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Abstract

By using the notion of L-algebras as an important part
of the ordered algebra, we introduce the notions of block
code, x-function and x-subsets on an arbitrary L-algebra.
Then some related properties and examples are provided.
Also, by using these notions, we define an equivalence
relation on L-algebra and we introduce a new order on
the generated code based on L-algebras. Finally, we will
provide a method which allows us to find an L-algebra
starting from a given arbitrary binary block code.
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1 Introduction

The quantum Yang-Baxter equation (QYBE for short) was created by Zhenning Yang and R. J.
Baxter in 1967 and 1972, respectively, which is the most fundamental equation in the field of
mathematical physics [8]. QYBE is closely related to a series of mathematical structures, such
as quantum binomial algebras [10, 11], I-type semigroups and Bieberbach groups [12, 18], plane
curves and dyeing of bijective 1-type cocycles [8], semimunipolar small triangular Hopf algebra [20],
dynamic system [6], geometric crystal [5], etc. In 2005, W. Rump studied the algebraic solution
of the quantum Yang-Baxter equation.

For any set X, a binary operation • is defined that applies to the following equation (L)

(x • y) • (x • z) = (y • x) • (y • z), (L)

He called this structure (X, •) as an L-algebra. If the left-multiplication mapping x 7→ y • x
is bijective, the structure (X, •) is said to be a self-similar L-algebra. The authors proved that
the self-similar L-algebra corresponds to a solution of the quantum Yang-Baxter equation. Then,
Rump started from a self-similar L-algebra and naturally induced a new binary operation ∗, called
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a product, which makes (X, •, ∗) a left hoop. Then, the author studied the group structure on
self-similar L-algebras, and discussed the relationship between such group structure and L-groups.
These results play an important role in the study of the solution of the quantum Yang-Baxter
equation. On the other hand, the equation (L) also appears in some algebraic logic systems. If
the elements of the set are treated as propositions and x • y as implication operation x � y, the
equation (L) becomes a truth-degree description of classical logic, intuitionist logic, or  Lukasiewicz
infinite value propositional logic. Recently, the equation (L) has been applied to quantum logic
and its algebraic models. (see [3, 19] and [14]).

In coding theory, a block code is an error-correcting code which encode data in blocks. Recently,
many mathematicians have studied codes on different logical algebras and have obtained many
results in this field. For instance, Jahanshahi investigated binary block code on MV-algebras and
Flaut investigated this notion on BCK-algebras and Surdive investigated this notion on hyper
BCK-algebars and etc. For more details you can see [1, 2, 9, 13]. Due to the importance of this
matter, we decided to examine this issue on L-algebras.

In this paper, by using the notion of L-algebras, we introduce the notions of block code, x-
function and x-subsets on an arbitrary L-algebra. Then, we define an equivalence relation on
L-algebra and we introduce a new order on the generated code based on L-algebras. We have to
notice that the main motivation of this work is that by using an algebraic structure that is a lattice,
it is possible to create block codes, and vice versa, by using arbitrary given binary codes and using
the lexicographic relation to create an L-algebra, that is, a binary operation of the definition to
satisfy the characteristics of L-algebra.

2 Preliminaries

This section lists the known default contents that will be used later.
An L-algebra [5] is an algebraic structure (L;�, 1) of type (2, 1) satisfying
(L1) x � x = x � 1 = 1, and 1 � x = x,
(L2) (x � y) � (x � z) = (y � x) � (y � z),
(L3) if x � y = y � x = 1, then x = y,
for any x, y, z ∈ L. Condition (L1) states that 1 is a logical unit, while (L2) is related to the
quantum Yang-Baxter equation. Note that a logical unit is always unique.

By (L3), the relation
x ≤ y if and only if x � y = 1,

defines a partial order for any L-algebra L. If L admits a smallest element 0, we speak of a bounded
L-algebra.

Definition 2.1. [15] An L-algebra (L,�, 1) which satisfies in the following condition

x � (y � x) = 1, (K)

for any x, y ∈ L is called a KL-algebra.

Proposition 2.2. [17] Let (L;�, 1) be an L-algebra. Then x ≤ y implies z � x ≤ z � y, for
any x, y, z ∈ L.

