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Abstract

In this paper, modal operators on BCK-algebras with
condition (S) are introduced and several properties and
characterizations of them are investigated. Also, it is in-
vestigated under what conditions these modal operators
form a lattice. Furthermore, some particular modal oper-
ators are introduced, and their properties and characteri-
zations of them are obtained, especially in some classes of
BCK-algebras, such as positive implicative BCK-algebras,
and implicative BCK-algebras.
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1 Introduction

BCK-algebra was introduced by Imai and Iséki [5] as a generalization of set-theoretic difference and
implication connective in propositional logic. Since then, many researchers worked in this area.
Bounded commutative BCK-algebras are categorically equivalent to MV-algebras [10], which are
themselves a subclass of residuated lattices. BCK-algebras with condition (S) are BCK-algebras
(X; ∗, 0) in which for any a, b ∈ X, the element a ◦ b, the greatest element x ∈ X with x ∗ a ≤ b,
exists and with concerning to this operation form a commutative ordered monoid. The pair (∗, ◦)
has similar properties to the pair (∗,→) in residuated lattices, i.e., for any elements x, y, z of the
background BCK-algebra, x ∗ y ≤ z if and only if x ≤ y ◦ z. So, in characterizing modal operators
on BCK-algebras with condition (S), the operation ◦ plays an essential role.

The study of modal operators on algebras of logic was started by Macnab’s work [8] on Heyting
algebras; he introduced the notion of a modal operator on Heyting algebras as a unary operation
f satisfying f2(x) = f(x) ≥ x, which preserves the meet operation. He gave some basic properties
and characterizations of modal operators and introduced some particular types of them and a
complete characterization of them. Rachu̇nek [11] introduced the notion of a modal operator on
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ordered sets. After that, many authors have applied it to some other algebras of logic, such as
MV-algebras [4], bounded commutative residuated ℓ-monoids [12], and residuated lattices [7] and
investigated algebraic properties of them. Ciungu et al. [2] applied modal operators on pseudo
BE-algebras (which are a generalization of reversed left pseudo BCK-algebras [6]) and obtained
similar results. Since, BCK-algebras, with condition (S), are an essential class of algebras of logic
and are close to the other algebras of logic, it motivates us to study the algebraic properties of
modal operators on these structures and investigate the behavior of BCK-algebras with concerning
to these operators.

This paper is organized as follows. In Section 2, some definitions and results from the literature
are given. In Section 3, the notion of a modal operator on BCK-algebras is introduced, and their
basic properties and equivalent conditions are investigated. We also focus on the image of a modal
operator and investigate its properties, especially in some subclasses of BCK-algebras such as
positive implicative BCK-algebras and commutative BCK-algebras. Furthermore, some conditions
under which the set of modal operators form a lattice are investigated. In this respect, it is
proved modal operators on a bounded implicative BCK-algebra form a lattice. In the sequel, some
particular types of modal operators on a BCK-algebra are introduced, and their properties and
exciting results are given.

2 Preliminaries

This section is devoted to introduce some notions, and results from the literature. For more details,
we refer to the references [3, 9].

A BCK-algebra is an algebra (X; ∗, 0) of type (2,0) satisfying the following conditions:
(BCK1) (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y,
(BCK2) x ∗ (x ∗ y) ≤ y,
(BCK3) x ≤ x,
(BCK4) x ≤ y and y ≤ x imply x = y,
(BCK5) 0 ≤ x,
where the binary relation ≤ is defined as x ≤ y ⇔ x ∗ y = 0.

Proposition 2.1. In any BCK-algebra (X; ∗, 0), the following hold:

(1) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,

(2) x ≤ y and y ≤ z imply x ≤ z,

(3) x ∗ y ≤ z if and only if x ∗ z ≤ y,

(4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(5) x ∗ y ≤ x and x ∗ 0 = x,

for all x, y, z ∈ X.

From (BCK3), (BCK4), (BCK5), and Proposition 2.1(2) it follows that (X;≤) is a partially
ordered set with 0 as the least element. If X has the greatest element 1 (with respect to the
ordering ≤), X is said to be bounded.

A BCK-algebra (X; ∗, 0) is said to be commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x). Any bounded
commutative BCK-algebra is a lattice in which the meet and the join operations are given by
x∧ y = y ∗ (y ∗x) and x∨ y = N(Nx∧Ny), where Nx = 1 ∗x. X is said to be positive implicative
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if (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z). X is said to be implicative if x = x ∗ (y ∗ x). It is well known that
a BCK-algebra is implicative if and only if it is both commutative and positive implicative.

