Volume 4, Number 1, (2023), pp. 107-120

Some results on graded prime and primary hyperideals

P. Ghiasvand ${ }^{1}$
${ }^{1}$ Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran
p_ghiasvand@pnu.ac.ir

Abstract

Let G be a group with identity e and R be a multiplicative hyperring. We introduce the concept of G graded multiplicative hyperring R and present some new results and examples. This article aim is to introduce and study graded prime and graded primary hyperideals which are different generalizations of prime and primary hyperideals. Several basic properties, examples and characterizations of graded prime (graded primary) hyperideals of a graded multiplicative hyperring R are presented such as investigating of this structure under homogeneous components, graded hyperring homomorphisms, quotient graded hyperrings and fundamental relations.

Article Information
 Corresponding Author:
 P. Ghiasvand;
 Received: July 2023;
 Accepted: August 2023;
 Paper type: Original.
 Keywords:
 Fundamental relation, graded multiplicative hyperring, graded prime hyperideal, graded primary hyperideal.

1 Introduction

The first publications on algebraic hyperstructures, a natural suitable generalization of classical algebraic structures, are first encountered in 1934. The hypergroup notion was introduced by a French mathematician F. Marty [14], at the 8th Congress of Scandinavian Mathematicians. The notion of hyperrings was introduced by M. Krasner in 1983, where the addition is a hyperoperation, while the multiplication is an operation [IT]. The notion of multiplicative hyperrings are an important class of algebraic hyperstructures which generalize rings, initiated the study by Rota in 1982, where the multiplication is a hyperoperation, while the addition is an operation [2T]. Procesi and Rota introduced and studied in brief the prime hyperideals of multiplicative hyperrings [I7, $18, \ldots, 19]$ and this idea is further generalized in a paper by Dasgupta [7]. R. Ameri et al. in [3] described multiplicative hyperring of fractions and coprime hyperideals. Later on, many researches have observed that generalizations of prime hyperideals in multiplicative hyperrings [[23, [25]. The principal notions of algebraic hyperstructure theory can be found in [5], [6, 区, [22]. Furthermore, the study of graded rings arises naturally out of the study of affine schemes and allows them
to formalize and unify arguments by induction [24]. In recent years, rings with a group-graded structure have become increasingly important and consequently, the graded analogues of different
 of G-graded multiplicative hyperrings and graded hyperideals. In the third section, we introduce and study graded prime hyperideals of a graded multiplicative hyperring $(R,+, \circ)$. For example, we prove that every graded maximal hyperideal of a commutative graded multiplicative hyperring with an i-set, is a graded prime hyperideal. Also, we discuss that if R is a graded multiplicative hyperring and P is a proper graded hyperideal of R. Then P is graded prime if and only if P / γ^{*} is a graded prime ideal of R / γ^{*}. In the last section, we define the notion of graded radical of a graded hyperideal of a graded multiplicative hyperring R and introduce the concept of graded primary hyperideals of R. We give some results and basic properties of them.

2 Preliminaries

First of all let us remember of basic definitions and terms of hypertheory.
Definition 2.1. [《T] Let R be a nonempty set and $P^{*}(R)=\{H \mid \emptyset \neq H \subseteq R\}$. Let $\circ: R \times R \rightarrow$ $P^{*}(R)$ be a hyperoperation. A triple $(R,+, \circ)$ is called a multiplicative hyperring, if
(i) $(R,+)$ is an abelian group;
(ii) (R, \circ) is a semihypergroup;
(iii) For all $x, y, z \in R$, we have $x \circ(y+z) \subseteq x \circ y+x \circ z$ and $(y+z) \circ x \subseteq y \circ x+z \circ x$;
(iv) For all $x, y \in R$, we have $x \circ(-y)=(-x) \circ y=-(x \circ y)$.

If in (iii) we have equalities instead of inclusions, then we say that the multiplicative hyperring is strongly distributive.

Let A, B be two subsets of R and $x \in R$, then $A \circ B=\bigcup_{a \in A, b \in B} a \circ b$ and $A \circ x=A \circ\{x\}$.
Moreover, A multiplicative hyperring $(R,+, \circ)$ is called commutative if for any $x, y \in R$ we have $x \circ y=y \circ x$.

Example 2.2. []7] Let $(R,+, \circ)$ be a ring and I be an ideal of R. We define the following hyperoperation on R : For all $x, y \in R, x \circ y=x \cdot y+I$. Then $(R,+, \circ)$ is a multiplicative hyperring.

Definition 2.3. [[7] (a) Let $(R,+, \circ$) be a multiplicative hyperring and S be a nonempty subset of R. Then S is said to be a subhyperring of R if $(S,+, \circ)$ is itself a multiplicative hyperring.
(b) We say that S is a hyperideal of $(R,+, \circ$) if $S-S \subseteq S$ and for all $x \in S, r \in R$; $x \circ r \cup r \circ x \subseteq S$.

Definition 2.4. [7] Let $(R,+, \circ)$ be a multiplicative hyperring and A_{l} (respectively $\left.A_{r}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a A nonempty finite subset of R. We say that A_{l} (respectively A_{r}) is a left (respectively right) identity set (or i-set, in short) of R if
(a) $a_{i} \neq 0$ for at least one $i=1,2, \ldots, n$,
(b) for any $r \in R, r \in \sum_{i=1}^{n} r_{i} \circ a$ (respectively $\left.r \in \sum_{i=1}^{n} a \circ r_{i}\right)$.

A nonempty finite subset A of a multiplicative hyperring R is called an i-set of R, if it is both a left i-set and a right i-set of R.
Definition 2.5. [$[8]$ (a) A proper hyperideal M of a multiplicative hyperring R is maximal in R, if for any hyperideal I of $R, M \subset I \subseteq R$, then $I=R$.
(b) Let P be a proper hyperideal of R. We say that P is a prime hyperideal of R, if for all $x, y \in R, x \circ y \subseteq P$, then $x \in P$ or $y \in P$.
(c) A proper hyperideal Q of a multiplicative hyperring R is said to be a primary hyperideal of R, if for any $a, b \in R, a \circ b \subseteq Q$, then $a \in Q$ or $b^{n} \subseteq Q$ for some $n \in \mathbb{N}$.
Definition 2.6. [8] A homomorphism (good homomorphism) between two multiplicative hyperrings $(R,+, \circ)$ and $(T,+, \circ)$ is a map $\varphi: R \rightarrow T$ such that for all x, y of R, we have
(a) $\varphi(x+y)=\varphi(x)+\varphi(y)$,
(b) $\varphi(x \circ y) \subseteq \varphi(x) \circ \varphi(y)(\varphi(x \circ y)=\varphi(x) \circ \varphi(y)$, respectively $)$.

Throughout this article, R is a commutative graded multiplicative hyperring.

3 Graded prime hyperideals

Definition 3.1. Let G be a group with identity e and T be a multiplicative hyperring. Then T is called a G-graded if $T=\underset{g \in G}{\bigoplus} T_{g}$ with $T_{g} T_{h} \subseteq T_{g h}$ for all $g, h \in G$, where T_{g} is an additive subgroup of T for all $g \in G$, such that $T_{g} T_{h}=\bigcup\left\{x_{g} \circ y_{h}: x_{g} \in T_{g}, y_{h} \in T_{h}\right\}$. An element of T is called homogeneous if it belongs to $\bigcup_{g \in G} T_{g}$ and this set of homogeneous elements is denoted by $h(T)$. The elements of T_{g} are called homogeneous of degree g. If $x \in T$, then there exist unique elements $x_{g} \in h(T)$ such that $x=\sum_{g \in G} x_{g}$.

In fact, every multiplicative hyperring is trivially a G-graded by letting $T_{e}=T$ and $T_{g}=0$ for all $g \neq e$.
Lemma 3.2. If $T=g \in G \bigoplus T_{g}$ is a graded multiplicative hyperring, then T_{e} is a subhyperring of T where e is the identity element of group G.

Proof. As $T_{e} T_{e} \subseteq T_{e}$, so for any $a_{e}, b_{e} \in T_{e}$ we have $a_{e} \circ b_{e} \subseteq T_{e} T_{e} \subseteq T_{e}$. Therefore, T_{e} is closed under multiplicative and so it is a subhyperring of T.