Proposition 2.3. [17] For an L-algebra (L;�, 1), the following are equivalent:
(i) x ≤ y � x,
(ii) if x ≤ z, then z � y ≤ x � y,
(iii) ((x � y) � z) � z ≤ ((x � y) � z) � ((y � x) � z), for any x, y, z ∈ L.
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Note. From now on, in this paper (L;�, 1) or L, for short, is an L-algebra, unless otherwise
state.

3 x-function and x-subset on L-algebras

In this section, we introduce the notations of x-function and x-subset on L-algebras and we inves-
tigate some properties of them.

Definition 3.1. Assume A is a non-empty set. For any L-algebra L, a mapping f : A → L is
said to be an ℓ-function on A based on L and is denoted by fL. If there is no confusion about L,
we use f instead of fL.

The set of all ℓ-functions on A based on L is denoted by LF(A).

Definition 3.2. Consider f ∈ LF(A) and x ∈ L. Define the function f̂x : A → {0, 1}, where for
any a ∈ A, we have

f̂x(a) =

{
1 f(a) � x = 1
0 o.w

Then the function f̂x is called an x-function of L. The set of all x-functions on L is denoted by Φ.
In addition, define Ax for any x ∈ L as follows:

Ax = {a ∈ A | f(a) � x = 1} = {a ∈ A | f(a) ≤ x}, (1)

which is called an x-subset of A. The set of all x-subsets of A is denoted by S.

Remark 3.3. (1) Clearly, by (L1), A1 = {a ∈ A | f(a) � 1 = 1} = A, and if L is a bounded
L-algebra, then

A0 = {a ∈ A | f(a) � 0 = 1} = {a ∈ A | f(a) = 0} = f−1(0).

(2) Since for a ∈ A, by (L1), f(a) � f(a) = 1, we get a ∈ Af(a).

Example 3.4. Let A = {0, x, y, z} be a set and (L = {0, a, b, 1},≤) be a chain where 0 ≤ a ≤ b ≤ 1.
Define the operation � on L as follows:

� 0 a b 1

0 1 1 1 1
a b 1 1 1
b a a 1 1
1 0 a b 1

Then (L,�, 0, 1) is a bounded L-algebra. Define f : A → L such that

f(0) = 0, f(x) = a, f(y) = b and f(z) = 1.

Then f ∈ LF(A). Also, we have

A0 = {d ∈ A | f(d) � 0 = 1} = {0}, Aa = {d ∈ A | f(d) � a = 1} = {0, x},
Ab = {d ∈ A | f(d) � b = 1} = {0, x, y}, A1 = A.
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Proposition 3.5. Consider f ∈ LF(A). Then for a ∈ A, f can be represented by the infimum of
the set {x ∈ L | f̂x(a) = 1} regarding the partial order ≤. It means that

∀ a ∈ A, f(a) = inf{x ∈ L | f̂x(a) = 1}.

Proof. Let B = {x ∈ L | f̂x(a) = 1} and a ∈ A. Since f ∈ LF(A), we get f(a) ∈ L, so there exists
x ∈ L such that f(a) = x and so f(a) � x = 1. Thus a ∈ Ax and f̂x(a) = 1. Hence, x ∈ B. Now, if
z ∈ L such that f̂z(a) = 1, then f(a) � z = 1. Since f(a) = x, we get x � z = 1. Hence, x = inf B.
Therefore, f(a) = inf{x ∈ L | f̂x(a) = 1}.

Proposition 3.6. Let f ∈ LF(A), x ≤ y which x, y ∈ L. Then Ax ⊆ Ay.

Proof. Assume x, y ∈ L such that x ≤ y and a ∈ Ax. Then f(a) � x = 1, and so by Proposition
2.2, 1 = f(a) � x ≤ f(a) � y. Thus, f(a) � y = 1. Hence, a ∈ Ay. Therefore, Ax ⊆ Ay.

By the following example we show that the converse of Proposition 3.6 does not hold:

Example 3.7. Let A = {x, y, z, w} be a set and (L = {a, b, c, 1},≤) be a poset with the following
Hasse diagram:

..1

.b

. .c.a

.
.

.

Define the operation � on L as follows:

� a b c 1

a 1 1 a 1
b a 1 c 1
c a 1 1 1
1 a b c 1

Then (L,�, 1) is an L-algebra. Define f : A → L by:

f(x) = a, f(y) = a, f(z) = b, f(w) = 1.

