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Abstract

Let G be a group with identity e and R be a mul-
tiplicative hyperring. We introduce the concept of G-
graded multiplicative hyperring R and present some new
results and examples. This article aim is to introduce
and study graded prime and graded primary hyperideals
which are different generalizations of prime and primary
hyperideals. Several basic properties, examples and char-
acterizations of graded prime (graded primary) hyperide-
als of a graded multiplicative hyperring R are presented
such as investigating of this structure under homogeneous
components, graded hyperring homomorphisms, quotient
graded hyperrings and fundamental relations.
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1 Introduction

The first publications on algebraic hyperstructures, a natural suitable generalization of classical
algebraic structures, are first encountered in 1934. The hypergroup notion was introduced by a
French mathematician F. Marty [14], at the 8th Congress of Scandinavian Mathematicians. The
notion of hyperrings was introduced by M. Krasner in 1983, where the addition is a hyperoperation,
while the multiplication is an operation [11]. The notion of multiplicative hyperrings are an
important class of algebraic hyperstructures which generalize rings, initiated the study by Rota
in 1982, where the multiplication is a hyperoperation, while the addition is an operation [21].
Procesi and Rota introduced and studied in brief the prime hyperideals of multiplicative hyperrings
[17, 18, 19] and this idea is further generalized in a paper by Dasgupta [7]. R. Ameri et al. in [3]
described multiplicative hyperring of fractions and coprime hyperideals. Later on, many researches
have observed that generalizations of prime hyperideals in multiplicative hyperrings [23, 25]. The
principal notions of algebraic hyperstructure theory can be found in [5, 6, 8, 22]. Furthermore,
the study of graded rings arises naturally out of the study of affine schemes and allows them
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to formalize and unify arguments by induction [24]. In recent years, rings with a group-graded
structure have become increasingly important and consequently, the graded analogues of different
concepts are widely studied (see [1, 2, 9, 10, 13, 15, 16, 20]). In this article, we define the notions
of G-graded multiplicative hyperrings and graded hyperideals. In the third section, we introduce
and study graded prime hyperideals of a graded multiplicative hyperring (R,+, ◦). For example,
we prove that every graded maximal hyperideal of a commutative graded multiplicative hyperring
with an i-set, is a graded prime hyperideal. Also, we discuss that if R is a graded multiplicative
hyperring and P is a proper graded hyperideal of R. Then P is graded prime if and only if P/γ∗

is a graded prime ideal of R/γ∗. In the last section, we define the notion of graded radical of
a graded hyperideal of a graded multiplicative hyperring R and introduce the concept of graded
primary hyperideals of R. We give some results and basic properties of them.

2 Preliminaries

First of all let us remember of basic definitions and terms of hypertheory.

Definition 2.1. [21] Let R be a nonempty set and P ∗(R) = {H | ∅ ̸= H ⊆ R}. Let ◦ : R × R →
P ∗(R) be a hyperoperation. A triple (R,+, ◦) is called a multiplicative hyperring, if

(i) (R,+) is an abelian group;

(ii) (R, ◦) is a semihypergroup;

(iii) For all x, y, z ∈ R, we have x ◦ (y + z) ⊆ x ◦ y + x ◦ z and (y + z) ◦ x ⊆ y ◦ x+ z ◦ x;

(iv) For all x, y ∈ R, we have x ◦ (−y) = (−x) ◦ y = −(x ◦ y).

If in (iii) we have equalities instead of inclusions, then we say that the multiplicative hyperring is
strongly distributive.

Let A,B be two subsets of R and x ∈ R, then A ◦B =
∪

a∈A,b∈B
a ◦ b and A ◦ x = A ◦ {x}.

Moreover, A multiplicative hyperring (R,+, ◦) is called commutative if for any x, y ∈ R we
have x ◦ y = y ◦ x.

Example 2.2. [17] Let (R,+, ◦) be a ring and I be an ideal of R. We define the following
hyperoperation on R: For all x, y ∈ R, x ◦ y = x · y + I. Then (R,+, ◦) is a multiplicative
hyperring.

Definition 2.3. [17] (a) Let (R,+, ◦) be a multiplicative hyperring and S be a nonempty subset
of R. Then S is said to be a subhyperring of R if (S,+, ◦) is itself a multiplicative hyperring.

(b) We say that S is a hyperideal of (R,+, ◦) if S − S ⊆ S and for all x ∈ S, r ∈ R;
x ◦ r ∪ r ◦ x ⊆ S.

Definition 2.4. [7] Let (R,+, ◦) be a multiplicative hyperring and Al (respectively Ar) = {a1, a2, . . . , an}
be a A nonempty finite subset of R. We say that Al (respectively Ar) is a left (respectively right)
identity set (or i-set, in short) of R if

(a) ai ̸= 0 for at least one i = 1, 2, . . . , n,

(b) for any r ∈ R, r ∈
∑n

i=1 ri ◦ a (respectively r ∈
∑n

i=1 a ◦ ri).
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A nonempty finite subset A of a multiplicative hyperring R is called an i-set of R, if it is both a
left i-set and a right i-set of R.

Definition 2.5. [8] (a) A proper hyperideal M of a multiplicative hyperring R is maximal in R,
if for any hyperideal I of R, M ⊂ I ⊆ R, then I = R.

(b) Let P be a proper hyperideal of R. We say that P is a prime hyperideal of R, if for all
x, y ∈ R, x ◦ y ⊆ P , then x ∈ P or y ∈ P .

(c) A proper hyperideal Q of a multiplicative hyperring R is said to be a primary hyperideal of
R, if for any a, b ∈ R, a ◦ b ⊆ Q, then a ∈ Q or bn ⊆ Q for some n ∈ N.

Definition 2.6. [8] A homomorphism (good homomorphism) between two multiplicative hyperrings
(R,+, ◦) and (T,+, ◦) is a map φ : R → T such that for all x, y of R, we have

(a) φ(x+ y) = φ(x) + φ(y),

(b) φ(x ◦ y) ⊆ φ(x) ◦ φ(y)(φ(x ◦ y) = φ(x) ◦ φ(y), respectively).