A BCK-algebra (X; ∗, 0) is said to satisfy the condition (S) if for all a, b ∈ X, the set A(a, b) =
{x ∈ X : x ∗ a ≤ b} has the greatest element, denoted by a ◦ b. 0, a, b ∈ A(a, b). By [9, Theorem
I.7.16], every bounded commutative BCK-algebra satisfies the condition (S).

Proposition 2.2. Any BCK-algebra X with condition (S) satisfies the following:

(1) 0, x, y ≤ x ◦ y, x ◦ 0 = 0 ◦ x = x,

(2) x ∗ y ≤ z ⇔ x ≤ y ◦ z,

(3) x ≤ y ◦ (x ∗ y) and (x ◦ y) ∗ x ≤ y,

(4) (X, ◦, 0) is a commutative ordered monoid; i.e., (X, ◦, 0) is a commutative monoid, and the
order is monotone with concerning to the operation ◦,

(5) (x ∗ y) ∗ z = x ∗ (y ◦ z),

(6) x ∗ y ≤ (x ∗ z) ◦ (z ∗ y),

(7) (x ◦ z) ∗ (y ◦ z) ≤ x ∗ y ≤ x ◦ y.

(8) If X is positive implicative, then

(a) x ◦ x = x and (x ◦ y) ∗ z = (x ∗ z) ◦ (y ∗ z),
(b) x ◦ y = lub{x, y},
(c) x ≤ y implies x ◦ y = y,

(9) If X is implicative with condition (S), then

(a) (X; ◦) is an upper semilattice, i.e., x ∨ y = x ◦ y,
(b) x ∗ (y ◦ z) = (x ∗ y) ∧ (x ∗ z),
(c) (x ◦ y) ∧ z = (x ∧ z) ◦ (y ∧ z).

3 Modal operators on BCK-algebras

In the familiar algebras of logic such as MV-algebras, BL-algebras, and residuated lattices, a modal
operator is defined based on the notion of a closure operator. We recall that a closure operator
on a poset (P ;≤) is defined as a monotone mapping f : P −→ P satisfying x ≤ f(x) = f2(x). So,
the authors define a modal operator as a mapping satisfying the two first conditions of a closure
operator together with an extra condition. In many cases, modal operators are monotone, but
not all of them, see, say [7] and [8]. Also, in these algebras, the background structure corresponds
to truth values close to the value 1, say, reversed left BCK-algebras, in [2]. Since, BCK-algebra
introduced by Iséki is based on the truth values close to the value 0, in fact, we consider the notion
of a dual closure operator (those monotone mappings f satisfies f2(x) = f(x) ≤ x), but also under
the name of “modal operator” due to the convenience and coincidence with the previous works.

In what follows, X = (X; ∗, 0) is a BCK-algebra, unless otherwise specified.
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Definition 3.1. A modal operator on BCK-algebra X is a mapping g : X −→ X satisfying
(DM1) (∀x ∈ X) g(x) ≤ x,
(DM2) (∀x ∈ X) g(g(x)) = g(x),
(DM3) (∀x, y ∈ X) g(x) ∗ g(y) ≤ g(x ∗ y).

If g is a modal operator on X, the image of g constitutes of those y ∈ X with g(x) = y, for some
x ∈ X. From (DM2) it follows that g(y) = g(g(x)) = g(x) = y. This means that Im(g) constitutes
those elements of X, which are fixed under g; i.e., Im(g) = {x ∈ X : g(x) = x} := Fix(g).

Example 3.2. Consider the BCK-algebra (X; ∗, 0), where X = {0, a, b, c} and the operation ∗ is
given in Table 1 ([9]). Define a mapping g : X −→ X by g(0) = 0, g(a) = a and g(b) = g(c) = b.
It is routine to check that g is a modal operator on X.

∗ 0 a b c

0 0 0 0 0
a a 0 0 0
b b a 0 0
c c b a 0

Table 1: Cayley’s Table of ∗

Proposition 3.3. If g is a modal operator on X, then

(1) g(0) = 0,

(2) g is monotone, and so it is a dual closure operator,

(3) g(g(a) ∗ b) = g(a) ∗ b = g(g(a) ∗ g(b)) = g(a) ∗ g(b) ≤ g(a ∗ b).

Proof. (1) is obvious.
(2) Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 0, and so g(x) ∗ g(y) ≤ g(x ∗ y) = 0, whence

g(x) ∗ g(y) = 0. This implies that g(x) ≤ g(y). The last part is obvious.
(3) Assume that a, b ∈ X. Then

g(g(a) ∗ g(b)) ≤ g(a) ∗ g(b) by (DM1)

= g(g(a)) ∗ g(b) by (DM2)

≤ g(g(a) ∗ b) by (DM3)

≤ g(a) ∗ b by (DM1)

≤ g(a) ∗ g(b) by (DM1) and Proposition 2.1(1)

= g(g(a)) ∗ g(g(b)) by (DM2)

≤ g(g(a) ∗ g(b)) by (DM3)

whence g(g(a)∗g(b)) = g(g(a)∗b) = g(a)∗b = g(a)∗g(b). The last inequality, immediately follows
from the definition.