Then Aa = {x, y}, Ac = ∅, Ab = {x, y, z} and A1 = A. Clearly, Ac ⊆ Aa, but a and c are
incomparable.

Theorem 3.8. Consider f ∈ LF(A). Then, we have
(i) for any a1, a2 ∈ A, f(a1) ̸= f(a2) if and only if Af(a1) ̸= Af(a2).
(ii) for any x ∈ L and for any a ∈ A, f(a) ≤ x if and only if Af(a) ⊆ Ax.

Proof. (i) Suppose a1, a2 ∈ A such that Af(a1) = Af(a2). Since by (L1), f(a1) � f(a1) = 1, we
get a1 ∈ Af(a1) = Af(a2). Then a1 ∈ Af(a2) and so f(a1) � f(a2) = 1. By the similar way, we get
f(a2) � f(a1) = 1. Hence, f(a1) = f(a2), which is a contradiction.
Conversely, assume f(a1) = f(a2). Then f(a1) � f(a2) = 1 and f(a2) � f(a1) = 1. Thus by
Proposition 3.6, Af(a1) ⊆ Af(a2) and Af(a2) ⊆ Af(a1), and so Af(a1) = Af(a2), which is a contradiction.
Hence, f(a1) ̸= f(a2).
(ii) Consider for a ∈ A and x ∈ L, f(a) � x = 1 and y ∈ Af(a). Then by (1), f(y) � f(a) = 1. By
assumption, f(y) � x = 1 and so y ∈ Ax. Conversely, clearly, a ∈ Af(a). By hypothesis, a ∈ Ax

and so by (1), f(a) � x = 1. Hence, f(a) ≤ x.
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Proposition 3.9. Suppose f ∈ LF(A) and X ⊆ L. If µ = inf{x | x ∈ X} regarding the partial
ordering ≤, then Aµ =

∩
{Ax | x ∈ X}.

Proof. Assume a ∈ Aµ. Then by (1), f(a) � µ = 1. By assumption, µ = inf{x | x ∈ X}. Thus
f(a) � inf{x | x ∈ X} = 1, and so for any x ∈ X, f(a) � x = 1. Hence, for any x ∈ X, a ∈ Ax.
So, a ∈

∩
{Ax | x ∈ X}. Hence, Aµ ⊆

∩
{Ax | x ∈ X}. Conversely, let a ∈

∩
{Ax | x ∈ X}. Then

for any x ∈ X, a ∈ Ax and so by (1), f(a) � x = 1. Thus f(a) � inf{x | x ∈ X} = f(a) � µ = 1.
Hence, a ∈ Aµ, and so

∩
{Ax | x ∈ X} ⊆ Aµ. Therefore, Aµ =

∩
{Ax | x ∈ X}.

Corollary 3.10. Consider f ∈ LF(A) and L is a KL-algebra. Then for any x, y ∈ L, Ax ⊆ Ay�x.

Proof. Let a ∈ Ax. Then by (1), f(a) � x = 1. By (K), we get x ≤ y � x, for any y ∈ L. Thus,
by Proposition 2.2, 1 = f(a) � x ≤ f(a) � (y � x), and so f(a) � (y � x) = 1, thus, a ∈ Ay�x.
Hence, Ax ⊆ Ay�x.

The following example shows that the reverse inclusion in Corollary 3.10 does not hold, in
general.

Example 3.11. Let A = {x, y, z, w} be a set and (L = {a, b, c, 1},≤) be a poset with the following
Hasse diagram:

..1

..b .c

.a
.

.

.
.

Define the binary operation � on L as follows:

� a b c 1

a 1 1 1 1
b c 1 c 1
c b b 1 1
1 a b c 1

Then (L,�, 1) is an L-algebra. Consider f : A → L by

f(x) = a, f(y) = b, f(z) = c, f(w) = 1.

Then Aa = {x}, Ab = {x, y}, Ac = {x, z} and A1 = A. Since b � a = c, clearly

Ab�a = Ac = {x, z} * {x} = Aa.

Corollary 3.12. If f ∈ FL(A), then A =
∪
{Ax | x ∈ L}.

Proof. Consider a ∈ A. Since f ∈ LF(A), f(a) � f(a) = 1 and f(a) ∈ L, we have a ∈ Af(a). In
addition, clearly, Af(a) ⊆

∪
{Ax | x ∈ L}. Thus, A ⊆

∪
{Ax | x ∈ L}. By Remark 3.3, A1 = A. So,

since Ax ⊆ A, for any x ∈ L, we have
∪
{Ax | x ∈ L} ⊆ A. Therefore, A =

∪
{Ax | x ∈ L}.