Throughout this article, R is a commutative graded multiplicative hyperring.

3 Graded prime hyperideals

Definition 3.1. Let G be a group with identity e and T be a multiplicative hyperring. Then T is
called a G-graded if T =

⊕
g∈G

Tg with TgTh ⊆ Tgh for all g, h ∈ G, where Tg is an additive subgroup

of T for all g ∈ G, such that TgTh =
∪
{xg ◦ yh : xg ∈ Tg, yh ∈ Th}. An element of T is called

homogeneous if it belongs to
∪
g∈G

Tg and this set of homogeneous elements is denoted by h(T ). The

elements of Tg are called homogeneous of degree g. If x ∈ T , then there exist unique elements
xg ∈ h(T ) such that x =

∑
g∈G

xg.

In fact, every multiplicative hyperring is trivially a G-graded by letting Te = T and Tg = 0 for
all g ̸= e.

Lemma 3.2. If T = g ∈ G
⊕

Tg is a graded multiplicative hyperring, then Te is a subhyperring of
T where e is the identity element of group G.

Proof. As TeTe ⊆ Te, so for any ae, be ∈ Te we have ae ◦ be ⊆ TeTe ⊆ Te. Therefore, Te is closed
under multiplicative and so it is a subhyperring of T .

Example 3.3. Suppose that G = (Z2,+) is the integers modulo 2 and T = {0, 1, 2, 3}. Consider
the multiplicative hyperring (T,+, ◦), where operation + and hyperoperation ◦ defined on T as
follow:

+ 0 1 2 3

0 0 1 2 3
1 1 2 1 0
2 2 3 0 1
3 3 0 3 2

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {0, 3} {0, 2} {0, 1}
2 {0} {0, 2} {0} {0, 2}
3 {0} {0, 1} {0, 2} {0, 3}

It is easy to verify that T0 = {0, 1} and T1 = {0, 3} are subgroups of (T,+). We have 0 = 0+0,
3 = 0 + 3, 2 = 1 + 3 and 1 = 1 + 0 and these forms are unique. Hence, T = T0

⊕
T1. We obtain

that T0T0 ⊆ T0, T0T1 ⊆ T1, T1T0 ⊆ T1 and T1T1 ⊆ T0. Thus T is a G-graded hyperring and
h(T ) = {0, 1, 3}.
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Example 3.4. Suppose that G = (Z3,+) is the integers modulo 3 and S = {0, 1, 2, 3}. Consider
the multiplicative hyperring (S,+, ◦), where operation + and hyperoperation ◦ defined on R as
follow:

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {1, 3} {2} {1, 3}
2 {0} {2} {0} {2}
3 {0} {1, 3} {2} {2}

We know that S0 = {0, 3}, S1 = {0, 1} and S2 = {0, 2} are all non trivial subgroups of (S,+).
We obtain that S is not a G-graded hyperring.

Example 3.5. Let T = (Z[i],+, ·) where Z[i] = {x+ iy | x, y ∈ Z}. Suppose that B ∈ P ∗(T ) such
that |B| ≥ 2. Then there exists a multiplicative hyperring with absorbing zero (TB,+, ◦) and

x ◦ y = {x · b · y : ∀x, y ∈ T, b ∈ B}.

(a) Let B = {3, 4} and G = Z2. Then TB = T0
⊕

T1 is a G- graded multiplicative hyperring with
T0 = Z and T1 = iZ.
(b) Let B = {2, i} and G = Z2. Then T0 = Z and T1 = iZ are the only subgroups of (TB,+). It is
clear that (TB,+, ◦) is not a G-graded multiplicative hyperring because T1T1 * T0.

Definition 3.6. A subhyperring S of R is called a graded subhyperring of R =
⊕
g∈G

Rg, if S =⊕
g∈G

(S ∩Rg). Equivalently, S is graded if for every element x ∈ S, all the homogeneous components

of x (as an element of R) are in S.

Definition 3.7. Let I be a hyperideal of R. Then I is a graded hyperideal, if I =
⊕
g∈G

(I ∩Rg).

For any a ∈ I and for some rg ∈ h(R) that a =
∑
g∈G

rg, then rg ∈ I ∩Rg for all g ∈ G.

Lemma 3.8. Let J1 and J2 be graded hyperideals of R. Then

(i) J1 ∩ J2 is a graded hyperideal of R.

(ii) J1J2 =
∪
{
∑n

i=1 xi ◦ yi : xi ∈ J1, yi ∈ J2and n ∈ N} is a graded hyperideal of R.

(iii) J1 ∪ J2 is a graded hyperideal of R if and only if J1 ⊆ J2 or J2 ⊆ J1.

(iv) J1 + J2 is a graded hyperideal of R.

Proof. (i) We know that J1∩J2 is a hyperideal of R. Now, we show that it is a graded hyperideal.
Let x ∈ J1 ∩ J2. So, x =

∑
g∈G

xg where xg ∈ h(R). It is enough to show that xg ∈ J1 ∩ J2 for any

g ∈ G. We have x ∈ J1 and x ∈ J2, and so for any g ∈ G, xg ∈ J1 and xg ∈ J2 because J1, J2 are
graded hyperideals. Hence xg ∈ J1 ∩ J2 for any g ∈ G.

(ii) By [7, Lemma 2.11], J1J2 is a hyperrideal of R. Now, we show that grading. Suppose
that a =

∑
g∈G ag ∈ J1J2, so

∑
g∈G

ag ∈
∑n

i=1 xi ◦ yi where xi ∈ J1 and yi ∈ J2. Therefore, for

any i = 1, 2, . . . , n; xi =
∑
g∈G

xig and yi =
∑
g∈G

yig where xig ∈ J1 ∩ Rg and yig ∈ J2 ∩ Rg. Hence,

ag∑ ∈
∑n

i=1 xi ◦ yi =
∑n

i=1(
∑
g∈G

xig ◦ yig), and so
∑
g∈G

ag =
∑
g∈G

tg for tg ∈
∑n

i=1 xi ◦ yi ⊆ J1J2, by
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comparing degrees, we have for any g ∈ G, ag = tg ∈ J1J2, therefore J1J2 is a graded hyperideal
of R.

