̃ by S. The notion M ⊑ F̃ denotes M is
a sub-automaton of an LB-valued GFA F̃ , the relation ⊑ is a partial order on S and (S,⊑) is a
poset. We shall establish isotone Galois connection between different pairs of posets/finite upper
semilattices induced by a given LB-valued general fuzzy automaton by using of its layers.

Definition 4.1. Let (E,⪯) be the poset induced by an LB-valued general fuzzy automaton F̃ by
using its layers and H ⊆ E, H ̸= ∅, then H is called a lower set, if ∀Lp ∈ H and ∀Lq ∈ E,
Lq ⪯ Lp ⇒ Lq ∈ H. Also, for any Lp ∈ E, we call the set ⟨Lp⟩ = {Lq ∈ E : Lq ⪯ Lp} the principle
lower set of E.

We denote by Ls(E), the family of all lower sets of poset (E,⪯), which with usual inclusion relation
⊆ of sets run out to be a poset. The elements of Ls(E) are noting but layers of F̃ , i.e., a lower set
H of poset E is nothing but union of layers of F̃ .

Proposition 4.2. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued GFA. (S,⊑) be a poset of all
sub-automata of F̃ , (E,⪯) be a poset of all layers of F̃ , (Ls(E),⊆) be a poset of a lower set of E
and

G(Ls(E)) = {L ∈ Ls(E) : deg−L ≤ 1},

then, there exists an isotone Galois connection between (E,⪯) and (G(Ls(E)),⊆).

Proof. In order to prove the existence of isotone Galois connection between (E,⪯) and (G(LS(E)),
⊆), we define a pair (φ,ψ) of mappings, where φ : E → G(Ls(E)) and ψ : G(Ls(E)) → E are,
respectively, defined as

φ(Lp) = {Lq ∈ E : Lq ⪯ Lp}, ∀Lp ∈ E, and (1)
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ψ({Lq ∈ E : Lq ⪯ Lp}) = Lp. (2)

But {Lq ∈ E : Lq ⪯ Lp}, ∀Lp ∈ E implies that φ(Lp) ∈ Ls(E), i.e., Lp is unique and maximal
in φ(Lp) and hence, deg−φ(Lp) ≤ 1 whereby φ(Lp) ∈ G(Ls(E)). For (φ,ψ) being isotone Galois
connection between (E,⪯) and (G(Ls(E)),⊆), we need to illustrate that for all Lr ∈ E and
{Lt ∈ E : Lt ⪯ Ls} ∈ G(Ls(E)), φ(Lr) ⊆ {Lt ∈ E : Lt ⪯ Ls} ⇔ Lr ⪯ ψ({Lt ∈ E : Lt ⪯ Ls}).
Now, let φ(Lr) ⊆ {Lt ∈ E : Lt ⪯ Ls}), then using Equations (1) and (2), we have

φ(Lr) ⊆ {Lt ∈ E : Lt ⪯ Ls} ⇒ {Lq ∈ E : Lq ⪯ Lr} ⊆ {Lt ∈ E : Lt ⪯ Ls}
⇒ Lr ⪯ Ls

⇒ Lr ⪯ ψ({Lt ∈ E : Lt ⪯ Ls}).

Conversely, let Lr ⪯ ψ({Lt ∈ E : Lt ⪯ Ls}) then we have to prove that φ(Lr) ⊆ {Lt ∈ E : Lt ⪯
Ls}. Now, by using Equations (2) and (1) we get

Lr ⪯ ψ({Lt ∈ E : Lt ⪯ Ls}) ⇒ Lr ⪯ Ls

⇒ {Lq ∈ E : Lq ⪯ Lr} ⊆ {Lt ∈ E : Lt ⪯ Ls}
⇒ φ(Lr) ⊆ {Lt ∈ E : Lt ⪯ Ls}.

Thus, we have proved that φ(Lr) ⊆ {Lt ∈ E : Lt ⪯ Ls}) if and only if Lr ⪯ ψ({Lt ∈ E : Lt ⪯ Ls}).
Therefore, we conclude that the pair (φ,ψ) is an isotone Galois connection. Now, we have the
following propositions. We have left the proof due to space limitations.

Proposition 4.3. The posets (S,⊑), (Ls(E),⊆) and (G(Ls(E)),⊆) induced by LB-valued general
fuzzy automaton F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) are finite upper semilattice.

Proof. It is similar to Proposition 4.2 of [32].