Suppose f ∈ LF(A). Define a binary relation ∼ on L as follows:

∀ x, y ∈ L, x ∼ y ⇔ Ax = Ay. (2)

Clearly, ∼ is an equivalence relation on L.
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Proposition 3.13. Consider f ∈ LF(A). Then for any x, y ∈ L

x ∼ y ⇔ f(A)∩ ↓ x = f(A)∩ ↓ y,

where f(A) = {f(x) | x ∈ A} and ↓ x = {z ∈ L | z ≤ x}.

Proof. Consider x, y ∈ L such that x ∼ y. Then by (2), Ax = Ay. Suppose a ∈ f(A)∩ ↓ x. Then
there exists b ∈ A such that a = f(b) and a ≤ x. Thus, 1 ≤ f(b) � x, and so f(b) � x = 1 and
by (1), we get b ∈ Ax. By assumption, since x ∼ y, we have Ax = Ay, and so b ∈ Ay. Thus
f(b) � y = 1 and so a = f(b) ≤ y. Hence, a ∈ f(A)∩ ↓ y. The proof of other side is similar.
Therefore, f(A)∩ ↓ x = f(A)∩ ↓ y.

Conversely, suppose f(A)∩ ↓ x = f(A)∩ ↓ y. Assume a ∈ Ax. Then by (1), f(a) � x = 1 and
so f(a) ∈ f(A)∩ ↓ x. By hypothesis, f(a) ∈ f(A)∩ ↓ y. So, f(a) � y = 1, and so a ∈ Ay. Hence,
Ax ⊆ Ay. Similarly, we can prove Ay ⊆ Ax. Therefore, Ax = Ay.

Example 3.14. Assume A = {x, y, z, w} be a set and (L,�, 1) be an L-algebra as in Example
3.7. Define f ∈ LF(A) by f(x) = a, f(y) = c, f(z) = b and f(w) = b. Then Aa = {x}, Ab =
{z, x, y, w} = A1 = A, and Ac = {y}. Thus, b ∼ 1, but a and c have no any relation, where ∼ is
an equivalence relation defined in (2).

4 Block code on L-algebras

As we note, clearly the relation defined in (2), is an equivalence relation on L. Thus it provides
the partition of L. For any x ∈ L, consider [x] as an equivalence class containing x, which means

[x] := {y | y ∼ x} = {y | Ax = Ay} = {y ∈ L | f(A)∩ ↓ x = f(A)∩ ↓ y}.

Now, we define a binary block code of length n from a finite L-algebra, where n ∈ N.
For n ∈ N, let A = {a1, a2, · · · , an} and L be a finite L-algebra. Then every f ∈ LF(A)

determines a binary block code C of length n as follows:
Let x ∈ L. Then for [x] the correspondence code-word is

cx : c1c2 · · · cn such that ci = f̂x(ai), where ai ∈ A.

We called C an L-code based on L and denote it by CL.

Example 4.1. (i) According to Example 3.4, we have

A0 = {0}, Aa = {0, x}, Ab = {0, x, y}, and A1 = {0, x, y, z}.

Then
f̂x 0 x y z

f̂0 1 0 0 0

f̂a 1 1 0 0

f̂b 1 1 1 0

f̂1 1 1 1 1

Thus, the total number code-words is 4 as follows:

c0 = 1000, c1 = 1100, c2 = 1110, c3 = 1111.
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(ii) According to Example 3.11, we have

Aa = {x}, Ab = {x, y}, Ac = {x, z}, A1 = A.

Then
f̂x x y z w

f̂a 1 0 0 0

f̂b 1 1 0 0

f̂c 1 0 1 0

f̂1 1 1 1 1

Thus, the total number code-words is 4 as follows:

c0 = 1000, c1 = 1100, c2 = 1010, c3 = 1111.

Let x, y ∈ L and Cx = x1x2 · · ·xn and Cy = y1y2 · · · yn be two code-words belonging to a
binary block code C. Define an order relation ≼ on C as follows:

Cx ≼ Cy ⇔ xi ≤ yi, ∀ i ∈ {1, 2, · · · , n}. (3)

Example 4.2. (i) According to Example 4.1(i) and (3), clearly we have c0 ≼ c1 ≼ c2 ≼ c3.