(iii) and (iv) are straightforward.

Definition 3.9. Let C be the class of all finite products of homogeneous elements of R i.e.,

C = {c1 ◦ c2 ◦ · · · ◦ ct : ci ∈ h(R), t ∈ N} ⊆ P ∗(h(R)).

A graded hyperideal J of R is called a Cgr-ideal of R if for any B ∈ C, B ∩ J ̸= ∅, then B ⊆ J .

Definition 3.10. Let P be a proper graded hyperideal of R. We say that P is graded prime, if
ag ◦ bh ⊆ I for some ag, bh ∈ h(R), then ag ∈ I or bh ∈ I.

Example 3.11. Let T = (Z[i],+, ·) and G = (Z2,+) be the integers modulo 2. Consider the
multiplicative hyperring (TB,+, ◦) = (Z[i],+, ◦) = {x + yi | x, y ∈ Z} with B = {1, 3}. Then,
(TB,+, ◦) is a G-graded multiplicative hyperring with T0 = Z and T1 = iZ and TB = T0

⊕
T1. We

set J ′ = 2T = {2x+2yi, 6x+6yi : x, y ∈ Z}. Then J ′ becomes a graded hyperideal. One can easily
show that J ′ is a graded prime hyperideal of T .

Definition 3.12. Let (R,+, ◦) be a graded multiplicative hyperring and S be a nonempty subset
of h(R). Then S is said to be multiplicative close subset, briefly, m.c.s of R, if sg, th ∈ S, then
(sg ◦ th) ∩ S ̸= ∅.

Proposition 3.13. Let P be a proper graded hyperideal of R. Then P is graded prime if and only
if h(R)− P is a m.c.s of R.

Proof. Let P be a graded hyperideal such that h(R)−P be a m.c.s of R. Assume that xg ◦yh ⊆ P
for xg, yh ∈ h(R). Therefore, (xg ◦ yh) ∩ (h(R)− P ) = ∅. Hence, xg ̸∈ h(R)− P or yh ̸∈ h(R)− P
since h(R)− P is a m.c.s of R. Hence, xg ∈ P or yh ∈ P . Then P is a graded prime hyperideal of
R. Conversely, let P be a graded prime hyperideal and xg, yh ∈ h(R)− P . Thus, xg ◦ yh * P and
(xg ◦ yh) ∩ (h(R)− P ) ̸= ∅, i.e., h(R)− P is a m.c.s of R.

Proposition 3.14. Let P be a graded prime hyperideal of R. Then if IJ ⊆ P for some graded
hyperideals I, J of R, then I ⊆ P or J ⊆ P .

Proof. Suppose that IJ ⊆ P and I * P . Let y ∈ J and so y =
∑
g′∈G

yg′ where yg′ ∈ J ∩h(R). Since

I * P , there exists x ∈ I such that x ̸∈ P . Hence we have x =
∑
g′∈G

xg′ where xg′ ∈ I ∩ h(R), so

xh′ ∈ I − P for some h′ ∈ G. We have for any g′ ∈ G, xh′ ◦ yg′ ⊆ IJ ⊆ P , then yg′ ∈ P for any
g′ ∈ G since P is a graded prime hyperideal of R. Clearly we have y =

∑
g′∈G

yg′ ∈ I.

Proposition 3.15. Let R be a commutative graded multiplicative hyperring. Then ⟨αg⟩ ◦ ⟨βh⟩ ⊆
⟨αg ◦ βh⟩ for each αg, βh ∈ h(R).

Proof. Let t ∈ ⟨αg⟩ and s ∈ ⟨βh⟩. Thus t =
∑ni

i=1 xi + n′
tαg for some n′

t ∈ Z and xi ∈ ri ◦ αg and
also s =

∑st
i=1 yi + s′tβh for some s′t ∈ Z and yi ∈ r′i ◦ βh. This implies that

t ◦ s = (

ni∑
i=1

xi + n′
tαg) ◦ (

st∑
i=1

yi + s′tβh)

⊆
ni∑
i=1

st∑
i=1

xi ◦ yi + n′
t

st∑
i=1

αg ◦ yi + s′t

ni∑
i=1

xi ◦ βh + n′
ts

′
t(αg ◦ βh)

⊆ ⟨αg ◦ βh⟩ ,
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which completes the proof of the proposition.

Proposition 3.16. Let P be a proper graded hyperideal of R such that for each graded hyperideals
I, J of R, IJ ⊆ P , we conclude I ⊆ P or J ⊆ P . Then P is a graded prime hyperideal of R.

Proof. Let xg′ ◦yh′ ⊆ P where xg′ , yh′ ∈ h(R).
⟨
xg′ ◦ yh′

⟩
⊆ P . Then by Proposition 3.15, we have⟨

xg′
⟩
◦ ⟨yh′⟩ ⊆ P . Thus

⟨
xg′

⟩
⊆ P or ⟨yh′⟩ ⊆ P , so xg′ ∈ P or yh′ ∈ P . Hence P is a graded prime

hyperideal of R.

Proposition 3.17. Let S ⊆ h(R) be a m.c.s of R and I be a graded hyperideal of R with I∩S = ∅.
Then there exists a graded hyperideal M which is maximal in the set of all graded hyperideals of
R disjoint from S, containing I. In particular, M is a graded prime hyperideal of R.