Example 3.3. Suppose that $G=\left(\mathbb{Z}_{2},+\right)$ is the integers modulo 2 and $T=\{0,1,2,3\}$. Consider the multiplicative hyperring $(T,+, \circ)$, where operation + and hyperoperation \circ defined on T as follow:

+	0	1	2	3
0	0	1	2	3
1	1	2	1	0
2	2	3	0	1
3	3	0	3	2

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{0\}$	$\{0,3\}$	$\{0,2\}$	$\{0,1\}$
2	$\{0\}$	$\{0,2\}$	$\{0\}$	$\{0,2\}$
3	$\{0\}$	$\{0,1\}$	$\{0,2\}$	$\{0,3\}$

It is easy to verify that $T_{0}=\{0,1\}$ and $T_{1}=\{0,3\}$ are subgroups of $(T,+)$. We have $0=0+0$, $3=0+3,2=1+3$ and $1=1+0$ and these forms are unique. Hence, $T=T_{0} \oplus T_{1}$. We obtain that $T_{0} T_{0} \subseteq T_{0}, T_{0} T_{1} \subseteq T_{1}, T_{1} T_{0} \subseteq T_{1}$ and $T_{1} T_{1} \subseteq T_{0}$. Thus T is a G-graded hyperring and $h(T)=\{0,1,3\}$.

Example 3.4. Suppose that $G=\left(\mathbb{Z}_{3},+\right)$ is the integers modulo 3 and $S=\{0,1,2,3\}$. Consider the multiplicative hyperring $(S,+, \circ)$, where operation + and hyperoperation \circ defined on R as follow:

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{0\}$	$\{1,3\}$	$\{2\}$	$\{1,3\}$
2	$\{0\}$	$\{2\}$	$\{0\}$	$\{2\}$
3	$\{0\}$	$\{1,3\}$	$\{2\}$	$\{2\}$

We know that $S_{0}=\{0,3\}, S_{1}=\{0,1\}$ and $S_{2}=\{0,2\}$ are all non trivial subgroups of $(S,+)$. We obtain that S is not a G-graded hyperring.

Example 3.5. Let $T=(\mathbb{Z}[i],+, \cdot)$ where $\mathbb{Z}[i]=\{x+i y \mid x, y \in \mathbb{Z}\}$. Suppose that $B \in P^{*}(T)$ such that $|B| \geq 2$. Then there exists a multiplicative hyperring with absorbing zero $\left(T_{B},+, \circ\right)$ and

$$
x \circ y=\{x \cdot b \cdot y: \forall x, y \in T, b \in B\} .
$$

(a) Let $B=\{3,4\}$ and $G=\mathbb{Z}_{2}$. Then $T_{B}=T_{0} \bigoplus T_{1}$ is a G - graded multiplicative hyperring with $T_{0}=\mathbb{Z}$ and $T_{1}=i \mathbb{Z}$.
(b) Let $B=\{2, i\}$ and $G=\mathbb{Z}_{2}$. Then $T_{0}=\mathbb{Z}$ and $T_{1}=i \mathbb{Z}$ are the only subgroups of $\left(T_{B},+\right)$. It is clear that $\left(T_{B},+, \circ\right)$ is not a G-graded multiplicative hyperring because $T_{1} T_{1} \nsubseteq T_{0}$.

Definition 3.6. A subhyperring S of R is called a graded subhyperring of $R=\underset{g \in G}{\bigoplus} R_{g}$, if $S=$ $\underset{g \in G}{\bigoplus}\left(S \cap R_{g}\right)$. Equivalently, S is graded if for every element $x \in S$, all the homogeneous components of x (as an element of R) are in S.

Definition 3.7. Let I be a hyperideal of R. Then I is a graded hyperideal, if $I=\underset{g \in G}{\bigoplus}\left(I \cap R_{g}\right)$. For any $a \in I$ and for some $r_{g} \in h(R)$ that $a=\sum_{g \in G} r_{g}$, then $r_{g} \in I \cap R_{g}$ for all $g \in G$.

Lemma 3.8. Let J_{1} and J_{2} be graded hyperideals of R. Then
(i) $J_{1} \cap J_{2}$ is a graded hyperideal of R.
(ii) $J_{1} J_{2}=\bigcup\left\{\sum_{i=1}^{n} x_{i} \circ y_{i}: x_{i} \in J_{1}, y_{i} \in J_{2}\right.$ and $\left.n \in \mathbb{N}\right\}$ is a graded hyperideal of R.
(iii) $J_{1} \cup J_{2}$ is a graded hyperideal of R if and only if $J_{1} \subseteq J_{2}$ or $J_{2} \subseteq J_{1}$.
(iv) $J_{1}+J_{2}$ is a graded hyperideal of R.

Proof. (i) We know that $J_{1} \cap J_{2}$ is a hyperideal of R. Now, we show that it is a graded hyperideal. Let $x \in J_{1} \cap J_{2}$. So, $x=\sum_{g \in G} x_{g}$ where $x_{g} \in h(R)$. It is enough to show that $x_{g} \in J_{1} \cap J_{2}$ for any $g \in G$. We have $x \in J_{1}$ and $x \in J_{2}$, and so for any $g \in G, x_{g} \in J_{1}$ and $x_{g} \in J_{2}$ because J_{1}, J_{2} are graded hyperideals. Hence $x_{g} \in J_{1} \cap J_{2}$ for any $g \in G$.
(ii) By [\mathbb{l}, Lemma 2.11], $J_{1} J_{2}$ is a hyperrideal of R. Now, we show that grading. Suppose that $a=\sum_{g \in G} a_{g} \in J_{1} J_{2}$, so $\sum_{g \in G} a_{g} \in \sum_{i=1}^{n} x_{i} \circ y_{i}$ where $x_{i} \in J_{1}$ and $y_{i} \in J_{2}$. Therefore, for any $i=1,2, \ldots, n ; x_{i}=\sum_{g \in G} x_{i g}$ and $y_{i}=\sum_{g \in G} y_{i g}$ where $x_{i g} \in J_{1} \cap R_{g}$ and $y_{i g} \in J_{2} \cap R_{g}$. Hence,

comparing degrees, we have for any $g \in G, a_{g}=t_{g} \in J_{1} J_{2}$, therefore $J_{1} J_{2}$ is a graded hyperideal of R.
(iii) and (iv) are straightforward.

Definition 3.9. Let C be the class of all finite products of homogeneous elements of R i.e.,

$$
C=\left\{c_{1} \circ c_{2} \circ \cdots \circ c_{t}: c_{i} \in h(R), t \in \mathbb{N}\right\} \subseteq P^{*}(h(R)) .
$$

A graded hyperideal J of R is called a $C^{g r}$-ideal of R if for any $B \in C, B \cap J \neq \emptyset$, then $B \subseteq J$.
Definition 3.10. Let P be a proper graded hyperideal of R. We say that P is graded prime, if $a_{g} \circ b_{h} \subseteq I$ for some $a_{g}, b_{h} \in h(R)$, then $a_{g} \in I$ or $b_{h} \in I$.
Example 3.11. Let $T=(\mathbb{Z}[i],+, \cdot)$ and $G=\left(\mathbb{Z}_{2},+\right)$ be the integers modulo 2. Consider the multiplicative hyperring $\left(T_{B},+, \circ\right)=(\mathbb{Z}[i],+, \circ)=\{x+y i \mid x, y \in \mathbb{Z}\}$ with $B=\{1,3\}$. Then, $\left(T_{B},+, \circ\right)$ is a G-graded multiplicative hyperring with $T_{0}=\mathbb{Z}$ and $T_{1}=i \mathbb{Z}$ and $T_{B}=T_{0} \oplus T_{1}$. We set $J^{\prime}=2 T=\{2 x+2 y i, 6 x+6 y i: x, y \in \mathbb{Z}\}$. Then J^{\prime} becomes a graded hyperideal. One can easily show that J^{\prime} is a graded prime hyperideal of T.
Definition 3.12. Let $(R,+, \circ)$ be a graded multiplicative hyperring and S be a nonempty subset of $h(R)$. Then S is said to be multiplicative close subset, briefly, m.c.s of R, if $s_{g}, t_{h} \in S$, then $\left(s_{g} \circ t_{h}\right) \cap S \neq \emptyset$.
Proposition 3.13. Let P be a proper graded hyperideal of R. Then P is graded prime if and only if $h(R)-P$ is a m.c.s of R.
Proof. Let P be a graded hyperideal such that $h(R)-P$ be a m.c.s of R. Assume that $x_{g} \circ y_{h} \subseteq P$ for $x_{g}, y_{h} \in h(R)$. Therefore, $\left(x_{g} \circ y_{h}\right) \cap(h(R)-P)=\emptyset$. Hence, $x_{g} \notin h(R)-P$ or $y_{h} \notin h(R)-P$ since $h(R)-P$ is a m.c.s of R. Hence, $x_{g} \in P$ or $y_{h} \in P$. Then P is a graded prime hyperideal of R. Conversely, let P be a graded prime hyperideal and $x_{g}, y_{h} \in h(R)-P$. Thus, $x_{g} \circ y_{h} \nsubseteq P$ and $\left(x_{g} \circ y_{h}\right) \cap(h(R)-P) \neq \emptyset$, i.e., $h(R)-P$ is a m.c.s of R.
Proposition 3.14. Let P be a graded prime hyperideal of R. Then if $I J \subseteq P$ for some graded hyperideals I, J of R, then $I \subseteq P$ or $J \subseteq P$.
Proof. Suppose that $I J \subseteq P$ and $I \nsubseteq P$. Let $y \in J$ and so $y=\sum_{g^{\prime} \in G} y_{g^{\prime}}$ where $y_{g^{\prime}} \in J \cap h(R)$. Since $I \nsubseteq P$, there exists $x \in I$ such that $x \notin P$. Hence we have $x=\sum_{g^{\prime} \in G} x_{g^{\prime}}$ where $x_{g^{\prime}} \in I \cap h(R)$, so $x_{h^{\prime}} \in I-P$ for some $h^{\prime} \in G$. We have for any $g^{\prime} \in G, x_{h^{\prime}} \circ y_{g^{\prime}} \subseteq I J \subseteq P$, then $y_{g^{\prime}} \in P$ for any $g^{\prime} \in G$ since P is a graded prime hyperideal of R. Clearly we have $y=\sum_{g^{\prime} \in G} y_{g^{\prime}} \in I$.