..c3

.c2

.c1

.c0

.

.

.

(ii) According to Example 4.1(ii) and (3), clearly we have c0 ≼ c1, c2 ≼ c3.

..c3

..c1 .c2

.c0
.

.

.
.

So, c1 and c2 are incomparable.

Example 4.3. Let A = {x, y, z, w} be a set and (L = {a, b, c, 1},≤) be a poset with the following
Hasse diagram:

..1

.a .c

.b

.

..

Then (L,�, 1) is an L-algebra where

� a b c 1

a 1 a b 1
b 1 1 a 1
c a a 1 1
1 a b c 1
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Define f ∈ LF(A) by
f(x) = a, f(y) = f(z) = b, f(w) = 1.

Clearly, Aa = {x, y, z}, Ab = {y, z}, Ac = ∅ and A1 = A. Then

f̂x x y z w

f̂a 1 1 1 0

f̂b 0 1 1 0

f̂c 0 0 0 0

f̂1 1 1 1 1

Thus, the total number code-words is 4 as follows:

c0 = 0000, c1 = 0110, c2 = 1110, c3 = 1111.

By using (3), we get c0 ≼ c1 ≼ c2 ≼ c3. Hence,

..c3

.c2

.c1

.c0

.

.

.

Note. According to Example 4.2, diagrams of code-words are isomorphic with Hasse diagram
of L-algebras, but in Example 4.3, diagram of code-words and Hasse diagram of L-algebra are not
isomorphic.

Theorem 4.4. For a finite L-algebra L, there exists a block code C of length n, where n ∈ N such
that (L,≤) is isomorphic (C,≼).

Proof. Since L is finite, assume L = {l1, l2, · · · , ln}. Let A = L. Then consider identity map

f : A → L. Clearly, f ∈ LF(A). Suppose
L
∼

= {[x] | x ∈ L}. Define φ :
L
∼

→ C such that

φ[x] = cx, where cx = f̂x(x1)̂fx(x2) · · · f̂x(xn). Suppose [x] = [y]. Then

[x] = [y] ⇔ x ∼ y ⇔ Ax = Ay ⇔ {a ∈ A | f(a) � x = 1} = {b ∈ A | f(b) � y = 1}

⇔
(
f̂x(a) = 1 ⇔ f̂y(b) = 1

)
⇔

(
f̂x(a) = 0 ⇔ f̂y(b) = 0

)
⇔ cx = cy.

So, φ is well-defined, one-to-one and surjective. Now, suppose x ≤ y. Then by Proposition 3.6,
Ax ⊆ Ay and so f̂x(a) ≤ f̂y(a). Hence, cx ≼ cy.

If x ∈ L and y /∈ Ax. Then f(y) � x ̸= 1, and so f̂x(y) = 0. So, f̂x(y) ≤ f̂y(y). Hence, in this
case cx ≼ cy. Thus, φ is order preserving. Therefore, (L,≤) ≃ (C,≼).

Let Cn be an arbitrary block-code with n code-words of length n. We consider the matrix
MCn = (mi,j)i,j∈{1,2,··· ,n} ∈ Mn({0, 1}) with the rows consisting of the code-words of Cn. This
matrix is called the matrix associated to the code Cn.
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Theorem 4.5. With the above notations, if the code-word 11 · · · 1︸ ︷︷ ︸
n−times

is in Cn and the matrix MC

is upper triangular with mii = 1, for all i ∈ {1, 2, · · · , n}, there are a set A with n elements, an
L-algebra L and an ℓ-function f : A → L such that f determines Cn.

Proof. We consider on Cn the lexicographic order, denoted by ≤lex. Obviously, (C,≤lex) is a totally
ordered set. Let C = {w1, w2, · · · , wn}, with w1 ≤lex w2 ≤lex · · · ≤lex wn. From here, we obtain
that wn = 11 · · · 1︸ ︷︷ ︸

n−times

and w1 = 00 · · · 0︸ ︷︷ ︸
(n−1)−times

1. So, wn is a maximal element and w1 is a minimal element

in (C,≤lex). We define on (C,≤lex) a binary operation � as follows:

wi � wj =

{
1 wi ≤lex wj

wj o.w
(4)

It results that L = (C,�, wn) becomes an L-algebra and C is isomorphic to Cn as L-algebras. We
consider A = C and the identity map f : A → C, f(w) = w as an ℓ-function. The decomposition
of f provides a family of maps Ω = {̂fx : A → {0, 1} | f̂x(a) = 1, if and only if f(a) � x = 1, ∀ a ∈
A, x ∈ L}. This family is the binary block-code Cn relative to the order relation ≤lex.