Proof. Let Ω be the set of all graded hyperideals of R disjoint from S, containing I. Then Ω ̸= ∅
because I ∈ Ω. Consider (Ω,⊆). By Zorn,s Lemma, there is a graded hyperideal M which is
maximal in Ω. Let IJ ⊆ M for graded hyperideals I, J of R. If I * M and J * M , then
I ⊂ M + I and J ⊂ M + J . Thus by maximality of M in Ω, we have (M + I) ∩ S ̸= ∅ and
(M + J) ∩ S ̸= ∅. Then there exist mg,m

′
h ∈ M ∩ h(R), ag ∈ I ∩ h(R) and bh ∈ J ∩ h(R) such

that mg + ag ∈ S and m′
h + bh ∈ S. Hence,

(mg + ag) ◦ (m′
h + bh) ⊆ mg ◦m′

h + ag ◦m′
h +mg ◦ bh + ag ◦ bh ⊆ M + IJ ⊆ M (IJ ⊆ M).

Therefore, M ∩ S ̸= ∅ which is a contradiction with M ∈ Ω. The second part follows from
Proposition 3.16.

Proposition 3.18. If M is a graded maximal hyperideal of R with an i-set A = {a1, a2, . . . , an},
then M is a graded prime hyperideal.

Proof. Assume that M is a graded maximal hyperideal of R. Let I and J be graded hyperideals
of R such that IJ ⊆ M , but I * M . Then M ⊂ M + I and so by maximality of M , M + I = R.
Hence A ⊆ M + I. Thus for each ai ∈ A, there exist mi ∈ M and xi ∈ I such that ai = mi + xi.
Then for each i = 1, 2, . . . , n, and for any y ∈ J ,

ai ◦ y ⊆ (mi + xi) ◦ y ⊆ mi ◦ y + xi ◦ y ⊆ M.

Then y ∈
∑n

i=1 ai ◦ y ⊆ M , so J ⊆ M . Therefore by Proposition 3.16, M is a graded prime
hyperideal of R.

Let S =
⊕
g∈G

Sg and T =
⊕
g∈G

Tg be graded multiplicative hyperrings. The map φ : S → T is a

graded homomorphism, if

(i) for every x, y ∈ S, φ(x+ y) = φ(x) + φ(y),

(ii) for every x, y ∈ S, φ(x ◦ y) ⊆ φ(x) ◦ φ(y),

(iii) for every g′ ∈ G, φ(Sg′) ⊆ Tg′ .

In particular, φ is called a graded good homomorphism in case φ(x ◦ y) = φ(x) ◦φ(y). The kernel
of a graded homomorphism is defined as ker(φ) = φ−1(⟨0⟩) = {r ∈ R : φ(r) ∈ ⟨0⟩}.

Proposition 3.19. Let S and T be graded multiplicative hyperrings and φ : S → T be a graded
good homomorphism. Suppose that I, J are graded hyperideals of S and T , respectively. Then the
following statements hold:
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(i) If I is a graded prime hyperideal containing ker(φ) and φ is onto, then φ(I) is a graded
prime hyperideal of T .

(ii) If J is a graded prime hyperideal of T , then φ−1(J) is a graded prime hyperideal of S.

Proof. (i) Let I =
⊕
g∈G

(I ∩ Sg). It is clear that φ(I) =
⊕
g∈G

(φ(I) ∩ Tg) and since φ is onto, so

φ(I) is a graded hyperideal of T . Let φ(ag) ◦ φ(bh) ⊆ φ(I) where ag, bh ∈ h(S). Since φ is
a graded homomorphism, φ(ag ◦ bh) ⊆ φ(ag) ◦ φ(bh) ⊆ φ(I). Assume that p ∈ ag ◦ bh. Then
φ(p) ∈ φ(ag ◦ bh) ⊆ φ(I) and so φ(p) = φ(q) for some q ∈ I. Thus φ(p − q) = 0 ∈ ⟨0⟩, that is,
p− q ∈ ker(φ) ⊆ I and so p ∈ I. Hence ag ◦ bh ⊆ I. Since I is a graded prime hyperideal of R, we
obtain ag ∈ I or bh ∈ I and so φ(ag) ∈ φ(I) or φ(bh) ∈ φ(I). Therefore, φ(I) is a graded prime
hyperideal of T .

(ii) Let J =
⊕
g∈G

(J ∩ Tg) be a graded hyperideal of T . Then it is easy to see that φ−1(J) =⊕
g∈G

(φ−1(J) ∩ Sg) is a graded hyperideal of S. Let ag ◦ bh ⊆ φ−1(J) for some ag, bh ∈ h(S). Then

φ(ag ◦ bh) = φ(ag) ◦ φ(bh) ⊆ J . Since J is a graded prime hyperideal of T , then φ(ag) ∈ J or
φ(bh) ∈ J and so ag ∈ φ−1(J) or bh ∈ φ−1(J). Therefore, φ−1(J) is a graded prime hyperideal of
S.

Proposition 3.20. Let R and T be graded multiplicative hyperrings and φ : R → T be a graded
good homomorphism. Suppose that I, J are graded hyperideals of R and T , respectively. Then the
following assertions hold:

(i) If I is a Cgr-graded hyperideal containing ker(φ) and φ is onto, then φ(I) is a Cgr-graded
hyperideal of T .

(ii) If J is a Cgr-graded hyperideal of T , then φ−1(J) is a Cgr-graded hyperideal of R.

Proof. (i) Let c1 ◦ c2 ◦ · · · ◦ cn ∩ φ(I) ̸= ∅ for some c1, c2, . . . , cn ∈ h(T ). Since φ is onto, we have
φ(ai) = ci for some ai ∈ h(R), 1 ≤ i ≤ n. Then (φ(a1) ◦ φ(a2) ◦ · · · ◦ φ(an)) ∩ φ(I) = φ(a1 ◦ a2 ◦
· · · ◦ an)∩ I ̸= ∅ because φ is a graded good homomorphism. Thus there exists t ∈ a1 ◦ a2 ◦ · · · ◦ an
such that φ(t) ∈ φ(I). Since ker(φ) ⊆ I, we have t ∈ I, so a1 ◦ a2 ◦ · · · ◦ an ∩ I ̸= ∅. As I is a
Cgr-ideal of R, a1 ◦ a2 ◦ · · · ◦ an ⊆ I, hence φ(a1) ◦φ(a2) ◦ · · · ◦φ(an) = φ(a1 ◦ a2 ◦ · · · ◦ an) ⊆ φ(I).
Therefore c1 ◦ c2 ◦ · · · ◦ cn ⊆ φ(I), so φ(I) is a Cgr-ideal of R.