Proposition 3.15. Let R be a commutative graded multiplicative hyperring. Then $\left\langle\alpha_{g}\right\rangle \circ\left\langle\beta_{h}\right\rangle \subseteq$ $\left\langle\alpha_{g} \circ \beta_{h}\right\rangle$ for each $\alpha_{g}, \beta_{h} \in h(R)$.
Proof. Let $t \in\left\langle\alpha_{g}\right\rangle$ and $s \in\left\langle\beta_{h}\right\rangle$. Thus $t=\sum_{i=1}^{n_{i}} x_{i}+n_{t}^{\prime} \alpha_{g}$ for some $n_{t}^{\prime} \in \mathbb{Z}$ and $x_{i} \in r_{i} \circ \alpha_{g}$ and also $s=\sum_{i=1}^{s_{t}} y_{i}+s_{t}^{\prime} \beta_{h}$ for some $s_{t}^{\prime} \in \mathbb{Z}$ and $y_{i} \in r_{i}^{\prime} \circ \beta_{h}$. This implies that

$$
\begin{aligned}
t \circ s & =\left(\sum_{i=1}^{n_{i}} x_{i}+n_{t}^{\prime} \alpha_{g}\right) \circ\left(\sum_{i=1}^{s_{t}} y_{i}+s_{t}^{\prime} \beta_{h}\right) \\
& \subseteq \sum_{i=1}^{n_{i}} \sum_{i=1}^{s_{t}} x_{i} \circ y_{i}+n_{t}^{\prime} \sum_{i=1}^{s_{t}} \alpha_{g} \circ y_{i}+s_{t}^{\prime} \sum_{i=1}^{n_{i}} x_{i} \circ \beta_{h}+n_{t}^{\prime} s_{t}^{\prime}\left(\alpha_{g} \circ \beta_{h}\right) \\
& \subseteq\left\langle\alpha_{g} \circ \beta_{h}\right\rangle,
\end{aligned}
$$

which completes the proof of the proposition.
Proposition 3.16. Let P be a proper graded hyperideal of R such that for each graded hyperideals I, J of $R, I J \subseteq P$, we conclude $I \subseteq P$ or $J \subseteq P$. Then P is a graded prime hyperideal of R.

Proof. Let $x_{g^{\prime}} \circ y_{h^{\prime}} \subseteq P$ where $x_{g^{\prime}}, y_{h^{\prime}} \in h(R) .\left\langle x_{g^{\prime}} \circ y_{h^{\prime}}\right\rangle \subseteq P$. Then by Proposition [3.15, we have $\left\langle x_{g^{\prime}}\right\rangle \circ\left\langle y_{h^{\prime}}\right\rangle \subseteq P$. Thus $\left\langle x_{g^{\prime}}\right\rangle \subseteq P$ or $\left\langle y_{h^{\prime}}\right\rangle \subseteq P$, so $x_{g^{\prime}} \in P$ or $y_{h^{\prime}} \in P$. Hence P is a graded prime hyperideal of R.

Proposition 3.17. Let $S \subseteq h(R)$ be a m.c.s of R and I be a graded hyperideal of R with $I \cap S=\emptyset$. Then there exists a graded hyperideal M which is maximal in the set of all graded hyperideals of R disjoint from S, containing I. In particular, M is a graded prime hyperideal of R.

Proof. Let Ω be the set of all graded hyperideals of R disjoint from S, containing I. Then $\Omega \neq \emptyset$ because $I \in \Omega$. Consider (Ω, \subseteq). By Zorn's Lemma, there is a graded hyperideal M which is maximal in Ω. Let $I J \subseteq M$ for graded hyperideals I, J of R. If $I \nsubseteq M$ and $J \nsubseteq M$, then $I \subset M+I$ and $J \subset M+J$. Thus by maximality of M in Ω, we have $(M+I) \cap S \neq \emptyset$ and $(M+J) \cap S \neq \emptyset$. Then there exist $m_{g}, m_{h}^{\prime} \in M \cap h(R), a_{g} \in I \cap h(R)$ and $b_{h} \in J \cap h(R)$ such that $m_{g}+a_{g} \in S$ and $m_{h}^{\prime}+b_{h} \in S$. Hence,

$$
\left(m_{g}+a_{g}\right) \circ\left(m_{h}^{\prime}+b_{h}\right) \subseteq m_{g} \circ m_{h}^{\prime}+a_{g} \circ m_{h}^{\prime}+m_{g} \circ b_{h}+a_{g} \circ b_{h} \subseteq M+I J \subseteq M(I J \subseteq M)
$$

Therefore, $M \cap S \neq \emptyset$ which is a contradiction with $M \in \Omega$. The second part follows from Proposition [.].6.

Proposition 3.18. If M is a graded maximal hyperideal of R with an i-set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then M is a graded prime hyperideal.

Proof. Assume that M is a graded maximal hyperideal of R. Let I and J be graded hyperideals of R such that $I J \subseteq M$, but $I \nsubseteq M$. Then $M \subset M+I$ and so by maximality of $M, M+I=R$. Hence $A \subseteq M+I$. Thus for each $a_{i} \in A$, there exist $m_{i} \in M$ and $x_{i} \in I$ such that $a_{i}=m_{i}+x_{i}$. Then for each $i=1,2, \ldots, n$, and for any $y \in J$,

$$
a_{i} \circ y \subseteq\left(m_{i}+x_{i}\right) \circ y \subseteq m_{i} \circ y+x_{i} \circ y \subseteq M
$$

Then $y \in \sum_{i=1}^{n} a_{i} \circ y \subseteq M$, so $J \subseteq M$. Therefore by Proposition [.]6, M is a graded prime hyperideal of R.

Let $S=\bigoplus_{g \in G} S_{g}$ and $T=\bigoplus_{g \in G} T_{g}$ be graded multiplicative hyperrings. The map $\varphi: S \rightarrow T$ is a graded homomorphism, if
(i) for every $x, y \in S, \varphi(x+y)=\varphi(x)+\varphi(y)$,
(ii) for every $x, y \in S, \varphi(x \circ y) \subseteq \varphi(x) \circ \varphi(y)$,
(iii) for every $g^{\prime} \in G, \varphi\left(S_{g^{\prime}}\right) \subseteq T_{g^{\prime}}$.

In particular, φ is called a graded good homomorphism in case $\varphi(x \circ y)=\varphi(x) \circ \varphi(y)$. The kernel of a graded homomorphism is defined as $\operatorname{ker}(\varphi)=\varphi^{-1}(\langle 0\rangle)=\{r \in R: \varphi(r) \in\langle 0\rangle\}$.