Proposition 3.4. A mapping g on a BCK-algebra X with condition (S) is a modal operator if
and only if it satisfies

(1) g(x) ∗ g(y) = g(x) ∗ y,



Modal operators on BCK-algebras with condition (S) 41

(2) g(x ◦ y) ≤ g(x) ◦ g(y),

for all x, y ∈ X.

Proof. Assume that g is a mapping on X with the given conditions. Let x ∈ X. Taking y := x
in (1), we get that g(x) ∗ x = g(x) ∗ g(x) = 0, whence g(x) ≤ x, proving (DM1). Now, taking
y := g(x) in (1), we get that g(x) ∗ g(g(x)) = g(x) ∗ g(x) = 0 and so g(x) ≤ g(g(x)), combining
(DM1) it follows that g(g(x)) = g(x), proving (DM2). Now, we prove that g is monotone. Let
x ≤ y. Then x ∗ y = 0, and since g(x) ≤ x, we get that g(x) ∗ g(y) = g(x) ∗ y ≤ x ∗ y = 0, whence
g(x) ≤ g(y). Now, from x ≤ y ◦ (x ∗ y), by (2), it follows that g(x) ≤ g(y ◦ (x ∗ y)) ≤ g(y) ◦ g(x ∗ y),
whence by Proposition 2.2(2), g(x) ∗ g(y) ≤ g(x ∗ y), proving that g is a modal operator.

Conversely, assume that g is a modal operator on X. From (x◦y)∗x ≤ y, we get g(x◦y)∗g(x) ≤
g((x ◦ y) ∗ x) ≤ g(y), whence by Proposition 2.2(2), g(x ◦ y) ≤ g(x) ◦ g(y), proving (2). The proof
of (1) follows from Proposition 3.3.

Proposition 3.5. Assume that X is a BCK-algebra with condition (S) and g is a modal operator
on X. Then

(1) g(g(x) ◦ y) = g(x ◦ g(y)) = g(x ◦ y).

(2) If X is positive implicative, then g(x) ◦ g(y) = g(g(x) ◦ g(y)) = g(x ◦ y).

Proof. (1) Let x, y ∈ X. From g(x) ≤ x, by Proposition 2.2(4) it follows that g(x)◦g(y) ≤ x◦g(y)
and so by Proposition 2.2(2) we get that (g(x) ◦ g(y)) ∗ x ≤ g(y). Now, from g(x ◦ y) ≤ g(x) ◦ g(y)
it follows that g(x ◦ y) ∗ x ≤ g(y) and hence g(x ◦ y) ≤ x ◦ g(y), whence

g(x ◦ y) = g(g(x ◦ y)) ≤ g(x ◦ g(y)) ≤ g(x ◦ y),

because g(y) ≤ y. Hence, g(x◦y) = g(x◦g(y)). Similarly, from g(y) ≤ y it follows that g(x)◦g(y) ≤
g(x) ◦ y and so g(x ◦ y) ∗ g(x) ≤ (g(x) ◦ g(y)) ∗ g(x) ≤ y. This implies that g(x ◦ y) ≤ g(x) ◦ y. On
the other hand, since g(x) ≤ x, so g(x) ◦ y ≤ x ◦ y and so g(x ◦ y) ≤ g(g(x) ◦ y) ≤ g(x ◦ y). Thus,
g(x ◦ y) = g(g(x) ◦ y).

(2) Assume that X is positive implicative and let x, y ∈ X. From Proposition 2.2(8), we know
that x◦y is the least upper bound for {x, y}. Now, since x, y ≤ x◦y, so g(x), g(y) ≤ g(x◦y) and so
by Proposition 2.2(8-c) we get that g(x)◦g(y) ≤ g(y)◦g(x◦y) = g(x◦y). Thus, g(x◦y) = g(x)◦g(y).
Hence, g(x ◦ y) = g(g(x ◦ y)) = g(g(x) ◦ g(y)).

We recall that a lower semilattice (or meet-semilattice) is a partially ordered set where every
two elements have an infimum. If this is true for any (nonempty) family of elements, the semilattice
is said to be complete (or ∧-complete). A lattice is said to be complete if every (nonempty) family
of the elements has infimum and supremum. Theorem 2.11 of [1] states that a ∧-complete ∧-
semilattice, which has a top element, must be a complete lattice.

Proposition 3.6. Let g be a modal operator on X. Then

(1) (Fix(g); ∗, 0) is a BCK-algebra.

