Quotient bipolar fuzzy soft sets of hypervector spaces and bipolar fuzzy soft sets of quotient hypervector spaces

Document Type : Original Article


University of Bojnord, Bojnord, Iran


In this paper, two related quotient structures are investigated utilizing the concept of coset. At first, a new hypervector space F/V = (F/V,\circ,\circledcirc,K) is created, which is composed of all cosets of a bipolar fuzzy soft set (F;A) over a hypervector space V . Then it will be shown that dim F/V = dim V/W, where the quotient hypervector space V/W includes all cosets of an especial subhyperspace W of V. Also, three bipolar fuzzy soft sets over the quotient hypervector space V/W are presented and in this way some new bipolar fuzzy soft hypervector spaces are defined.


[1] S. Abdullh, M. Aslan, K. Ullah, Bipolar fuzzy soft sets and its applications in decision making problem, Journal of Intelligent and Fuzzy Systems, 27(2) (2014), 729–742. DOI:10.3233/IFS131031.
[2] N. Abughazalah, G. Muhiuddin, M.E. Elnair, A. Mahboob, Bipolar fuzzy set theory applied to the certain ideals in BCI-algebras, Symmetry, 14(4) (2022), 815. DOI:10.3390/sym14040815.
[3] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59 (2010), 3458–3463. DOI:10.1016/j.camwa.2010.03.034.
[4] M. Akram, N.O. Alsherei, K.P. Shum, A. Farooq, Applications of bipolar fuzzy soft sets in K-algebras, Italian Journal of Pure and Applied Mathematics, 32 (2014), 533–546.
[5] H. Aktas, N. Cagman, Soft sets and soft groups, Information Sciences, 177 (2007), 2726–2735. DOI:10.1016/j.ins.2006.12.008.
[6] G. Ali, M. Akram, A.N. Koam, J.C.R. Alcantud, Parameter reductions of bipolar fuzzy soft sets with their decision-making algorithms, Symmetry, 11(8) (2019), 949. DOI:10.3390/sym11080949.
[7] R. Ameri, Fuzzy hypervector spaces over valued fields, Iranian Journal of Fuzzy Systems, 2 (2005), 37–47. DOI: 10.22111/IJFS.2005.474.
[8] R. Ameri, O.R. Dehghan, On dimension of hypervector spaces, European Journal of Pure and Applied Mathematics, 1(2) (2008), 32–50.
[9] R. Ameri, O.R. Dehghan, Dimension of fuzzy hypervector spaces, Iranian Journal of Fuzzy Systems, 8(5) (2011), 149–166.
[10] N. Cagman, S. Enginoglu, F. Citak, Fuzzy soft set theory and its applications, Iranian Journal of Fuzzy Systems, 8(3) (2011), 137–147. DOI:10.22111/IJFS.2011.292.
[11] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publications, 2003. DOI:10.1007/978-1-4757-3714-1.
[12] B. Davvaz, I. Cristea, Fuzzy algebraic hyperstructures, Springer, 2015. DOI:10.1007/978-3- 319-14762-8.
[13] B. Davvaz, V. Leareanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007.
[14] O.R. Dehghan, Various kinds of fuzzy quotient hypervector spaces, Journal of Intelligent and Fuzzy Systems, 35 (2018), 3163–3170. DOI:10.3233/JIFS-171262.
[15] O.R. Dehghan, Linear functionals on hypervector spaces, Filomat, 34(9) (2020), 3031–3043. DOI:10.2298/FIL2009031D.
[16] O.R. Dehghan, Sum and scalar product of fuzzy subhyperspaces, Journal of Discrete Mathematical Sciences and Cryptography, 23(4) (2020), 841–860. DOI:10.1080/09720529.2019.1624061.
[17] O.R. Dehghan, Balanced and absorbing fuzzy subsets of hypervector spaces, Computers and Mathematics with Applications, 39(2) (2020), 1–12 (Article 53). DOI:10.1007/s40314-020- 1096-x.
[18] O.R. Dehghan, An introduction to bipolar fuzzy soft hypervector spaces. DOI:10.48550/arXiv. 2310.06991.
[19] O.R. Dehghan, Study of bipolar fuzzy soft hypervector spaces. DOI:10.48550/ arXiv.2310.06944.
[20] O.R. Dehghan, M. Nodehi, Some results on soft hypervector spaces, Caspian Journal of Mathematical Sciences, 10(2) (2021), 224–234. DOI:10.22080/CJMS.2020.17968.1452.
[21] M. Khan, S. Anis, S. Ahmad, M. Zeeshan, Computational bipolar fuzzy soft matrices with applications in decision making problems, Journal of Intelligent and Fuzzy Systems: Applications in Engineering and Technology, 44(6) (2023), 10241–10253. DOI: 10.3233/JIFS-221569.
[22] T. Mahmood, U.U. Rehman, A. Jaleel, J. Ahmmad, R. Chinram, Bipolar complex fuzzy soft sets and their applications in decision-making, Mathematics, 10(7) (2022), 1048. DOI:10.3390/math10071048.
[23] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44 (2002), 1077–1083. DOI:10.1016/S0898- 1221(02)00216-X. 
[24] F. Marty, Sur une generalization de la notion de groupe, 8th Congress des Mathematiciens Scandinaves, Stockholm, (1934), 45–49.
[25] D. Molodtsov, Soft set theory, first results, Computers and Mathematics with Applications, 37 (1999), 19–31. DOI:10.1016/S0898-1221(99)00056-5.
[26] G. Muhiuddin, H. Harizavi, Y.B. Jun, Bipolar-valued fuzzy soft hyper BCK-ideals in hyper BCK-algebras, Discrete Mathematics, Algorithms and Applications, 12(2) (2020), 2050018. DOI:10.1142/S17938309205 00184.
[27] M. Norouzi, R. Ameri, Some new directions in soft (fuzzy) hypermodules, Fuzzy Information and Engineering, 14(2) (2022), 167–181. DOI:10.1080/16168658.2022.2119052.
[28] E. Ranjbar-Yanehsari, M. Asghari-Larimi, R. Ameri, Soft hypervector spaces and fuzzy soft hypervector space, European Journal of Pure and Applied Mathematics, 2(1) (2019), 118–134. DOI:10.29020/nybg.ejpam.v12i1.3280.
[29] M. Riaz, S.T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Computing, 24 (2020), 18259–18272. DOI:10.1007/s00500-020-05342-4.
[30] M. Sarwar, M. Akram, S. Shahzadi, Bipolar fuzzy soft information applied to hypergraphs, Soft Computing, 25(5) (2021), 3417–3439. DOI:10.1007/s00500-021-05610-x.
[31] M. Scafati-Tallini, Hypervector spaces, Fourth International Congress on Algebraic Hyper[1]structures and Applications, Xanthi, Greece, (1990), 167–174.
[32] M. Sedghi, O.R. Dehghan, M. Norouzi, n-Normed hypervector spaces, Journal of Mathematical Sciences: Advances and Applications, 45 (2017), 41–59. DOI:10.18642/jmsaa 7100121789.
[33] A. Sezgin Sezer, A.O. Atagun, A new kind of vector space: Soft vector space, Southeast Asian Bulletin of Mathematics, 40 (2016), 753–770.
[34] T. Vougiuklis, Hyperstructures and their representations, Hardonic Press Inc., 1994.
[35] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.
[36] W.R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, Proceedings of the First International Conference of the North American Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, (1994), 305–309. DOI: 10.1109/IJCF.1994.375115.