Proposition 3.19. Let S and T be graded multiplicative hyperrings and $\varphi: S \rightarrow T$ be a graded good homomorphism. Suppose that I, J are graded hyperideals of S and T, respectively. Then the following statements hold:
(i) If I is a graded prime hyperideal containing $\operatorname{ker}(\varphi)$ and φ is onto, then $\varphi(I)$ is a graded prime hyperideal of T.
(ii) If J is a graded prime hyperideal of T, then $\varphi^{-1}(J)$ is a graded prime hyperideal of S.

Proof. (i) Let $I=\underset{g \in G}{\bigoplus}\left(I \cap S_{g}\right)$. It is clear that $\varphi(I)=\underset{g \in G}{\bigoplus}\left(\varphi(I) \cap T_{g}\right)$ and since φ is onto, so $\varphi(I)$ is a graded hyperideal of T. Let $\varphi\left(a_{g}\right) \circ \varphi\left(b_{h}\right) \subseteq \varphi(I)$ where $a_{g}, b_{h} \in h(S)$. Since φ is a graded homomorphism, $\varphi\left(a_{g} \circ b_{h}\right) \subseteq \varphi\left(a_{g}\right) \circ \varphi\left(b_{h}\right) \subseteq \varphi(I)$. Assume that $p \in a_{g} \circ b_{h}$. Then $\varphi(p) \in \varphi\left(a_{g} \circ b_{h}\right) \subseteq \varphi(I)$ and so $\varphi(p)=\varphi(q)$ for some $q \in I$. Thus $\varphi(p-q)=0 \in\langle 0\rangle$, that is, $p-q \in \operatorname{ker}(\varphi) \subseteq I$ and so $p \in I$. Hence $a_{g} \circ b_{h} \subseteq I$. Since I is a graded prime hyperideal of R, we obtain $a_{g} \in I$ or $b_{h} \in I$ and so $\varphi\left(a_{g}\right) \in \varphi(I)$ or $\varphi\left(b_{h}\right) \in \varphi(I)$. Therefore, $\varphi(I)$ is a graded prime hyperideal of T.
(ii) Let $J=\bigoplus_{g \in G}\left(J \cap T_{g}\right)$ be a graded hyperideal of T. Then it is easy to see that $\varphi^{-1}(J)=$ $\bigoplus_{g \in G}\left(\varphi^{-1}(J) \cap S_{g}\right)$ is a graded hyperideal of S. Let $a_{g} \circ b_{h} \subseteq \varphi^{-1}(J)$ for some $a_{g}, b_{h} \in h(S)$. Then $\varphi\left(a_{g} \circ b_{h}\right)=\varphi\left(a_{g}\right) \circ \varphi\left(b_{h}\right) \subseteq J$. Since J is a graded prime hyperideal of T, then $\varphi\left(a_{g}\right) \in J$ or $\varphi\left(b_{h}\right) \in J$ and so $a_{g} \in \varphi^{-1}(J)$ or $b_{h} \in \varphi^{-1}(J)$. Therefore, $\varphi^{-1}(J)$ is a graded prime hyperideal of S.

Proposition 3.20. Let R and T be graded multiplicative hyperrings and $\varphi: R \rightarrow T$ be a graded good homomorphism. Suppose that I, J are graded hyperideals of R and T, respectively. Then the following assertions hold:
(i) If I is a $C^{g r}$-graded hyperideal containing $\operatorname{ker}(\varphi)$ and φ is onto, then $\varphi(I)$ is a $C^{g r}$-graded hyperideal of T.
(ii) If J is a $C^{g r}$-graded hyperideal of T, then $\varphi^{-1}(J)$ is a $C^{g r}$-graded hyperideal of R.

Proof. (i) Let $c_{1} \circ c_{2} \circ \cdots \circ c_{n} \cap \varphi(I) \neq \emptyset$ for some $c_{1}, c_{2}, \ldots, c_{n} \in h(T)$. Since φ is onto, we have $\varphi\left(a_{i}\right)=c_{i}$ for some $a_{i} \in h(R), 1 \leq i \leq n$. Then $\left(\varphi\left(a_{1}\right) \circ \varphi\left(a_{2}\right) \circ \cdots \circ \varphi\left(a_{n}\right)\right) \cap \varphi(I)=\varphi\left(a_{1} \circ a_{2} \circ\right.$ $\left.\cdots \circ a_{n}\right) \cap I \neq \emptyset$ because φ is a graded good homomorphism. Thus there exists $t \in a_{1} \circ a_{2} \circ \cdots \circ a_{n}$ such that $\varphi(t) \in \varphi(I)$. Since $\operatorname{ker}(\varphi) \subseteq I$, we have $t \in I$, so $a_{1} \circ a_{2} \circ \cdots \circ a_{n} \cap I \neq \emptyset$. As I is a $C^{g r}$-ideal of $R, a_{1} \circ a_{2} \circ \cdots \circ a_{n} \subseteq I$, hence $\varphi\left(a_{1}\right) \circ \varphi\left(a_{2}\right) \circ \cdots \circ \varphi\left(a_{n}\right)=\varphi\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right) \subseteq \varphi(I)$. Therefore $c_{1} \circ c_{2} \circ \cdots \circ c_{n} \subseteq \varphi(I)$, so $\varphi(I)$ is a $C^{g r}$-ideal of R.
(ii) Let $a_{1} \circ a_{2} \circ \cdots \circ a_{n} \cap \varphi^{-1}(I) \neq \emptyset$ for some $a_{1}, a_{2}, \ldots, a_{n} \in h(R)$. This implies that $p \in \varphi^{-1}(J)$ for some $p \in a_{1} \circ a_{2} \circ \cdots \circ a_{n}$, hence $\varphi(t) \in J \cap \varphi\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right)$. Then we have $J \cap \varphi\left(a_{1}\right) \circ \varphi\left(a_{2}\right) \circ \cdots \circ \varphi\left(a_{n}\right) \neq \emptyset$. Since J is a $C^{g r}$-ideal of T,

$$
\varphi\left(a_{1}\right) \circ \varphi\left(a_{2}\right) \circ \cdots \circ \varphi\left(a_{n}\right)=\varphi\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right) \subseteq J .
$$

Thus $a_{1} \circ a_{2} \circ \cdots \circ a_{n} \subseteq \varphi^{-1}(J)$.
Assume that J is a graded hyperideal of $R=\bigoplus_{g \in G} R_{g}$. Then quotient group $R / J=\{a+J: a \in$ $R\}$ becomes a multiplicative hyperring with the multiplication $(a+J) \circ(b+J)=\{r+J: r \in a \circ b\}$ ([7]]). It is easy to see that R / J is a graded hyperring with $R / J=\bigoplus_{g \in G}(R / J)_{g}$ where for all $g \in G$, $(R / J)_{g}=\left(R_{g}+J\right) / J$. Moreover, all graded hyperideals of R / J is of the form I / J, where I is a graded hyperideal of R containing J since the natural graded homomorphism $\varphi: R \rightarrow R / J$ is a graded good epimorphism.

Theorem 3.21. Let $J \subseteq P$ be graded hyperideals of R. Then the following assertions hold:
(i) P is a graded prime hyperideal of R if and only if P / J is a graded prime hyperideal of R / J. In particular, all graded prime hyperideals of R / J is of the form P / J where P is a graded prime hyperideal of R containing J.
(ii) P is a $C^{g r}$-graded hyperideal of R if and only if P / J is a $C^{g r}$-graded hyperideal of R / J. In particular, all $C^{g r}$-graded hyperideals of R / J is of the form P / J where P is a $C^{g r}$-graded hyperideal of R containing J.

Proof. (i) Consider the natural graded homomorphism $\varphi: R \rightarrow R / J$ defined by $\varphi(r)=r+J$. Since φ is a graded good homomorphism, the proof holds by Proposition 3.19 .
(ii) Apply Proposition 5.20 .

Consider the fundamental relation γ^{*} defined in [8$]$. In the following theorem, we show that if R is a graded multiplicative hyperring, then R / γ^{*} is a graded ring.

Theorem 3.22. Let $\gamma^{*}(0)$ be a graded hyperideal of R. Then R / γ^{*} is a G-graded ring such that $\left(R / \gamma^{*}\right)_{h^{\prime}}=\left\{\gamma^{*}\left(z_{h^{\prime}}\right) \mid z_{h^{\prime}} \in R_{h^{\prime}}\right\}$.