(2) If X is commutative (positive implicative, implicative), then so is Fix(g).

(3) If X is bounded with 1 as the greatest element, Fix(g) is bounded with g(1) as the greatest
element. In this case, if the arbitrary infimums exist, (Fix(g),≤) is a complete lattice.
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(4) If (X; ∗, 0, 1) is a bounded commutative BCK-algebra, (Fix(g); ∗, 0, g(1)) is also a bounded
commutative BCK-algebra and so is a lattice in which the meet operation is the same as in
X and the join operation is given by x ∨g y = Ng(Ngx ∧Ngy), where Ngx = g(1) ∗ x.

Proof. (1) Since g(0) = 0, so 0 ∈ Fix(g). Now, for x, y ∈ Fix(g), we have x ∗ y = g(x) ∗ g(y) ≤
g(x ∗ y) ≤ x ∗ y, whence g(x ∗ y) = x ∗ y. Hence, x ∗ y ∈ Fix(g). Thus, Fix(g) is closed with
respect to the operation ∗, proving that Fix(g) is a BCK-algebra.

(2) Assume that X is commutative and let x, y ∈ Fix(g). By Proposition 3.3(3) we get that
g(x ∧ y) = g(y ∗ (y ∗ x)) ≥ g(y) ∗ (y ∗ x) = y ∗ (y ∗ x) = x ∧ y. Combining (DM1), it follows that
g(x ∧ y) = x ∧ y, i.e., Fix(g) is closed with respect to the meet operation, and so is commutative.
The argument for the cases of positive implicativity and implicativity be obvious.

(3) Now, let X is bounded with 1 as the greatest element. First of all, we observe that
g(g(1)) = g(1), which shows that g(1) ∈ Fix(g). If x ∈ Fix(g), from x ≤ 1, it follows that
x = g(x) ≤ g(1), and so g(1) is the greatest element of Fix(g). This means that (Fix(g); ∗, 0, g(1))
is a bounded BCK-algebra.

Now, assume that the infimums exist. Then for {ai : i ∈ Λ} a family of elements of Fix(g), we
have g(ai) = ai, for all i ∈ Λ. Now, g(inf ai) ≤ inf ai ≤ ai, for all i ∈ Λ. If c ≤ ai with g(c) = c,
so c ≤ inf ai and hence c = g(c) ≤ g(inf ai); i.e., g(inf ai) = inf ai. Thus, Fix(g) is closed with
respect to the arbitrary infimums. Now, Fix(g) is a complete lattice.

(4) We recall that if X is a bounded commutative BCK-algebra, it is a lattice with respect to
the ordering ≤ in which the meet and the join operations are given by x ∧ y = y ∗ (y ∗ x) and
x ∨ y = N(Nx ∧Ny), where Nx = 1 ∗ x. We shall prove that Fix(g) is closed with respect to the
operations ∧, ∨g and Ng. By (3), Fix(g) is closed with respect to ∧. Moreover, by Proposition
3.3(3) we get g(Ngx) = g(g(1) ∗ x) = g(g(1)) ∗ g(x) = g(1) ∗ x = Ngx, for any x ∈ Fix(g).
Hence, for all x, y ∈ Fix(g), Ngx ∧ Ngy ∈ Fix(g) and so Ng(Ngx ∧ Ngy) ∈ Fix(g). Hence,
x ∨g y ∈ Fix(g). Now, we prove that x ∨g y = sup{x, y} in Fix(g). First of all, we observe that
for all x ∈ Fix(g), NgNgx = g(1) ∗ (g(1) ∗ x) = x ∗ (x ∗ g(1)) = x ∗ 0 = x. Now, if x, y ∈ Fix(g),
from Ngx ∧Ngy ≤ Ngx,Ngy, it follows that

x = NgNgx ≤ Ng(Ngx ∧Ngy) = x ∨g y.

Similarly, y ≤ x ∨g y, which shows that x ∨g y is an upper bound for {x, y}. If z ∈ Fix(g) is
such that x, y ≤ z, so Ngz = g(1) ∗ z ≤ g(1) ∗ x = Ngx and similarly, Ngz ≤ Ngy and hence
Ngz ≤ Ngx ∧Ngy. Now, x ∨g y = Ng(Ngx ∧Ngy) ≤ NgNgz = z, which shows that x ∨g y is the
supremum of {x, y} in Fix(g), completes the proof.

For a ∈ X, we say that a is idempotent if a ◦ a = a. In every BCK-algebra, the element 0 is
idempotent. Moreover, in a positive implicative BCK-algebra with condition (S), every element is
idempotent (Proposition 2.2(8)).