(ii) Let a1 ◦ a2 ◦ · · · ◦ an ∩ φ−1(I) ̸= ∅ for some a1, a2, . . . , an ∈ h(R). This implies that
p ∈ φ−1(J) for some p ∈ a1 ◦ a2 ◦ · · · ◦ an, hence φ(t) ∈ J ∩ φ(a1 ◦ a2 ◦ · · · ◦ an). Then we have
J ∩ φ(a1) ◦ φ(a2) ◦ · · · ◦ φ(an) ̸= ∅. Since J is a Cgr-ideal of T ,

φ(a1) ◦ φ(a2) ◦ · · · ◦ φ(an) = φ(a1 ◦ a2 ◦ · · · ◦ an) ⊆ J.

Thus a1 ◦ a2 ◦ · · · ◦ an ⊆ φ−1(J).

Assume that J is a graded hyperideal of R =
⊕
g∈G

Rg. Then quotient group R/J = {a+ J : a ∈

R} becomes a multiplicative hyperring with the multiplication (a+J)◦ (b+J) = {r+J : r ∈ a◦b}
([7]). It is easy to see that R/J is a graded hyperring with R/J =

⊕
g∈G

(R/J)g where for all g ∈ G,

(R/J)g = (Rg + J)/J . Moreover, all graded hyperideals of R/J is of the form I/J , where I is a
graded hyperideal of R containing J since the natural graded homomorphism φ : R → R/J is a
graded good epimorphism.
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Theorem 3.21. Let J ⊆ P be graded hyperideals of R. Then the following assertions hold:

(i) P is a graded prime hyperideal of R if and only if P/J is a graded prime hyperideal of R/J .
In particular, all graded prime hyperideals of R/J is of the form P/J where P is a graded
prime hyperideal of R containing J .

(ii) P is a Cgr-graded hyperideal of R if and only if P/J is a Cgr-graded hyperideal of R/J . In
particular, all Cgr-graded hyperideals of R/J is of the form P/J where P is a Cgr-graded
hyperideal of R containing J .

Proof. (i) Consider the natural graded homomorphism φ : R → R/J defined by φ(r) = r + J .
Since φ is a graded good homomorphism, the proof holds by Proposition 3.19.

(ii) Apply Proposition 3.20.

Consider the fundamental relation γ∗ defined in [8]. In the following theorem, we show that if
R is a graded multiplicative hyperring, then R/γ∗ is a graded ring.

Theorem 3.22. Let γ∗(0) be a graded hyperideal of R. Then R/γ∗ is a G-graded ring such that
(R/γ∗)h′ = {γ∗(zh′) | zh′ ∈ Rh′}.

Proof. Let R =
⊕
h′∈G

Rh′ be a G-graded multiplicative hyperring. Assume that z ∈ R/γ∗, so there

exists r ∈ R where z = γ∗(r′). Thus r′ =
∑

h′∈G
r′h′ for some rh′ ∈ Rg and hence z = γ∗(r′) =

γ∗(
∑

h′∈G
r′h′) =

∑
h′∈G

γ∗(r′h′). Therefore R/γ∗ =
∑

h′∈G
(R/γ∗)h′ . Assume that

∑
g∈G

γ∗(r′h′) = γ∗(0)

where r′h′ ∈ Rg. Then γ∗(
∑

h′∈G
r′h′) = γ∗(0) and so

∑
h′∈G

r′h′) ∈ γ∗(0). Since γ∗(0) is a graded

hyperideal of R, then for any h′ ∈ G, r′h′ ∈ γ∗(0). Hence for all h′ ∈ G, γ∗(r′h′) = γ∗(0). We have
R/γ∗ =

∑
h′∈G

(R/γ∗)h′ is an internal direct sum. Consequently, (R/γ∗)h′(R/γ∗)g′ ⊆ (R/γ∗)h′g′ for

any g′, h′ ∈ G and so R/γ∗ is a graded ring.

Theorem 3.23. Let R be with identity 1 and P be a proper graded hyperideal of R. Then P is
graded prime if and only if P/γ∗ is a graded prime ideal of R/γ∗.

Proof. (⇒) Let cg ◦ dh ∈ P/γ∗ where cg, dh ∈ h(R/γ∗). Then there exist ag, bh ∈ h(R) such that
cg = γ∗(ag) and dh = γ∗(bh). Thus cg ⊙ dh = γ∗(ag) ⊙ γ∗(bh) = γ∗(ag ◦ bh). Hence ag ◦ bh ⊆ P ,
so ag ∈ P or bh ∈ P since P is a graded prime hyperideal of R. Hence cg = γ∗(ag) ∈ P/γ∗ or
dh = γ∗(bh) ∈ P/γ∗. Therefore P/γ∗ is a graded prime ideal of R/γ∗.

(⇐) Let ag◦bh ⊆ P for ag, bh ∈ h(R). Then we have γ∗(ag), γ
∗(bh) ∈ R/γ∗ and γ∗(ag)⊙γ∗(bh) =

γ∗(ag ◦ bh) ∈ P/γ∗. Thus γ∗(ag) ∈ P/γ∗ or γ∗(bh) ∈ P/γ∗ since P/γ∗ is a graded prime ideal of
R/γ∗. Hence ag ∈ I or bh ∈ P . Therefore P is a graded prime hyperideal of R.

Let R be a multiplicative hyperring. Then Mn(R) denotes the set of all hypermatixes of R.
Also, for all A = (Aij)nn, B = (Bij)nn ∈ P ∗(Mn(R)), A ⊆ B if and only if Aij ⊆ Bij .