Proof. Let $R=\underset{h^{\prime} \in G}{ } R_{h^{\prime}}$ be a G-graded multiplicative hyperring. Assume that $z \in R / \gamma^{*}$, so there exists $r \in R$ where $z=\gamma^{*}\left(r^{\prime}\right)$. Thus $r^{\prime}=\sum_{h^{\prime} \in G} r_{h^{\prime}}^{\prime}$ for some $r_{h^{\prime}} \in R_{g}$ and hence $z=\gamma^{*}\left(r^{\prime}\right)=$ $\gamma^{*}\left(\sum_{h^{\prime} \in G} r_{h^{\prime}}^{\prime}\right)=\sum_{h^{\prime} \in G} \gamma^{*}\left(r_{h^{\prime}}^{\prime}\right)$. Therefore $R / \gamma^{*}=\sum_{h^{\prime} \in G}\left(R / \gamma^{*}\right)_{h^{\prime}}$. Assume that $\sum_{g \in G} \gamma^{*}\left(r_{h^{\prime}}^{\prime}\right)=\gamma^{*}(0)$ where $r_{h^{\prime}}^{\prime} \in R_{g}$. Then $\gamma^{*}\left(\sum_{h^{\prime} \in G} r_{h^{\prime}}^{\prime}\right)=\gamma^{*}(0)$ and so $\left.\sum_{h^{\prime} \in G} r_{h^{\prime}}^{\prime}\right) \in \gamma^{*}(0)$. Since $\gamma^{*}(0)$ is a graded hyperideal of R, then for any $h^{\prime} \in G, r_{h^{\prime}}^{\prime} \in \gamma^{*}(0)$. Hence for all $h^{\prime} \in G, \gamma^{*}\left(r_{h^{\prime}}^{\prime}\right)=\gamma^{*}(0)$. We have $R / \gamma^{*}=\sum_{h^{\prime} \in G}\left(R / \gamma^{*}\right)_{h^{\prime}}$ is an internal direct sum. Consequently, $\left(R / \gamma^{*}\right)_{h^{\prime}}\left(R / \gamma^{*}\right)_{g^{\prime}} \subseteq\left(R / \gamma^{*}\right)_{h^{\prime} g^{\prime}}$ for any $g^{\prime}, h^{\prime} \in G$ and so R / γ^{*} is a graded ring.

Theorem 3.23. Let R be with identity 1 and P be a proper graded hyperideal of R. Then P is graded prime if and only if P / γ^{*} is a graded prime ideal of R / γ^{*}.

Proof. (\Rightarrow) Let $c_{g} \circ d_{h} \in P / \gamma^{*}$ where $c_{g}, d_{h} \in h\left(R / \gamma^{*}\right)$. Then there exist $a_{g}, b_{h} \in h(R)$ such that $c_{g}=\gamma^{*}\left(a_{g}\right)$ and $d_{h}=\gamma^{*}\left(b_{h}\right)$. Thus $c_{g} \odot d_{h}=\gamma^{*}\left(a_{g}\right) \odot \gamma^{*}\left(b_{h}\right)=\gamma^{*}\left(a_{g} \circ b_{h}\right)$. Hence $a_{g} \circ b_{h} \subseteq P$, so $a_{g} \in P$ or $b_{h} \in P$ since P is a graded prime hyperideal of R. Hence $c_{g}=\gamma^{*}\left(a_{g}\right) \in P / \gamma^{*}$ or $d_{h}=\gamma^{*}\left(b_{h}\right) \in P / \gamma^{*}$. Therefore P / γ^{*} is a graded prime ideal of R / γ^{*}.
(\Leftarrow) Let $a_{g} \circ b_{h} \subseteq P$ for $a_{g}, b_{h} \in h(R)$. Then we have $\gamma^{*}\left(a_{g}\right), \gamma^{*}\left(b_{h}\right) \in R / \gamma^{*}$ and $\gamma^{*}\left(a_{g}\right) \odot \gamma^{*}\left(b_{h}\right)=$ $\gamma^{*}\left(a_{g} \circ b_{h}\right) \in P / \gamma^{*}$. Thus $\gamma^{*}\left(a_{g}\right) \in P / \gamma^{*}$ or $\gamma^{*}\left(b_{h}\right) \in P / \gamma^{*}$ since P / γ^{*} is a graded prime ideal of R / γ^{*}. Hence $a_{g} \in I$ or $b_{h} \in P$. Therefore P is a graded prime hyperideal of R.

Let R be a multiplicative hyperring. Then $M_{n}(R)$ denotes the set of all hypermatixes of R. Also, for all $A=\left(A_{i j}\right)_{n n}, B=\left(B_{i j}\right)_{n n} \in P^{*}\left(M_{n}(R)\right), A \subseteq B$ if and only if $A_{i j} \subseteq B_{i j}$.

If $R=\bigoplus_{g \in G} R_{g}$ be a graded multiplicative hyperring, then $M_{n}(R)$ is a graded hypermatixes of R with g-component $\left(M_{n}(R)\right)_{g}=M_{n}\left(R_{g}\right)$.

Theorem 3.24. Let R be with identity 1 and I be a graded hyperideal of R. If $M_{n}(I)$ is a graded prime hyperideal of $M_{n}(R)$, then I is a graded prime hyperideal of R.

Proof. Let $x_{g^{\prime}} \circ y_{h^{\prime}} \subseteq I$ where $x_{g^{\prime}}, y_{h^{\prime}} \in h(R)$. Then

$$
A=\left(\begin{array}{cccc}
x_{g^{\prime}} \circ y_{h^{\prime}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \subseteq M_{n}(I)
$$

We have

$$
\left(\begin{array}{cccc}
x_{g^{\prime}} \circ y_{h^{\prime}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)=\left(\begin{array}{cccc}
x_{g^{\prime}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{cccc}
y_{h^{\prime}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) .
$$

Since $M_{n}(I)$ is a graded prime hyperideal of $M_{n}(R)$ then

$$
\left(\begin{array}{cccc}
x_{g^{\prime}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \in M_{n}(I) \text { or }\left(\begin{array}{cccc}
y_{h^{\prime}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \in M_{n}(I) .
$$

Therefore, $x_{g^{\prime}} \in I$ or $y_{g^{\prime}} \in I$. Hence I is a graded prime hyperideal of R.

4 Graded primary hyperideals

In this section, we define and study graded primary hyperideals of a graded multiplicative hyperring ($R,+, \circ$).

For any element $z \in R$, we mean $z^{k}=z \circ z \circ \cdots \circ z(k$ times) for any positive integer $k>1$ and $z^{1}=\{z\}$.

We begin this section by the following definition.
Definition 4.1. (a) Let I be a graded hyperideal of $(R,+, \circ)$. The intersection of all graded prime hyperideals of R containing I is called the graded radical of I, denoted by $\operatorname{Grad}(I)$.
(b) Let J be a graded hyperideal of R. We define

$$
D(J)=\left\{r \in R: \text { for any } g^{\prime} \in G, r_{g^{\prime}}^{n_{g^{\prime}}} \subseteq J \text { for some } n_{g^{\prime}} \in \mathbb{N}\right\}
$$

Clearly, $D(J)$ is a graded hyperideal of R.
Theorem 4.2. Let I be a graded hyperideal of R. Then $D(I) \subseteq \operatorname{Grad}(I)$. The equality holds when I is a $C^{g r}$-ideal of R.