Example 3.7. Consider the BCK-algebra (X; ∗, 0), where X = {0, a, b, c, d}, and the operation ∗
is given in Table 2. It is seen that d ◦d = d, a ◦a = d, and b ◦ b does not exist. So, d is idempotent
and a is not idempotent.

Proposition 3.8. Assume that (X; ∗, 0) is a BCK-algebra with condition (S) and a ∈ X is
idempotent. Then, ([0, a], ◦, 0, a) is a bounded commutative ordered monoid. Also, if X is bounded
with 1 as the greatest element, then ([a, 1], ◦, a, 1) is a bounded commutative ordered semigroup.

Proof. If 0 ≤ x, y ≤ a, from Proposition 2.2(4) we get that 0 ≤ x ◦ y ≤ a ◦ a = a, showing that
[0, a] is closed with respect to the operation ◦. A similar proof holds for the last part.
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∗ 0 a b c d

0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 b
c c b a 0 b
d d a a a 0

Table 2: Cayley’s Table of ∗

By a modal operator on a (bounded) commutative ordered monoid (X;□, 0) we mean a unary
operation c on X satisfying (DM1)-(DM3).

Proposition 3.9. Assume that (X; ∗, 0) is an implicative BCK-algebra with condition (S) and
a ∈ X is idempotent. If g is a modal operator on X, then ga with ga(x) = g(x) ∧ a is a modal
operator on [0, a].

Proof. We first observe that [0, a] is a bounded commutative ordered monoid. Now, for x ∈ [0, a],
from ga(x) ≤ g(x) ≤ x and ga(ga(x)) = g(x) ∧ a ∧ a = ga(x) it follows (DM1) and (DM2). Now,
since any implicative BCK-algebra is positive implicative, by Propositions 2.2(9-c) and 3.5(2), we
get that

ga(x) ◦ ga(y) = (g(x) ∧ a) ◦ (g(y) ∧ a) = (g(x) ◦ g(y)) ∧ a ≤ g(x ◦ y) ∧ a = ga(x ◦ y),

proving (DM3).

The following example shows that the converse of Proposition 3.9 is not valid, in general.

Example 3.10. Consider the implicative BCK-algebra (X; ∗, 0), where X = {0, a, b, c, d} and the
operation ∗ is given in Table 3 (see [9, Page 274]). It is easy to verify that all elements are

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 b
c c b a 0 c
d d d d d 0

Table 3: Cayley’s Table of ∗

idempotent. Indeed, the Cayley’s Table of ◦ is given in Table 4. The interval [0, d] contains only
0 and d; i.e., [0, d] = {0, d}. Now, we define a mapping g : X −→ X by

g(0) = 0, g(a) = a, g(b) = c, g(c) = b, g(d) = d.

It is easily checked that gd is a modal operator on the interval [0, d], while g is not a modal operator
on X because g2(b) = g(c) = b ̸= g(b).

Lemma 3.11. If g1 and g2 are monotone mappings on X satisfying gi(x) ∗ gi(y) ≤ gi(x ∗ y), for
all x, y ∈ X and i = 1, 2, then g1g2 and g2g1, too.

Proof. Assume that x, y ∈ X. Then g1g2(x) ∗ g1g2(y) = g1(g2(x)) ∗ g1(g2(y)) ≤ g1(g2(x) ∗ g2(y)) ≤
g1(g2(x ∗ y)) = g1g2(x ∗ y). A similar proof holds for g2g1.
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◦ 0 a b c d

0 0 a b c d
a a a c c a
b b c b c d
c c c c c d
d d a d d d

Table 4: Cayley’s Table of ◦

Proposition 3.12. For modal operators g1 and g2, g1g2 is a modal operator if and only if g1g2 =
g2g1.

Proof. Since every modal operator on a BCK-algebra is a dual closure operator, so by the dual of
[11, Theorem 6], the properties (DM1) and (DM2) hold. We only need to investigate the correctness
of (DM3). Let x, y ∈ X. Then g1g2(x) ∗ g1g2(y) ≤ g1(g2(x) ∗ g2(y)) ≤ g1g2(x ∗ y), proving (DM3).
Hence, g1g2 is a modal operator on X.

Remark 3.13. Let DN (X) denote the set of all modal operators on X, and define the binary
relation ⪯ on DN (X) pointwise. We recall that when X is commutative, it is a lower-meet
semilattice with x∧y = y ∗ (y ∗x) (see [9, Theorem I.5.5]). In this case, if X is with condition (S),
then (DN (X),⪯) is a lower meet-semilattice. Moreover, from [9, Theorem I.7.17], we know that
any bounded implicative BCK-algebra is with condition (S) and x ◦ y is exactly the join operation,
with respect to the partial ordering ≤. Let us define (g1⊔g2)(x) = g1(x)◦g2(x), for modal operators
g1 and g2.