Example 4.6. Let C = {0001, 0101, 1101, 1111} be a binary block codes. Using the lexicographic
order, the code C can be written

c0 = 0001, c1 = 0101, c2 = 1101, c3 = 1111.

Then by using (4), we have
� c0 c1 c2 c3
c0 c3 c3 c3 c3
c1 c0 c3 c3 c3
c2 c0 c1 c3 c3
c3 c0 c1 c2 c3

By routine calculation, clearly (C,�, c3) is an L-algebra.

We denote by Cn the set of the binary block-codes of the form given in the Theorem 4.5.

Remark 4.7. Using above technique, we remark that an L-algebra determines a unique binary
block-code, but a binary block-code as in Theorem 4.5 can be determined by two or more algebras.
If two L-algebras, L1 and L2 determine the same binary block-code, we call them code-similar
algebras, denoted by L1 ◃▹ L2.

Example 4.8. Let A = {x, y, z, w} be a set. Consider L1 as an L-algebra as in Example 3.11 and
L2 as an L-algebra as in Example 4.3. Define f1 : A → L1 and f2 : A → L2 as follows:

f1(x) = a, f1(y) = b, and f1(z) = f1(w) = 1.

and
f2(x) = b, f2(y) = a, and f2(z) = f2(w) = 1.

Then
(̂f1)x x y z w

(̂f1)a 1 0 0 0

(̂f1)b 1 1 0 0

(̂f1)c 0 0 0 0

(̂f1)1 1 1 1 1

(̂f2)x x y z w

(̂f2)a 1 0 0 0

(̂f2)b 1 1 0 0

(̂f2)c 0 0 0 0

(̂f2)1 1 1 1 1

Since the code-word 0000 can be ignored, it does not affect the final result, we get L1 ◃▹ L2.
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Remark 4.9. If we consider Ln, the set of all finite L-algebras with n elements, then the relation
code-similar is an equivalence relation on Ln. It means that for any L1,L2 ∈ Ln, we have

L1 ◃▹ L2 ⇔ CL1 = CL2 ,

where CL1 and CL2 are block-codes corresponding to L1 and L2, respectively.
Let Qn be the quotient set. For C ∈ Cn, an equivalent class in Qn is

Cb = {B ∈ Ln | B determines the binary block-code C}.

Proposition 4.10. The quotient set Qn has 2
(n−1)(n−2)

2 elements, the same cardinal as the set Cn.

Proof. We will compute the cardinal of the set Cn. For C ∈ Cn, let MC be its associated matrix.
This matrix is upper triangular with mii = 1, for all i ∈ {1, 2, · · · , n}. We calculate in how many
different ways the rows of such a matrix can be written. The second row of the matrix MC has the
form (0, 1, a3, · · · , an), where a3, · · · , an ∈ {0, 1}. Therefore, the number of different rows of this
type is 2n−2 and it is equal with the number of functions from a set with n− 2 elements to the set
{0, 1}. The third row of the matrix MC has the form (0, 0, 1, a4, · · · , an), where a4, · · · , an ∈ {0, 1}.
In the same way, it results that the number of different rows of this type is 2n−3. Finally, we get

that the cardinal of the set Cn is 2n−2 · 2n−3 · · · 2 = 2
(n−1)(n−2)

2 .

Remark 4.11. If Kn is the number of all finite non-isomorphic L-algebras with n elements, then

Kn ≥ 2
(n−1)(n−2)

2 .

Remark 4.12. Let C1, C2 ∈ Cn and MC1 ,MC2 be the associated matrices. We denote by rjCi
a

row in the matrix MCi, i ∈ {1, 2}, j ∈ {1, 2, · · · , n}. On Cn, we define the following totally order
relation:
C1 ≥lex C2 if there is i ∈ {2, 3, · · · , n} such that r1C1

= r1C2
, r2C1

= r2C2
, · · · , ri−1C1

= ri−1C2
and

riC1
≥lex riC2

where ≥lex is the lexicographic order.