Proof. If $\operatorname{Grad}(I)=R$, then $D(I) \subseteq \operatorname{Grad}(I)$. Assume that $\operatorname{Grad}(I) \neq R$. Let $x \in D(I)$. Then for any $g \in G, x_{g}^{n_{g}} \subseteq I$ for some $n_{g} \in \mathbb{N}$. Thus for any graded prime hyperideal P of R, containing $I, x_{g}^{n_{g}} \subseteq P$. Hence for any $g \in G, x_{g} \in P$ because P is a graded prime hyperideal of R, and so $x=\sum_{g \in G} x_{g} \in P$, so $x \in \operatorname{Grad}(I)$. Therefore $D(I) \subseteq \operatorname{Grad}(I)$.
Assume that I is a $C^{g r}$-ideal. Let $t \notin D(I)$. Then there exists $g \in G, t_{g}^{n} \nsubseteq I$ for any $n \in \mathbb{N}$. Hence $t_{g}^{n} \cap I=\emptyset$ for all $n \in \mathbb{N}$. Let $S=\bigcup\left\{t_{g}^{n}+I_{g^{n}}: n \in \mathbb{N}\right\}$. It is clear that $S \subseteq h(R)$. Let $x, y \in S$, then $x \in t_{g}^{n}+I_{g^{n}}$ and $y \in t_{g}^{m}+I_{g^{m}}$ for some $n, m \in \mathbb{N}$, and so $x=c_{g^{n}}+a_{g^{n}}$ and $y=d_{g^{m}}+b_{g^{m}}$ for some $c_{g^{n}} \in t_{g}^{n}, d_{g^{m}} \in t_{g}^{m}, a_{g^{n}} \in I_{g^{n}}$ and $b_{g^{m}} \in I_{g^{m}}$. Thus
$x \circ y=\left(c_{g^{n}}+a_{g^{n}}\right) \circ\left(d_{g^{m}}+b_{g^{m}}\right) \subseteq c_{g^{n}} \circ d_{g^{m}}+c_{g^{n}} \circ b_{g^{m}}+a_{g^{n}} \circ d_{g^{m}}+a_{g^{n}} \circ b_{g^{m}} \subseteq t_{g}^{n+m}+I_{g^{n+m}} \subseteq S$.

It concludes that S is a multiplicative close subset. We have $S \cap I=\emptyset$, because if $z \in S \cap I$, then there exist $x \in I_{g^{n}} \subseteq I$ and $y \in t_{g}^{n}$ for some $n \in \mathbb{N}$, such that $z=x+y$, so $y \in I$ which is contradictory to the fact that $t_{g}^{n} \bigcap I=\emptyset$ for all $n \in \mathbb{N}$. Thus $t_{g} \notin P$ and $t \notin P$ because P is a graded hyperideal. Therefore $t \notin \operatorname{Grad}(I)$, and so $\operatorname{Grad}(I) \subseteq D(I)$.

Proposition 4.3. Let J and $J_{1}, J_{2}, \ldots, J_{n}$ be graded $C^{g r}$-hyperideals of R. The following statements hold:
(i) $\operatorname{Grad}(\operatorname{Grad}(J))=\operatorname{Grad}(J)$.
(ii) $\operatorname{Grad}\left(J_{1} J_{2} \ldots J_{n}\right)=\operatorname{Grad}\left(\bigcap_{i=1}^{n} J_{i}\right)=\bigcap_{i=1}^{n} \operatorname{Grad}\left(J_{i}\right)$.

Proof. (i) Let $x \in \operatorname{Grad}(\operatorname{Grad}(J))$. Then for any $g \in G$, there exists $n_{g} \in \mathbb{N}$ such that $x_{g}^{n_{g}} \subseteq$ $\operatorname{Grad}(J)$. Hence for any $t \in x_{g}^{n^{g}}$, there exists $m \in \mathbb{N}$ such that $t^{m} \subseteq J$. Since $t \in x_{g}^{n}$, then $t^{m} \subseteq\left(x_{g}^{n}\right)^{m}=x_{g}^{n m}$. Hence $x_{g}^{n m} \bigcap J \neq \emptyset$. Thus $x_{g}^{n m} \subseteq J$ for any $g \in G$ (since J is a $C^{g r}$-ideal). Therefore, $\operatorname{Grad}(\operatorname{Grad}(J)) \subseteq \operatorname{Grad}(J)$. Clearly, $\operatorname{Grad}(J) \subseteq \operatorname{Grad}(\operatorname{Grad}(J))$, so $\operatorname{Grad}(\operatorname{Grad}(J))=$ $\operatorname{Grad}(J)$.
(ii) We have $J_{1} J_{2} \ldots J_{n} \subseteq \bigcap_{i=1}^{n} J_{i}$. So $\operatorname{Grad}\left(J_{1} J_{2} \ldots J_{n}\right) \subseteq \operatorname{Grad}\left(\bigcap_{i=1}^{n} J_{i}\right)$. It is clear that, if J_{i} is a $C^{g r}$-ideal, then $\bigcap_{i=1}^{n} J_{i}$ is also a $C^{g r}$-ideal. Thus for any $x \in \operatorname{Grad}\left(\bigcap_{i=1}^{n} J_{i}\right)$, we have for any $g \in G, x_{g}^{m} \subseteq \bigcap_{i=1}^{n} J_{i}$. So $x_{g}^{m} \subseteq J_{i}$ for all $i=1,2, \ldots, n$, then $x \in \operatorname{Grad}\left(J_{i}\right)$, and so $x \in \bigcap_{i=1}^{n} \operatorname{Grad}\left(J_{i}\right)$. Therefore, $\operatorname{Grad}\left(\bigcap_{i=1}^{n} J_{i}\right) \subseteq \bigcap_{i=1}^{n} \operatorname{Grad}\left(J_{i}\right)$. Finally, let $x \in \bigcap_{i=1}^{n} \operatorname{Grad}\left(J_{i}\right)$. Hence for each $i=1,2, \ldots, n$, there exists $m_{i} \in \mathbb{N}$ such that $x_{g}^{m_{i}} \subseteq J_{i}$ for all $g \in G$. Thus

$$
x_{g}^{\sum_{i=1}^{n}\left(m_{i}\right)} \subseteq J_{1} J_{2} \ldots J_{n} .
$$

Thus $x \in \operatorname{Grad}\left(J_{1} \ldots J_{n}\right)$. Consequently, $\bigcap_{i=1}^{n} \operatorname{Grad}\left(J_{i}\right) \subseteq \operatorname{Grad}\left(J_{1} J_{2} \ldots J_{n}\right)$.
Definition 4.4. A proper graded hyperideal Q of $(R,+, \circ)$ is said to be graded primary, if for any $a_{g}, b_{h} \in h(R)$ such that $a_{g} \circ b_{h} \subseteq Q$, then $a_{g} \in Q$ or $b_{h}^{n} \subseteq Q$ for some $n \in \mathbb{N}$.

Proposition 4.5. If Q is graded primary $C^{g r}$-ideal of R, then $\operatorname{Grad}(Q)$ is a graded prime $C^{g r}$-ideal of R.

Proof. First, we show that $\operatorname{Grad}(Q)$ is a $C^{g r}$-ideal of R. Let $a_{1} \circ a_{2} \circ \cdots \circ a_{n} \bigcap \operatorname{Grad}(Q) \neq \emptyset$ for some $a_{1}, a_{2}, \ldots, a_{n} \in h(R)$. Then we have $x \in a_{1} \circ a_{2} \circ \cdots \circ a_{n}$ such that $x \in \operatorname{Grad}(Q)$. This implies that for any $g \in G, x_{g}^{t} \subseteq\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right)^{t}$ and $x_{g}^{t} \subseteq Q$ for some $t \in \mathbb{N}$. Since Q is a $C^{g r}$-ideal and $\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right)^{t} \bigcap Q \neq \emptyset$, we get $\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right)^{t} \subseteq Q$ and so $\left(a_{1} \circ a_{2} \circ \cdots \circ a_{n}\right) \subseteq \operatorname{Grad}(Q)$. Therefore $\operatorname{Grad}(Q)$ is a $C^{g r}$-ideal of R. Let $a_{g} \circ b_{h} \subseteq \operatorname{Grad}(Q)$ and $a_{g} \notin \operatorname{Grad}(Q)$ where $a_{g}, b_{h} \in h(R)$. Then for any $x_{g h} \in a_{g} \circ b_{h}$, there exists $n \in \mathbb{N}$ such that $x_{g h}^{n} \subseteq Q$. We have $x_{g h}^{n} \subseteq\left(a_{g} \circ b_{h}\right)^{n}=a_{g}^{n} \circ b_{h}^{n}$ (since R is commutative). So $\left(a_{g}^{n} \circ b_{h}^{n}\right) \cap Q \neq \emptyset$ and thus $a_{g}^{n} \circ b_{h}^{n} \subseteq Q$ (since Q is $C^{g r}$-ideal). Now $a_{g} \notin \operatorname{Grad}(Q)$, then $a_{g}^{n} \nsubseteq Q$, and so $a_{g}^{n} \cap Q=\emptyset$. Thus for any $p \in a_{g}^{n}$ and $q \in b_{h}^{n}$ we have $p \notin Q$ and $p \circ q \subseteq a_{g}^{n} \circ b_{h}^{n} \subseteq Q$. Therefore $q^{m} \subseteq Q$ for some $m \in \mathbb{N}$ since Q is a graded primary hyperideal of R. Again, $q \in b_{h}^{n}$, then $q^{m} \subseteq\left(b_{h}^{n}\right)^{m}=b_{h}^{n m}$. Hence $b_{h}^{n m} \cap Q \neq \emptyset$ and so $b_{h}^{n m} \subseteq Q$, whence $b_{h} \in \operatorname{Grad}(Q)$. Therefore $\operatorname{Grad}(Q)$ is a graded prime hyperideal.