Proposition 3.14. Assume that X is a positive implicative BCK-algebra with condition (S). If
g1 and g2 are modal operators on X, then so is g1 ⊔ g2.

Proof. Assume that g1 and g2 are modal operators on X. For x ∈ X we have g1(x) ≤ x and
g2(x) ≤ x and so (g1 ⊔ g2)(x) = g1(x) ◦ g2(x) ≤ x ◦ x = x. For x, y ∈ X we have

g1 ⊔ g2(g1 ⊔ g2)(x) = (g1 ⊔ g2)(g1(x) ◦ g2(x)) = g1(g1(x) ◦ g2(x)) ◦ g2(g1(x) ◦ g2(x))
= g1g1(x) ◦ g1g2(x) ◦ g2g1(x) ◦ g2g2(x) by Proposition 3.5

= g1(x) ◦ g1g2(x) ◦ g2g1(x) ◦ g2(x)
= g1(x) ◦ g2(x) ◦ g1g2(x) ◦ g2g1(x) by Proposition 2.2(4)

≥ g1(x) ◦ g2(x) by Proposition 2.2(1)

= (g1 ⊔ g2)(x)

proving (DM2). Now, we get that

(g1 ⊔ g2)(x) ∗ (g1 ⊔ g2)(y)

= (g1(x) ◦ g2(x)) ∗ (g1(y) ◦ g2(y))
= (g1(x) ∗ (g1(y) ◦ g2(y))) ◦ (g2(x) ∗ (g1(y) ◦ g2(y))) by Proposition 2.2(8)

= ((g1(x) ∗ g1(y)) ∗ g2(y)) ◦ ((g2(x) ∗ g2(y)) ∗ g1(y)) by Proposition 2.2(5)

≤ (g1(x ∗ y) ∗ g2(y)) ◦ (g2(x ∗ y) ∗ g1(y)) by (DM3) and Proposition 2.1(1)

≤ g1(x ∗ y) ◦ g2(x ∗ y) by Proposition 2.1(5)

= g1 ⊔ g2(x ∗ y)

proving (DM3). Hence g1 ⊔ g2 is a modal operator on X.
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Considering Remark 3.13 and Proposition 3.14 we get that

Corollary 3.15. Let X be a BCK-algebra.

(1) If X is commutative with condition (S), then (DN (X),⪯) is a lower-meet semilattice.

(2) If X is a bounded implicative BCK-algebra, (DN (X),⪯) is a lattice.

Example 3.16. Consider the commutative BCK-algebra (X; ∗, 0), where X = {0, a, b, c} and sat-
isfy 0 ≤ a ≤ b ≤ c, and the operation ∗ is given in Table 5 (see [9, Page 244]). Routine calculations

∗ 0 a b c

0 0 0 0 0
a a 0 0 0
b b a 0 0
c c b a 0

Table 5: Cayley’s Table of ∗

show that X satisfies the condition (S); the Cayley’s Table of ◦ is given in Table 6. Now, we

◦ 0 a b c

0 0 a b c
a a b c c
b b c c c
c c c c c

Table 6: Cayley table of ◦

assume that g : X −→ X is a mapping. If g is a modal operator, we must have g(x) ≤ x, whence
the only possible choices are

g(0) = 0, g(a) ∈ {0, a}, g(b) ∈ {0, a, b}, g(c) ∈ {0, a, b, c}

i.e., 24 cases. Nine of them do not satisfy (DM2), which are as follows:

g(0) = g(a) = g(b) ∈ {0, b}, g(c) = a

g(0) = 0, g(a) = a, g(b) ∈ {0, a}, g(c) = b

g(0) = g(a) = 0, g(b) = a, g(c) ∈ {0, a, b, c}

So it remains 15 of them, which 10 of them don’t satisfy (DM3); some of them satisfy x ≤ y, and
g(y) ≥ g(x) and so g(y) ∗ g(x) ̸= 0 = g(x ∗ y). Finally, it remains five mappings satisfying all of
the conditions (DM1), (DM2), and (DM3). These are as follows:

g0(x) = 0, ∀x ∈ X

g1(0) = 0, g1(a) = g1(b) = g1(c) = a

g2(0) = 0, g2(a) = g2(b) = a, g2(c) = c

g3(0) = 0, g3(a) = a, g3(b) = g3(c) = b

g4(x) = x, ∀x ∈ X

The relation between gi’s is g0 ⪯ g1 ⪯ g2, g3 ⪯ g4, which shows that (DN ,⪯) is indeed a lattice.
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∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Table 7: Cayley’s Table of ∗

Example 3.17. Consider the bounded implicative BCK-algebra (X; ∗, 0), where X = {0, a, b, c}
and satisfy 0 ≤ a, b ≤ c, and the operation ∗ is given in Table 5 (see [9, Page 245]). Similar to
Example 3.16, we can calculate possible modal operators. Indeed, only two modal operators exist,
which are zero mapping and identity mapping.