Proposition 4.4. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued GFA. Let (S,⊑) be a finite
upper semilattice of set of all sub-automaton of F̃ , (E,⪯) be a poset of set of all layers of F̃
and (Ls(E),⊆) be finite upper semilattice of lower sets of E. Then there exists an isotone Galois
connection between finite upper semilattices (S,⊑) and (Ls(E),⊆).

Proposition 4.5. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued general fuzzy automaton,
(S,⊑) and G(Ls(S)) = {L ∈ Ls(S) : deg−L ≤ 1} be finite upper semilattices. Then there exists
an isotone Galois connection between finite upper semilattices (Ls(E),⊆) and (G(Ls(S)),⊆).

The next proposition presents a characterization of isotone Galois connection between finite upper
semilattices (S,⊑) and (Ls(E),⊆) induced by an LB-valued GFA F̃ . We have left the proof due
to space limitations.

Proposition 4.6. Let (S,⊑) and (Ls(E),⊆) be finite upper semilattices associated with an LB-
valued GFA F̃ . Let φ and ψ be two maps such that

φ : S → Ls(E) and ψ : Ls(E) → S.

Then, the pair (φ,ψ) be an isotone Galois connection iff
(i) φ and ψ are order-preserving;
(ii) M ⊑ ψ(φ(M)) for all M ∈ S;
(iii) φ(ψ(EM)) ⊆ EM for all EM ∈ Ls(E).
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In the following proposition, we have provided a characterization of isotone Galois Connection
between posets (E,⪯) and (G(Ls(E)),⊆) induced by layers of an LB-valued GFA F̃ .

Proposition 4.7. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued general fuzzy automaton. Let
(E,⪯) and (G(Ls(E)),⊆) be two posets associated with F̃ , φ and ψ be two maps such that

φ : E → G(Ls(E) and ψ : G(Ls(E)) → E.

Then the pair (φ,ψ) be an isotone Galois connection iff
(i) φ and ψ are order-preserving;
(ii) Lp ≤ ψ(φ(Lp)) for all Lp ∈ E;
(iii) φ(ψ({Lq ∈ E : Lq ⪯ Lp})) ⊆ {Lq ∈ E : Lq ⪯ Lp} for all {Lq ∈ E : Lq ⪯ Lp} ∈ G(Ls(E)).

Proof. Let (φ,ψ) be an isotone Galois connection, where φ : E → G(Ls(E)) and ψ : G(Ls(E)) →
E be, respectively, defined as

φ(Lp) = {Lq ∈ E : Lq ⪯ Lp},∀Lp ∈ E, (3)

clearly, φ(Lp) ∈ Ls(E) with Lp is unique and maximal in φ(Lp) implies deg−φ(Lp) ≤ 1, whereby
φ(Lp) ∈ G(Ls(E)); and

ψ({Lq ∈ E : Lq ⪯ Lp}) = Lp. (4)

(i) To prove φ and ψ are order-preserving. Let Lp and Lq ∈ E be arbitrary and such that Lp ⪯ Lq.
Then Lp ⪯ Lq ⇒ {Lr ∈ E : Lr ⪯ Lp} ⊆ {Lr ∈ E : Lr ⪯ Lq} ⇒ φ(Lp) ⊆ φ(Lq). Similarly, to prove
ψ is order-preserving let {Lr ∈ E : Lr ⪯ Lp}, {Lr ∈ E : Lr ⪯ Lq} ∈ G(Ls(E)) such that

{Lr ∈ E : Lr ⪯ Lp} ⊆ {Lr ∈ E : Lr ⪯ Lq}.

Then

{Lr ∈ E : Lr ⪯ Lp} ⊆ {Lr ∈ E : Lr ⪯ Lq} ⇒ Lp ⪯ Lq

⇒ {Lr ∈ E : Lr ⪯ Lp} ⊆ {Lr ∈ E : Lr ⪯ Lq}
⇒ Lp ⪯ Lq

⇒ ψ({Lr ∈ E : Lr ⪯ Lp}) ⊆ ψ({Lr ∈ E : Lr ⪯ Lq}).