Proposition 4.6. Let Q be a $C^{g r}$-ideal and P be a graded hyperideal of R. Then Q is a P-graded primary $C^{g r}$-ideal of R if and only if
(i) $Q \subseteq P \subseteq \operatorname{Grad}(Q)$.
(ii) For any $a_{g}, b_{h} \in h(R) ; a_{g} \circ b_{h} \subseteq Q$ and $a_{g} \notin Q$, then $b_{h} \in P$.

Proof. Suppose that (i) and (ii) hold. Let $a_{g} \circ b_{h} \subseteq Q$ and $a_{g} \notin Q$ where $a_{g}, b_{h} \in h(R)$. Thus by (ii), $b_{h} \in P$ and by $(i), b_{h} \in P \subseteq \operatorname{Grad}(Q)$. Therefore, $b_{h}^{n} \subseteq Q$ for some $n \in \mathbb{N}$, and so Q is a graded primary hyperideal of R. Now, we show that $P=\operatorname{Grad}(Q)$. Let $c=\sum_{g \in G} c_{g} \in \operatorname{Grad}(Q)$. Suppose $g \in G$ and let n be the least positive integer such that $c_{g}^{n} \subseteq Q$. If $n=1$, then $c_{g} \in\left\{c_{g}\right\}=$ $c_{g}^{1} \subseteq Q \subseteq P$ and so $c_{g} \in P$. If $n>1, c_{g}^{n-1} \nsubseteq Q$ by the minimality of n and thus $c_{g}^{n} \cap Q=\emptyset$ since Q is a $C^{g r_{-}}$-ideal. Then for any $x_{g^{n-1}} \in c_{g}^{n-1} ; x_{g^{n-1}} \circ c_{g} \subseteq c_{g}^{n-1} \circ c_{g}=c_{g}^{n} \subseteq Q$. Hence by (ii), $c_{g} \in P$ since $x_{g^{n-1}} \notin Q$. Thus $\operatorname{Grad}(Q) \subseteq P$, whence $P=\operatorname{Grad}(Q)$ by (i). Hence Q is a P-graded primary $C^{g r}$-ideal of R. The converse part is immediate.

Proposition 4.7. Let Q be a graded hyperideal of R. Then Q is a graded primary hyperideal of R if and only if $I \circ J \subseteq Q$ implies that $I \subseteq Q$ or $J \subseteq D(Q)$ where I, J are graded hyperideals of R.

Proof. Let Q be a graded primary hyperideal of R such that $I \circ J \subseteq Q$ and $I \nsubseteq Q$. Then there exists $a \in I$ such that $a \notin Q$. Hence, $a=\sum_{g} a_{g}$ where $a_{g} \in I \cap R_{g}$, and so $a_{h} \notin Q$ for some $h \in G$. Let $b=\sum_{g \in G} b_{g} \in J$. Then for any $g \in G, b_{g} \in J$ since J is graded, thus $a_{h} \circ b_{g} \subseteq I \circ J \subseteq Q$. Since Q is a graded primary hyperideal, we have $b_{g}^{n} \subseteq Q$ for some $n \in \mathbb{N}$, and so $b \in D(Q)$. This implies that $J \subseteq D(Q)$. Conversely, let $a_{g} \circ b_{h} \subseteq Q$ for some $a_{g}, b_{h} \in h(R)$. Then, we have $\left\langle a_{g} \circ b_{h}\right\rangle \subseteq Q$. Hence, by Proposition [JT5, $\left\langle a_{g}\right\rangle \circ\left\langle b_{h}\right\rangle \subseteq\left\langle a_{g} \circ b_{h}\right\rangle$, so $\left\langle a_{g}\right\rangle \circ\left\langle b_{h}\right\rangle \subseteq Q$. Thus $\left\langle a_{g}\right\rangle \subseteq Q$ or $\left\langle b_{h}\right\rangle \subseteq D(Q)$, and so $a_{g} \in Q$ or $b_{h}^{n} \subseteq Q$ for some $n \in \mathbb{N}$.

By induction hypothesis one can easily obtain following result:
Corollary 4.8. If Q is a graded primary hyperideal of R such that $J_{1} \circ J_{2} \circ \cdots \circ J_{n} \subseteq Q$, then either $J_{1} \subseteq Q$ or $J_{i} \subseteq D(Q)$ for some $2 \leq j \leq n$.

It is clear that every graded prime hyperideal of R is a graded primary hyperideal of R, but the converse is not true in general. Consider the following example:

Example 4.9. Suppose that $R_{B}=(\mathbb{Z}[i],+, \circ)$ where $R_{B}=\mathbb{Z} \bigoplus$ iZ and $B=\{2,3\} \in P^{*}(R)$. Take $Q=\langle 2\rangle$. Then Q is a graded primary hyperideal of R_{B}, but Q is not a graded prime hyperideal of R_{B}. Because, $2 \circ 2 i=\{2 \cdot 2 \cdot 2 i, 2 \cdot 3 \cdot 2 i\} \subseteq Q$, but $2 \notin Q$ and $2 i \notin Q$.

Let $I \subseteq Q_{1} \cup Q_{2} \cup \cdots \cup Q_{n}$ be a covering of graded hyperideals of R. Then this covering is called efficient if none of the Q_{i} s are superfluous. Note that a covering by two graded hyperideals can not be efficient.

Proposition 4.10. Suppose that $I \subseteq Q_{1} \cup Q_{2} \cup \cdots \cup Q_{n}$ is an efficient covering of graded hyperideals of R where I is a graded hyperideal of R. If $\operatorname{Grad}\left(Q_{i}\right) \nsubseteq \operatorname{Grad}\left(Q_{j}\right)$ for each $i \neq j$, then any of Q_{i} s are not graded primary hyperideals of R.

Proof. First we show that $\operatorname{Grad}(J)=\operatorname{Grad}(D(J))$ for any graded hyperideal J of R. Since $J \subseteq D(J)$, then we have $\operatorname{Grad}(J) \subseteq \operatorname{Grad}(D(J))$. Let P be a graded prime hyperideal of R containing J. Then it is sufficient to show that P contains $D(J)$. Let $x \in D(J)$. Then for any $g \in G, x_{g}^{n}=x_{g} \circ \cdots \circ x_{g} \subseteq J \subseteq P$ for some $n \in \mathbb{N}$. Thus $x_{g} \in P$ for any $g \in G$ (P is a graded prime hyperideal), then $x \in P$. Hence $\operatorname{Grad}(D(J)) \subseteq \operatorname{Grad}(J)$. Since covering is efficient, we have $n>2$. Assume that Q_{1} is a graded primary hyperideal of R. Since the covering is efficient, we have $I \cap Q_{2} \cap Q_{3} \cap \cdots \cap Q_{n} \subseteq I \cap Q_{1} \subseteq Q_{1}$ (see [T2]). As $I \nsubseteq Q_{1}$ and $I \circ Q_{2} \circ \cdots Q_{n} \subseteq Q_{1}$, by Corollary $\boxed{4.8}$, there exists $2 \leq j \leq n$ such that $Q_{j} \subseteq D\left(Q_{1}\right)$ and so $\operatorname{Grad}\left(Q_{j}\right) \subseteq \operatorname{Grad}\left(D\left(Q_{1}\right)\right)=\operatorname{Grad}\left(Q_{1}\right)$ which is a contradiction.

Theorem 4.11. Suppose that $I \subseteq Q_{1} \cup Q_{2} \cup \cdots \cup Q_{n}$ is a covering and at most two of $Q_{i} s$ are not graded primary hyperideals of R. If $\operatorname{Grad}\left(Q_{i}\right) \nsubseteq \operatorname{Grad}\left(Q_{j}\right)$ for each $i \neq j$, then $I \subseteq Q_{i}$ for some $1 \leq i \leq n$.