If R =
⊕
g∈G

Rg be a graded multiplicative hyperring, then Mn(R) is a graded hypermatixes of

R with g-component (Mn(R))g = Mn(Rg).

Theorem 3.24. Let R be with identity 1 and I be a graded hyperideal of R. If Mn(I) is a graded
prime hyperideal of Mn(R), then I is a graded prime hyperideal of R.
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Proof. Let xg′ ◦ yh′ ⊆ I where xg′ , yh′ ∈ h(R). Then

A =


xg′ ◦ yh′ 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆ Mn(I).

We have 
xg′ ◦ yh′ 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 =


xg′ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



yh′ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

Since Mn(I) is a graded prime hyperideal of Mn(R) then
xg′ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ∈ Mn(I) or


yh′ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ∈ Mn(I).

Therefore, xg′ ∈ I or yg′ ∈ I. Hence I is a graded prime hyperideal of R.

4 Graded primary hyperideals

In this section, we define and study graded primary hyperideals of a graded multiplicative hyperring
(R,+, ◦).

For any element z ∈ R, we mean zk = z ◦ z ◦ · · · ◦ z (k times) for any positive integer k > 1
and z1 = {z}.

We begin this section by the following definition.

Definition 4.1. (a) Let I be a graded hyperideal of (R,+, ◦). The intersection of all graded prime
hyperideals of R containing I is called the graded radical of I, denoted by Grad(I).

(b) Let J be a graded hyperideal of R. We define

D(J) = {r ∈ R : for any g′ ∈ G, r
ng′

g′ ⊆ J for some ng′ ∈ N}.

Clearly, D(J) is a graded hyperideal of R.

Theorem 4.2. Let I be a graded hyperideal of R. Then D(I) ⊆ Grad(I). The equality holds when
I is a Cgr-ideal of R.

Proof. If Grad(I) = R, then D(I) ⊆ Grad(I). Assume that Grad(I) ̸= R. Let x ∈ D(I). Then
for any g ∈ G, x

ng
g ⊆ I for some ng ∈ N. Thus for any graded prime hyperideal P of R, containing

I, x
ng
g ⊆ P . Hence for any g ∈ G, xg ∈ P because P is a graded prime hyperideal of R, and so

x =
∑
g∈G

xg ∈ P , so x ∈ Grad(I). Therefore D(I) ⊆ Grad(I).

Assume that I is a Cgr-ideal. Let t ̸∈ D(I). Then there exists g ∈ G, tng * I for any n ∈ N. Hence
tng

∩
I = ∅ for all n ∈ N. Let S =

∪
{tng + Ign : n ∈ N}. It is clear that S ⊆ h(R). Let x, y ∈ S,

then x ∈ tng + Ign and y ∈ tmg + Igm for some n,m ∈ N, and so x = cgn + agn and y = dgm + bgm

for some cgn ∈ tng , dgm ∈ tmg , agn ∈ Ign and bgm ∈ Igm . Thus

x ◦ y = (cgn +agn) ◦ (dgm + bgm) ⊆ cgn ◦dgm + cgn ◦ bgm +agn ◦dgm +agn ◦ bgm ⊆ tn+m
g + Ign+m ⊆ S.
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It concludes that S is a multiplicative close subset. We have S ∩ I = ∅, because if z ∈ S ∩ I,
then there exist x ∈ Ign ⊆ I and y ∈ tng for some n ∈ N, such that z = x + y, so y ∈ I which is
contradictory to the fact that tng

∩
I = ∅ for all n ∈ N. Thus tg ̸∈ P and t ̸∈ P because P is a

graded hyperideal. Therefore t ̸∈ Grad(I), and so Grad(I) ⊆ D(I).

Proposition 4.3. Let J and J1, J2, . . . , Jn be graded Cgr-hyperideals of R. The following state-
ments hold:

(i) Grad(Grad(J)) = Grad(J).

(ii) Grad(J1J2 . . . Jn) = Grad(
∩n

i=1 Ji) =
∩n

i=1Grad(Ji).

Proof. (i) Let x ∈ Grad(Grad(J)). Then for any g ∈ G, there exists ng ∈ N such that x
ng
g ⊆

Grad(J). Hence for any t ∈ xn
g

g , there exists m ∈ N such that tm ⊆ J . Since t ∈ xng , then
tm ⊆ (xng )

m = xnmg . Hence xnmg
∩

J ̸= ∅. Thus xnmg ⊆ J for any g ∈ G (since J is a Cgr-ideal).
Therefore, Grad(Grad(J)) ⊆ Grad(J). Clearly, Grad(J) ⊆ Grad(Grad(J)), so Grad(Grad(J)) =
Grad(J).

(ii) We have J1J2 . . . Jn ⊆
∩n

i=1 Ji. So Grad(J1J2 . . . Jn) ⊆ Grad(
∩n

i=1 Ji). It is clear that,
if Ji is a Cgr-ideal, then

∩n
i=1 Ji is also a Cgr-ideal. Thus for any x ∈ Grad(

∩n
i=1 Ji), we have

for any g ∈ G, xmg ⊆
∩n

i=1 Ji. So xmg ⊆ Ji for all i = 1, 2, . . . , n, then x ∈ Grad(Ji), and so
x ∈

∩n
i=1Grad(Ji). Therefore, Grad(

∩n
i=1 Ji) ⊆

∩n
i=1Grad(Ji). Finally, let x ∈

∩n
i=1Grad(Ji).

Hence for each i = 1, 2, . . . , n, there exists mi ∈ N such that xmi
g ⊆ Ji for all g ∈ G. Thus

x
∑n

i=1(mi)
g ⊆ J1J2 . . . Jn.

Thus x ∈ Grad(J1 . . . Jn). Consequently,
∩n

i=1Grad(Ji) ⊆ Grad(J1J2 . . . Jn).

Definition 4.4. A proper graded hyperideal Q of (R,+, ◦) is said to be graded primary, if for any
ag, bh ∈ h(R) such that ag ◦ bh ⊆ Q, then ag ∈ Q or bnh ⊆ Q for some n ∈ N.