In the sequel, we introduce two special modal operators on a BCK-algebra, which are essential
to characterize the lattice of modal operators.

For a ∈ X, we define the mapping ζa : X −→ X by ζa(x) = x∗a. We mention that a /∈ Fix(ζa),
for all a ∈ X \ {0}. The following proposition gives a characterization of ζa.

Proposition 3.18. Assume that X is a positive implicative BCK-algebra, and a ∈ X. Then ζa is
a modal operator on X and if X is with condition (S), then Fix(ζa) ⊆ {0} ∪ a↑ := {0} ∪ {x ∈ X :
a ≤ x}.

Proof. Let x ∈ X. We know that x ∗ a ≤ x and so ζa(x) ≤ x. Now, ζa(ζa(x)) = (x ∗ a) ∗ a =
(x∗a)∗(a∗a) = x∗a = ζa(x). Let x, y ∈ X. Then ζa(x)∗ζa(y) = (x∗a)∗(y∗a) = (x∗y)∗a = ζa(x∗y),
proving (DM3). For the last part, we observe that 0 ∗ a = 0, whence 0 ∈ Fix(ζa). Now, if
x ̸= 0 be such that x ∗ a = x, from Proposition 2.2(2), it follows that a ≤ x ◦ x = x. Hence,
Fix(ζa) ⊆ {0} ∪ a↑.

Corollary 3.19. If X is a positive implicative BCK-algebra with conditions (S), for any a ∈ X
and natural number n, the unary operation ζan(x) = x ∗ an := (· · · ((x ∗ a) ∗ a) ∗ · · · ) ∗ a is a modal
operator with Fix(ζan) ⊆ {0} ∪ a↑.

Example 3.20. Consider the BCK-algebra (X; ∗, 0), where X = {0, a, b, c, d} and satisfy 0 ≤ a ≤
b ≤ c, d, and the operation ∗ is given in Table 8 (see [9, Page 275]). X is not positive implicative
because (c ∗ b) ∗ (a ∗ b) = a ∗ 0 = a ̸= 0 = a ∗ b = (c ∗ a) ∗ b. Moreover, ζaζa(b) = ζa(b ∗ a) = ζa(a) =
a ∗ a = 0 ̸= a = ζa(b), whence ζa is not a modal operator on X. Hence, the condition ‘positive
implicative’ is necessary for Proposition 3.18.

∗ 0 a b c d

0 0 0 0 0 0
a a 0 0 0 0
b b a 0 0 0
c c a a 0 a
d d d d d 0

Table 8: Cayley’s Table of ∗

Example 3.21. Consider the positive implicative BCK-algebra (X; ∗, 0), where X = {0, a, b, c}
and satisfy 0 ≤ a ≤ b ≤ c, and the operation ∗ is given in Table 9 (see [9, Page 246]). It is routine
to verify that X satisfies the condition (S). Moreover, Fix(ζc) = {0} ≠ c↓. This shows that the
equality may not hold in Proposition 3.18.
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∗ 0 a b c

0 0 0 0 0
a a 0 0 0
b b b 0 0
c c c c 0

Table 9: Cayley’s Table of ∗

For a ∈ X, we define the mapping ϕa : X −→ X by ϕa(x) = a ∗ (a ∗ x).

Proposition 3.22. In any BCK-algebra X with condition (S), the mapping ϕa, for all a ∈ X, is
a modal operator on X with Fix(ϕa) ⊆ a↓. Moreover, if X is also implicative, then Fix(ϕa) = a↓.

Proof. From (BCK2), we know that a ∗ (a ∗x) ≤ x, for all x ∈ X, whence ϕa(x) ≤ x, for all x ∈ X.
Now, we shall prove that ϕa satisfies the conditions of Proposition 3.4. So, for x, y ∈ X, by (BCK1),
we have ϕa(x)∗ϕa(y) = (a∗ (a∗x))∗ (a∗ (a∗y)) ≤ (a∗y)∗ (a∗x) = (a∗ (a∗x))∗y = ϕa(x)∗y. On
the other hand, from ϕa(y) ≤ y and Proposition 2.1(1), it follows that ϕa(x) ∗ y ≤ ϕa(x) ∗ ϕa(y)
and hence ϕa(x) ∗ϕa(y) = ϕa(x) ∗ y. Now ϕa(x ◦ y) ≤ ϕa(x) ◦ϕa(y) if and only if a ∗ (a ∗ (x ◦ y)) ≤
(a ∗ (a ∗ x)) ◦ (a ∗ (a ∗ y)) and this equivalent to

