Ideals of roughness in L-algebras

Document Type : Original Article


Department of Mathematics, Payame Noor University, P. O. Box19395-4697, Tehran, Iran


Rough is an exceptional mathematical tool for effectively analyzing and addressing the complexities of vague action descriptions in decision problems. This paper explores the concept of an L-algebra, which leads to the introduction of  lower and upper approximations. The properties of these approximations are also discussed and elucidated. Furthermore, it is proven that the lower and upper approximations serve as interior and closure operators, respectively. Additionally, by employing A-lower and A-upper approximations, this paper presents and examines conditions for a nonempty  subset to be definable. Furthermore, we investigated the circumstances under which the A-lower and A-upper approximations can be rough ideals. Finally, we define an operation ‎" -->"‎ on the set of all upper approximations of L  ‎and ‎prove ‎that ‎it ‎is ‎made ‎an ‎‎L-algebra. 


[1] M. Aaly Kologani, On (semi)topology L-algebras, Categories and General Algebraic Structures with Applications, 18(1) (2023), 81–103. DOI:10.52547/CGASA.2023.103121.
[2] M. Aaly Kologani, Modal operators on L-algebras, Algebraic Structures and Their Applica[1]tions, 10(2) (2023), 107–125. DOI:10.22034/AS.2023.3016.
[3] M. Aaly Kologani, Relation between L-algebras and other logical algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 4(1) (2023), 27–46. DOI:10.52547/HATEF.JAHLA.4.1.3.
[4] M. Aaly Kologani, Some results on L-algebras, Soft Computing, (2023), DOI:10.1007/s00500- 023-08965-5.
[5] M. Aaly Kologani, M. Mohseni Takallo, Y.B. Jun, R.A. Borzooei, Makgeolli structures on hoops, Applied and Computational Mathematics, 21(2) (2022), 178–192.
[6] R. Biswas, S. Nanda, Rough groups and rough subgroups, Bulletin of the Polish Academy of Sciences Mathematics, 42(3) (1994), 251–254. DOI:10.1007/11548669_11.
[7] H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebra in BCK/BCI-algebras, Neutrosophic Sets and Systems, to appear.
[8] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: P.P. Kulish (Ed.), Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, Vol. 1510, Springer, Berlin, 1992. DOI:10.1007/BFb0101175.
[9] P. Etingof, Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Communications in Algebra, 31(4) (2003), 1961–1973. DOI:10.1081/AGB-120018516.
[10] P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Mathematical Journal, 100 (1999), 169–209.
[11] T. Gateva-Ivanova, Noetherian properties of skew-polynomial rings with binomial relations, Transactions of the AMS - American Mathematical Society, 343 (1994), 203–219. DOI:10.2307/2154529.
[12] T. Gateva-Ivanova, Skew polynomial rings with binomial relations, Journal of Algebra, 185 (1996), 710–753. DOI:10.1006/jabr.1996.0348.
[13] T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, Journal of Algebra, 206 (1998), 97–112.
[14] T. B. Iwinski, Algebraic approach to rough sets, Bulletin of the Polish Academy of Sciences, 35 (1987), 673–683.
[15] Y.B. Jun, Roughness of ideals in BCK-algebras, Scientiae Mathematicae Japonicae, 7 (2002), 115–119.
[16] Y.B. Jun, K. H. Kim, Rough set theory applied to BCC-algebras, International Mathematical Forum, 2(41-44) (2007), 2023–2029.
[17] N. Kuroki, Rough ideals in semigroups, Information Sciences, 100 (1997), 139–163. DOI: 10.1016/S0 020-0255(96)00274-5.
[18] N. Kuroki, J. N. Mordeson, Structure of rough sets and rough groups, Journal of Fuzzy Mathematics, 5 (1997), 183–191.
[19] M. Mohseni Takallo, Block code on L-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 4(1) (2023), 47–60. DOI: 10.52547/HATEF.JAHLA.4.1.4.
[20] M. Mohseni Takallo, Y.B. Jun, Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1) (2020), 95–105. DOI: 10.29252/HATEF.JAHLA.1.1.7.
[21] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11(5) (1982), 341–356.
[22] S. Rasouli, B. Davvaz, Roughness in MV-algebras, Information Sciences, 180(5) (2010), 737– 747. DOI: 10.1016/j. ins.2009.11.008.
[23] W. Rump, L-algebras, self-similarity, and ℓ-groups, Journal of Algebra, 320 (2008), 2328–2348. DOI:10.1016/j.jalgebra.2008.05.033.
[24] W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, Journal of Algebra and Its Applications, 7 (2008), 471–490. DOI: 10.1142/S0219498808002904.
[25] T. Traczyk, On the structure of BCK-algebras with zxyx = zyxy, Mathematica Japonica, 33 (1988), 319–324.
[26] A.P. Veselov, Yang-Baxter maps and integrable dynamics, arXiv:math/0205335. DOI: 10.48550/arXiv. math/0205335.