Proposition 4.5. If Q is graded primary Cgr-ideal of R, then Grad(Q) is a graded prime Cgr-ideal
of R.

Proof. First, we show that Grad(Q) is a Cgr-ideal of R. Let a1 ◦ a2 ◦ · · · ◦ an
∩

Grad(Q) ̸= ∅ for
some a1, a2, . . . , an ∈ h(R). Then we have x ∈ a1◦a2◦· · ·◦an such that x ∈ Grad(Q). This implies
that for any g ∈ G, xtg ⊆ (a1 ◦a2 ◦ · · · ◦an)t and xtg ⊆ Q for some t ∈ N. Since Q is a Cgr-ideal and
(a1◦a2◦· · ·◦an)t

∩
Q ̸= ∅, we get (a1◦a2◦· · ·◦an)t ⊆ Q and so (a1◦a2◦· · ·◦an) ⊆ Grad(Q). Therefore

Grad(Q) is a Cgr-ideal of R. Let ag ◦ bh ⊆ Grad(Q) and ag ̸∈ Grad(Q) where ag, bh ∈ h(R). Then
for any xgh ∈ ag ◦ bh, there exists n ∈ N such that xngh ⊆ Q. We have xngh ⊆ (ag ◦ bh)n = ang ◦ bnh
(since R is commutative). So (ang ◦ bnh) ∩Q ̸= ∅ and thus ang ◦ bnh ⊆ Q (since Q is Cgr-ideal). Now
ag ̸∈ Grad(Q), then ang * Q, and so ang ∩Q = ∅. Thus for any p ∈ ang and q ∈ bnh we have p ̸∈ Q
and p◦ q ⊆ ang ◦ bnh ⊆ Q. Therefore qm ⊆ Q for some m ∈ N since Q is a graded primary hyperideal
of R. Again, q ∈ bnh, then qm ⊆ (bnh)

m = bnmh . Hence bnmh ∩ Q ̸= ∅ and so bnmh ⊆ Q, whence
bh ∈ Grad(Q). Therefore Grad(Q) is a graded prime hyperideal.

Proposition 4.6. Let Q be a Cgr-ideal and P be a graded hyperideal of R. Then Q is a P -graded
primary Cgr-ideal of R if and only if

(i) Q ⊆ P ⊆ Grad(Q).

(ii) For any ag, bh ∈ h(R); ag ◦ bh ⊆ Q and ag ̸∈ Q, then bh ∈ P .
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Proof. Suppose that (i) and (ii) hold. Let ag ◦ bh ⊆ Q and ag ̸∈ Q where ag, bh ∈ h(R). Thus
by (ii), bh ∈ P and by (i), bh ∈ P ⊆ Grad(Q). Therefore, bnh ⊆ Q for some n ∈ N, and so Q is
a graded primary hyperideal of R. Now, we show that P = Grad(Q). Let c =

∑
g∈G

cg ∈ Grad(Q).

Suppose g ∈ G and let n be the least positive integer such that cng ⊆ Q. If n = 1, then cg ∈ {cg} =
c1g ⊆ Q ⊆ P and so cg ∈ P . If n > 1, cn−1

g * Q by the minimality of n and thus cng ∩Q = ∅ since
Q is a Cgr-ideal. Then for any xgn−1 ∈ cn−1

g ; xgn−1 ◦ cg ⊆ cn−1
g ◦ cg = cng ⊆ Q. Hence by (ii),

cg ∈ P since xgn−1 ̸∈ Q. Thus Grad(Q) ⊆ P , whence P = Grad(Q) by (i). Hence Q is a P -graded
primary Cgr-ideal of R. The converse part is immediate.

Proposition 4.7. Let Q be a graded hyperideal of R. Then Q is a graded primary hyperideal of
R if and only if I ◦J ⊆ Q implies that I ⊆ Q or J ⊆ D(Q) where I, J are graded hyperideals of R.

Proof. Let Q be a graded primary hyperideal of R such that I ◦ J ⊆ Q and I * Q. Then there
exists a ∈ I such that a ̸∈ Q. Hence, a =

∑
g
ag where ag ∈ I ∩Rg, and so ah ̸∈ Q for some h ∈ G.

Let b =
∑
g∈G

bg ∈ J . Then for any g ∈ G, bg ∈ J since J is graded, thus ah ◦ bg ⊆ I ◦ J ⊆ Q.

Since Q is a graded primary hyperideal, we have bng ⊆ Q for some n ∈ N, and so b ∈ D(Q).
This implies that J ⊆ D(Q). Conversely, let ag ◦ bh ⊆ Q for some ag, bh ∈ h(R). Then, we have
⟨ag ◦ bh⟩ ⊆ Q. Hence, by Proposition 3.15, ⟨ag⟩◦⟨bh⟩ ⊆ ⟨ag ◦ bh⟩, so ⟨ag⟩◦⟨bh⟩ ⊆ Q. Thus ⟨ag⟩ ⊆ Q
or ⟨bh⟩ ⊆ D(Q), and so ag ∈ Q or bnh ⊆ Q for some n ∈ N.

By induction hypothesis one can easily obtain following result:

Corollary 4.8. If Q is a graded primary hyperideal of R such that J1 ◦ J2 ◦ · · · ◦ Jn ⊆ Q, then
either J1 ⊆ Q or Ji ⊆ D(Q) for some 2 ≤ j ≤ n.

It is clear that every graded prime hyperideal of R is a graded primary hyperideal of R, but
the converse is not true in general. Consider the following example:

Example 4.9. Suppose that RB = (Z[i],+, ◦) where RB = Z
⊕

iZ and B = {2, 3} ∈ P ∗(R). Take
Q = ⟨2⟩. Then Q is a graded primary hyperideal of RB, but Q is not a graded prime hyperideal of
RB. Because, 2 ◦ 2i = {2 · 2 · 2i, 2 · 3 · 2i} ⊆ Q, but 2 ̸∈ Q and 2i ̸∈ Q.