Hence, φ and ψ are order-preserving.
(ii) To prove Lp ⪯ ψ(φ(Lp)), for all Lp ∈ E. Let Lp be an arbitrary element of E such that
φ(Lp) = {Lr ∈ E : Lr ⪯ Lp}, then φ(Lp) = {Lr ∈ E : Lr ⪯ Lp} ⇒ ψ(φ(Lp)) = ψ({Lr ∈ E : Lr ⪯
Lp}). But ψ({Lr ∈ E : Lr ⪯ Lp}) = Lp. Hence, ψ(φ(Lp)) = Lp. Since Lp ⪯ Lp for each Lp ∈ E,
it follows that Lp ⪯ ψ(φ(Lp)).
(iii) To prove φ(ψ({Lr ∈ E : Lr ⪯ Lp})) ⊆ {Lr ∈ E : Lr ⪯ Lp} for all {Lr ∈ E : Lr ⪯ Lp} ∈
G(Ls(E)). Let {Lr ∈ E : Lr ⪯ Lp} be an arbitrary element of G(Ls(E)), then by definition of ψ,
we have ψ({Lr ∈ E : Lr ⪯ Lp}) = Lp. But

ψ({Lr ∈ E : Lr ⪯ Lp}) = Lp ⇒ φ(ψ({Lr ∈ E : Lr ⪯ Lp})) = φ(Lp)

⇒ φ(ψ({Lr ∈ E : Lr ⪯ Lp})) = {Lr ∈ E : Lr ⪯ Lp})).

Since {Lr ∈ E : Lr ⪯ Lp} ⊆ {Lr ∈ E : Lr ⪯ Lp}, for each {Lr ∈ E : Lr ⪯ Lp} ∈ G(Ls(E)),
whereby φ(ψ({Lr ∈ E : Lr ⪯ Lp})) ⊆ {Lr ∈ E : Lr ⪯ Lp}.
Conversely, let φ and ψ be defined as above and satisfy the Conditions (i), (ii) and (iii). To
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show (φ,ψ) be an isotone Galois connection, i. e. for each Lp ∈ E and {Lr ∈ E : Lr ⪯ Lq} ∈
G(Ls(E)), φ(Lp) ⊆ {Lr ∈ E : Lr ⪯ Lq} if and only if Lp ⪯ ψ({Lr ∈ E : Lr ⪯ Lq}). Let
φ(Lp) ⊆ {Lr ∈ E : Lr ⪯ Lq}, then

{Lr ∈ E : Lr ⪯ Lp} ⊆ {Lr ∈ E : Lr ⪯ Lq}
⇒ ψ({Lr ∈ E : Lr ⪯ Lp}) ⪯ ψ({Lr ∈ E : Lr ⪯ Lq}),
({Lr ∈ E : Lr ⪯ Lp}, {Lr ∈ E : Lr ⪯ Lq} ∈ G(Ls(E)) and ψ is order-preserving)

⇒ Lp ⪯ ψ({Lr ∈ E : Lr ⪯ Lq}), using Equation 4.

Now, to prove another side, let Lp ⪯ ψ({Lr ∈ E : Lr ⪯ Lq}) to prove φ(Lp) ⊆ {Lr ∈ E : Lr ⪯ Lq}.
But

Lp ⪯ ψ({Lr ∈ E : Lr ⪯ Lq}) ⇒ Lp ⪯ Lq, (by definitionψ)

⇒ φ(Lp) ⊆ φ(Lq), (Lp, Lq ∈ E and φ is order-preserving)

⇒ φ(Lp) ⊆ {Lr ∈ E : Lr ⪯ Lq}(by definition of φ for Lq ∈ E).

This completes the proof.

Proposition 4.8. Let F̃ = (Q,Σ, R̃, Z, w, δ̃, F1, F2) be an LB-valued general fuzzy automaton. Let
(Ls(E),⊆) and (G(Ls(S)),⊆) be finite upper semilattices associated with F̃ , and φ and ψ be two
maps such that

φ : Ls(E) → G(Ls(S)) and ψ : G(Ls(S)) → LS(E).

Then the pair (φ,ψ) be an isotone Galois connection iff
(i) φ and ψ are order-preserving;
(ii) EM ⊆ ψ(φ(EM)) for all EM ∈ Ls(E);
(iii) φ(ψ({M′ ∈ S : M′ ⊑ M})) ⊆ {M′ ∈ S : M′ ⊑ M} for all {M′ ∈ S : M′ ⊑ M} ∈ G(Ls(S)).

5 Conclusion

This study was an attempt to enhance the algebraic study of LB-valued general fuzzy automata
through utilizing the notion of their respected layers. It has been currently demonstrated that some
algebraic concepts of fuzzy automata which have been associated with lattice-ordered monoids
(i.e., fuzzy automata where fuzziness is explicated by lattice-ordered monoids) rely on the related
monoid structure (see, e.g. [20]). It is remarkable to observe the results of this present study in
the framework of the generalized version of fuzzy automata and in the direction of the research
conducted by Jin et al. [20]. Moreover, similar to the studies which have been done in [31, 32], it
appears that the topological notions and fuzzy topological observations which are established in
[31]may also be applied in some other studies as well. As further studies, we try to conduct such
investigations in the near future.
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