Proof. If $n=2$, then the result is valid. Also, we may assume that the covering is efficient so $n \neq 2$. Assume that $n>2$. But in this case, there exists a graded primary hyperideal Q_{j} of covering and this contradicts by Proposition 4.10. Thus, we have $n=1$ and this completes the proof.

Corollary 4.12. Suppose that $I \subseteq P_{1} \cup P_{2} \cup \cdots \cup P_{n}$ is an efficient covering and at most two of $P_{i} s$ are not graded prime hyperideals of R, then $I \subseteq P_{i}$ for some $1 \leq i \leq n$.

Proof. It follows from Theorem n. T.
The proof of the following theorem is straightforward and it is left to the reader.
Theorem 4.13. If $Q_{1}, Q_{2}, \ldots, Q_{n}$ are graded primary $C^{g r}$-ideal of R, all of which are P-graded primary for a graded prime hyperideal P, then $\bigcap_{i=1}^{n} Q_{i}$ is also a P-graded primary $C^{g r}$-ideal of R.

Proposition 4.14. Let $P \subseteq Q$ are graded hyperideals of R. Then the following are satisfied:
(i) $\operatorname{Grad}(Q / P)=\operatorname{Grad}(Q) / P$.
(ii) $D(Q / P)=D(Q) / P$.
(iii) If Q is a $C^{g r}$-graded hyperideal of R, then $D(Q / P)=\operatorname{Grad}(Q / P)$.

Proof. (i) If follows from Proposition [3.2].
(ii) Let $x+P \in D(Q / P)$ for some $x \in R$. Hence we have for all $g^{\prime} \in G,\left(x_{g^{\prime}}+P\right)^{m g^{\prime}} \subseteq Q / P$ for some $m_{g^{\prime}} \in \mathbb{N}$. Let $t \in x_{g^{\prime}}^{m_{g^{\prime}}}$. Since $t+P \in\left(x_{g^{\prime}}+P\right)^{m_{g^{\prime}}}$, thus $t+P \in Q / P$ and $t \in Q$. Therefore for any $g^{\prime} \in G, x_{g^{\prime}}^{m_{g^{\prime}}} \subseteq Q$, then $x \in D(Q)$, and hence $x+P \in D(Q) / P$. Conversely, assume that $x+P \in D(Q) / P$ for $x \in R$. Then $x \in D(Q)$ and so for any $g^{\prime} \in G, x_{g^{\prime}}^{m_{g^{\prime}}} \subseteq Q$ for some $m_{g^{\prime}} \in \mathbb{N}$. Take any $t+P \in\left(x_{g^{\prime}}+P\right)^{m_{g^{\prime}}}$, then we have $t+P=s+P$ for some $s \in x_{g^{\prime}}^{m_{g^{\prime}}}$, which means that $t-s \in P \subseteq Q$. Thus $t=(t-s)+s \in P+x_{g^{\prime}}^{m_{g^{\prime}}} \subseteq Q$ and we obtain $t+P \in Q / P$. Hence we conclude that for any $g^{\prime} \in G,\left(x_{g^{\prime}}+P\right)^{m_{g^{\prime}}} \subseteq(Q / P)$ that is $x+P \in D(Q / P)$.
(iii) It follows from Proposition 4.3 and Proposition 5.21 .

Proposition 4.15. Let $\varphi: R \rightarrow T$ be a graded good homomorphism of graded multiplicative hyperrings. Suppose that P, Q are graded hyperideals of R and T, respectively. Then the followings hold:
(i) If P is a graded primary hyperideal containing $\operatorname{ker}(\varphi)$ and φ is onto, then $\varphi(P)$ is a graded primary hyperideal of T.
(ii) If Q is a graded primary hyperideal of T, then $\varphi^{-1}(Q)$ is a graded primary hyperideal of R.

Proof. The proofs are similar to the proof of Proposition [3.09.
Corollary 4.16. Let $J \subseteq Q$ be graded hyperideals of R. Then
(i) Q is a graded primary hyperideal of R if and only if Q / J is a graded primary hyperideal of R / J.
(ii) Let Q be a graded primary $C^{\text {gr }}$-hyperideal of R. Then $\operatorname{Grad}(Q / J)$ is a graded primary hyperideal of R / J.

Proof. (i) The proof follows easily from Proposition 4.5.5.
(ii) This follows from (i), Propositions $4.5,5.27$ and 1.74 .

Theorem 4.17. Let R be a graded multiplicative hyperring with identity 1 and I be a graded hyperideal of R.
(i) I is a graded primary if and only if I / γ^{*} is a graded primary ideal of R / γ^{*}.
(ii) If $M_{n}(I)$ is a graded primary hyperideal of $M_{n}(R)$, then I is a graded primary hyperideal of R.

Proof. (i) It follows from Theorem [3.23].
(ii) It is similar to Theorem [3.24].

References

[1] A.S. Alshehry, R. Abu-Dawwas, Graded weakly prime ideals of non-commutative rings, Communications in Algebra, 49(11) (2021), 4712-4723.
[2] K. Al-Zoubi, R. Abu-Dawwas, S. Çeken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacettepe Journal of Mathematics and Statistics, 48(3) (2019), 724-731.
[3] R. Ameri, A. Kordi, S. Hoskova-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, Analele stiintifice ale Universitatii Ovidius Constanta, 25(1) (2017), 5-23.
[4] M. Cohen, S. Montgomery, Group-graded rings, smash products, and group actions, Transactions of American Mathematical Society, 282(1) (1984), 237-258.
[5] P. Corsini, Prolegomena of hypergroup theory, Second ed., Aviani Editore, 1993.
[6] P. Corsini, V. Leoreanu, Applications of hyperstructures theory, Advances in Mathematics, Kluwer Academic Publishers, 2013.
[7] U. Dasgupta, On prime and primary hyperideals of a multiplicative hyperring, Annals of the Alexandru Ioan Cuza University-Mathematices, 58(1) (2012), 19-36.
[8] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007.
[9] F. Farzalipour, P. Ghiasvand, On the union of graded prime submodules, Thai Journal of Mathematics, 9(1) (2011), 49-55.
[10] F. Farzalipour, P. Ghiasvand, On graded hyperrings and graded hypermodules, Algebraic Structures and Their Applications, 7(2) (2020), 15-28.
[11] M. Krasner, A class of hyperrings and hyperfield, International Journal of Mathematics and Mathematical Sciences, 6(2) (1983), 307-312.
[12] N.H. MacCoy, A note on finite union of ideals and subgroups, Proceedings of the American Mathematical Society, 8(4) (1969), 633-637.
[13] A. Macdonal, Commutative algebra, Addison Wesley Publishing Company, 1969.
[14] F. Marty, Sur une generalization de la notion de groupe, in: 8iem Congres Math. Scandinaves, Stockholm, (1934), 45-49.
[15] N. Nastasescu, F. Van Oystaeyen, Graded rings theory, Mathematical Library 28, North Holland, Amsterdam, 1937.
[16] K.H. Oral, Ü. Tekir, A.G. Ağargün, On graded prime and primary submodules, Turkish Journal of Mathematics, 35 (2011), 159-167.
[17] R. Procesi-Ciampi, R. Rota, On some classes of hyperstructures, Combinatories Discrete Mathematics, 1 (1987), 71-80.
[18] R. Procesi-Ciampi, R. Rota, The hyperring spectrum, Riv. Mat. Pura Appl., 1 (1987), 71-80.
[19] R. Procesi-Ciampi, R. Rota, Complementary multiplicative hyperrings, Discrete Mathematics, 208/209 (1999), 485-497.
[20] M. Refaei, K. Al-Zoubi, On graded primary ideals, Turkish Journal of Mathematics, 28(3) (2004), 217-229.
[21] R. Rota, Sugli iperanelli moltiplicativi, Rend. Di Mat, Series 7(2) (1982), 711-724.
[22] R. Rota, Strongly distributive multiplicative hyperrings, Journal of Geometry, 39 (1990), 130138.
[23] E. Sengelen Servim, B.A. Ersoy, B. Davvaz, Primary hyperideals of multiplicative hyperrings, International Balkan Journal of Mathematics, 1(1) (2018), 43-49.
[24] J.P. Serre, Local algebra, Springer Verlag, 2000.
[25] G. Ulucak, On expansions of prime and 2-absorbing hyperideals in multiplicative hyperrings, Turkish Journal of Mathematics, 43 (2019), 1504-1517.