Let I ⊆ Q1 ∪ Q2 ∪ · · · ∪ Qn be a covering of graded hyperideals of R. Then this covering is
called efficient if none of the Qis are superfluous. Note that a covering by two graded hyperideals
can not be efficient.

Proposition 4.10. Suppose that I ⊆ Q1∪Q2∪· · ·∪Qn is an efficient covering of graded hyperideals
of R where I is a graded hyperideal of R. If Grad(Qi) * Grad(Qj) for each i ̸= j, then any of
Qis are not graded primary hyperideals of R.

Proof. First we show that Grad(J) = Grad(D(J)) for any graded hyperideal J of R. Since
J ⊆ D(J), then we have Grad(J) ⊆ Grad(D(J)). Let P be a graded prime hyperideal of R
containing J . Then it is sufficient to show that P contains D(J). Let x ∈ D(J). Then for any
g ∈ G, xng = xg ◦ · · · ◦ xg ⊆ J ⊆ P for some n ∈ N. Thus xg ∈ P for any g ∈ G (P is a graded
prime hyperideal), then x ∈ P . Hence Grad(D(J)) ⊆ Grad(J). Since covering is efficient, we have
n > 2. Assume that Q1 is a graded primary hyperideal of R. Since the covering is efficient, we have
I ∩Q2 ∩Q3 ∩ · · · ∩Qn ⊆ I ∩Q1 ⊆ Q1 (see [12]). As I * Q1 and I ◦Q2 ◦ · · ·Qn ⊆ Q1, by Corollary
4.8, there exists 2 ≤ j ≤ n such that Qj ⊆ D(Q1) and so Grad(Qj) ⊆ Grad(D(Q1)) = Grad(Q1)
which is a contradiction.
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Theorem 4.11. Suppose that I ⊆ Q1∪Q2∪ · · · ∪Qn is a covering and at most two of Qis are not
graded primary hyperideals of R. If Grad(Qi) * Grad(Qj) for each i ̸= j, then I ⊆ Qi for some
1 ≤ i ≤ n.

Proof. If n = 2, then the result is valid. Also, we may assume that the covering is efficient so
n ̸= 2. Assume that n > 2. But in this case, there exists a graded primary hyperideal Qj of
covering and this contradicts by Proposition 4.10. Thus, we have n = 1 and this completes the
proof.

Corollary 4.12. Suppose that I ⊆ P1 ∪ P2 ∪ · · · ∪ Pn is an efficient covering and at most two of
Pis are not graded prime hyperideals of R, then I ⊆ Pi for some 1 ≤ i ≤ n.

Proof. It follows from Theorem 4.11.

The proof of the following theorem is straightforward and it is left to the reader.

Theorem 4.13. If Q1, Q2, . . . , Qn are graded primary Cgr-ideal of R, all of which are P -graded
primary for a graded prime hyperideal P , then

∩n
i=1Qi is also a P -graded primary Cgr-ideal of R.

Proposition 4.14. Let P ⊆ Q are graded hyperideals of R. Then the following are satisfied:

(i) Grad(Q/P ) = Grad(Q)/P .

(ii) D(Q/P ) = D(Q)/P .

(iii) If Q is a Cgr-graded hyperideal of R, then D(Q/P ) = Grad(Q/P ).

Proof. (i) If follows from Proposition 3.21.
(ii) Let x+P ∈ D(Q/P ) for some x ∈ R. Hence we have for all g′ ∈ G, (xg′ +P )mg′ ⊆ Q/P for

some mg′ ∈ N. Let t ∈ x
mg′

g′ . Since t+ P ∈ (xg′ + P )mg′ , thus t+ P ∈ Q/P and t ∈ Q. Therefore

for any g′ ∈ G, x
mg′

g′ ⊆ Q, then x ∈ D(Q), and hence x+ P ∈ D(Q)/P . Conversely, assume that

x+ P ∈ D(Q)/P for x ∈ R. Then x ∈ D(Q) and so for any g′ ∈ G, x
mg′

g′ ⊆ Q for some mg′ ∈ N.
Take any t+ P ∈ (xg′ + P )mg′ , then we have t+ P = s+ P for some s ∈ x

mg′

g′ , which means that

t − s ∈ P ⊆ Q. Thus t = (t − s) + s ∈ P + x
mg′

g′ ⊆ Q and we obtain t + P ∈ Q/P . Hence we
conclude that for any g′ ∈ G, (xg′ + P )mg′ ⊆ (Q/P ) that is x+ P ∈ D(Q/P ).

(iii) It follows from Proposition 4.3 and Proposition 3.21.

Proposition 4.15. Let φ : R → T be a graded good homomorphism of graded multiplicative
hyperrings. Suppose that P,Q are graded hyperideals of R and T , respectively. Then the followings
hold:

(i) If P is a graded primary hyperideal containing ker(φ) and φ is onto, then φ(P ) is a graded
primary hyperideal of T .

(ii) If Q is a graded primary hyperideal of T , then φ−1(Q) is a graded primary hyperideal of R.

Proof. The proofs are similar to the proof of Proposition 3.19.

Corollary 4.16. Let J ⊆ Q be graded hyperideals of R. Then

(i) Q is a graded primary hyperideal of R if and only if Q/J is a graded primary hyperideal of
R/J .
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(ii) Let Q be a graded primary Cgr-hyperideal of R. Then Grad(Q/J) is a graded primary
hyperideal of R/J .

Proof. (i) The proof follows easily from Proposition 4.15.
(ii) This follows from (i), Propositions 4.5, 3.21 and 4.14.

Theorem 4.17. Let R be a graded multiplicative hyperring with identity 1 and I be a graded
hyperideal of R.

(i) I is a graded primary if and only if I/γ∗ is a graded primary ideal of R/γ∗.

(ii) If Mn(I) is a graded primary hyperideal of Mn(R), then I is a graded primary hyperideal of
R.

Proof. (i) It follows from Theorem 3.23.
(ii) It is similar to Theorem 3.24.
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