(a ∗ (a ∗ (x ◦ y))) ∗ (a ∗ (a ∗ x)) ≤ a ∗ (a ∗ y). (1)

Now, by Propositions 2.1(4) and 2.2(5) we have (a ∗ (a ∗ (x ◦ y))) ∗ (a ∗ (a ∗ x)) = (a ∗ ((a ∗ x) ∗
y)) ∗ (a ∗ (a ∗ x)) ≤ (a ∗ x) ∗ ((a ∗ x) ∗ y) = (a ∗ x) ∗ ((a ∗ y) ∗ x) ≤ a ∗ (a ∗ y), proving (1). Therefore,
ϕa is a modal operator on X.

For the last part, we observe that if x ∈ Fix(ϕa), then a ∗ (a ∗ x) = x and so x ∗ a =
(a ∗ (a ∗ x)) ∗ a = (a ∗ a) ∗ (a ∗ x) = 0, whence x ≤ a. Now, assume that X is also implicative and
x ≤ a. Then x = x ∗ (a ∗ x) ≤ a ∗ (a ∗ x) ≤ x, whence ϕa(x) = x; i.e., x ∈ Fix(ϕa).

Example 3.23. Consider the BCK-algebra (X; ∗, 0), where X = {0, a, b, c, d} and satisfy 0 ≤ a ≤
b ≤ c, d, and the operation ∗ is given as in Table 10 (see [9, Page 274]). X is not implicative
because b ∗ (c ∗ b) = b ∗ a = a ̸= b. It is routine to verify that X satisfies the condition (S). Now,
Fix(ϕd) = {0, d} ≠ d↓ = X. Hence, the condition ‘implicative’ is necessary in Proposition 3.22.

∗ 0 a b c d

0 0 0 0 0 0
a a 0 0 0 0
b b a 0 0 0
c c a a 0 a
d d d d d 0

Table 10: Cayley’s Table of ∗

Proposition 3.24. In any BCK-algebra X with condition (S), for a ∈ X and g ∈ DN (X), ϕa ≤ g
if and only if a ∈ Fix(g).

Proof. Let g be a modal operator on X and a ∈ X. If ϕa ≤ g, we have a = ϕa(a) ≤ g(a) ≤ a,
which means that g(a) = a; i.e., a ∈ Fix(g). Conversely, if g(a) = a, from Proposition 3.5 we get
that ϕa(x) = a ∗ (a ∗ x) = g(a) ∗ (g(a) ∗ x) = g(a) ∗ (g(a) ∗ g(x)) = a ∗ (a ∗ g(x)) ≤ g(x). Hence,
ϕa ≤ g.
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The next corollary follows immediately from Corollary 3.15 and Proposition 3.24.

Corollary 3.25. If X is a commutative BCK-algebra with condition (S), (DN (X),⪯) is a lower-
semilattice with ϕ0 as the least element.

Example 3.26. Consider the BCK-algebra X with condition (S) given in Example 3.10. It is
easy to check that the mapping f : X −→ X with

f(0) = f(a) = 0, f(b) = f(c) = b, f(d) = d

is a modal operator on X, and a /∈ Fix(f). Also, we can see that ϕa ̸≤ f . On the other hand, the
mapping g : X −→ X with

g(0) = g(b) = g(d) = 0, g(a) = g(c) = a

is a modal operator on X with a ∈ Fix(g). Moreover, ϕa ≤ g.

4 Conclusions

In this paper, the notion of a modal operator on BCK-algebras with condition (S) was introduced
and several characterizations and properties were obtained. Also, in some classes of BCK-algebras,
such as commutative and positive implicative BCK-algebras, because of being well-behaviour. We
proved that modal operators on a commutative BCK-algebra with condition (S), under the point-
wise ordering, form a lower semilattice with the least element. Also, in a bounded implicative
BCK-algebra, modal operators form a lattice. Furthermore, it is proved that the image of any
modal operator on a commutative/positive implicative/implicative BCK-algebra is a subalgebra
of the background BCK-algebra. Significantly, the set of fixed elements of a modal operator on
a bounded commutative BCK-algebra forms a lattice. It was proved that using some particular
types of modal operators, such as ϕa(x) = a ∗ (a ∗ x), modal operators can be characterized. Par-
ticularly, that the mapping ϕ0 is the least element of the induced lattice by modal operators on a
BCK-algebra with condition (S).

There are still some open problems which will be helpful for future work.

1. What under conditions ϕa can be an upper bound for DN (X)?

2. What other types of modal operators can be defined on a BCK-algebra?

3. What are the relationships among these modal operators?

4. How can we model the logical aspects of modal operators on BCK-algebras using BCK-logic?
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