Proposition 4.13. Let X = (ai,j)i∈{1,2,··· ,n}, j∈{1,2,··· ,m} ∈ Mn,m({0, 1}) be a matrix with rows
lexicographic ordered in the descending sense. Starting from this matrix, we can find a matrix
B = (bi,j)i,j∈{1,2,··· ,q} ∈ Mq({0, 1}), q = n + m, such that B is an upper triangular matrix, with
bii = 1, for all i ∈ {1, 2, · · · , q} and X becomes a submatrix of the matrix B.

Proof. We insert in the left side of the matrix X ( from the right to the left) the following n new
columns of the form 00 · · · 1︸ ︷︷ ︸

n−times

, 00 · · · 10︸ ︷︷ ︸
n−times,

, · · · , 10 · · · 0︸ ︷︷ ︸
n−times,

. It results a new matrix D with n rows and q

columns.
Now, we insert in the bottom of the matrix D the following m rows:

00 · · · 0︸ ︷︷ ︸
n−times,

10 · · · 0︸ ︷︷ ︸
m−times

, 00 · · · 0︸ ︷︷ ︸
(n+1)−times,

01 · · · 0︸ ︷︷ ︸
(m−1)−times

, · · · , 00 · · · 0︸ ︷︷ ︸
(n+m−1)−times

1.

We obtained the asked matrix B.

Theorem 4.14. With the above notations, we consider C be a binary block code with n code-words
of length m, n ̸= m, or a block-code with n code-words of length n such that the code-word 11 · · · 1︸ ︷︷ ︸

n−times

is not in C, or a block-code with n code-words of length n such that the matrix MC is not upper
triangular. There are a natural number q ≥ max{m,n}, a set A with m elements and an ℓ-function
f : A → Cq such that the obtained block-code Cq contains the block-code C as a subset.
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Proof. Let C be a binary block-code, C = {w1, w2, · · · , wn}, with code-words of length m. We
consider the code-words w1, w2, · · · , wn lexicographic ordered, w1 ≥lex w2 ≥lex · · · ≥lex wn. Let
M ∈ Mn,m({0, 1}) be the associated matrix with the rows w1, · · · , wn in this order. Using Propo-
sition 4.12, we can extend the matrix M to a square matrix M ′ ∈ Mq({0, 1}), q = m+n, such that
M ′ = (m′

i,j)i,j∈{1,2,··· ,q} is an upper triangular matrix with mii = 1, for all i ∈ {1, 2, · · · , q}. If the
first line of the matrix M ′ is not 11 · · · 1︸ ︷︷ ︸

q−times

then we insert the row 11 · · · 1︸ ︷︷ ︸
(q+1)−times

as a first row and the col-

umn 100 · · · 0︸ ︷︷ ︸
q−times

as a first column . Applying Theorem 4.5, for the matrix M ′, we obtain an L-algebra

Cq = {x1, · · · , xq}, with x1 = 1 the greatest element of the algebra Cq and a binary block-code
CCq . Assuming that the initial columns of the matrix M have in the new matrix M ′ positions
ij1 , ij2 , · · · , ijm ∈ {1, 2, · · · , q}, let A = {xj1 , xj2 , · · · , xjm} ⊆ Cq. The ℓ-function f : A → Cq,
f(xji) = xji , i ∈ {1, 2, · · · ,m}, determines the binary block-code CCq such that C ⊆ CCq .

Example 4.15. Let C = {00100, 01100, 11100, 11101} be a binary block code. Using the lexico-
graphic order, the code C can be written C = {11101, 11100, 01100, 00100} = {w1, w2, w3, w4}. Let
MC ∈ M4,5({0, 1}) be the associated matrix,

MC =


1 1 1 0 1
1 1 1 0 0
0 1 1 0 0
0 0 1 0 0


Using Proposition 4.13, we construct an upper triangular matrix, starting from the matrix MC. It
results the following matrices:

D =


1 0 0 0

... 1 1 1 0 1

0 1 0 0
... 1 1 1 0 0

0 0 1 0
... 0 1 1 0 0

0 0 0 1
... 0 0 1 0 0


and

B =



1 0 0 0
... 1 1 1 0 1

0 1 0 0
... 1 1 1 0 0

0 0 1 0
... 0 1 1 0 0

0 0 0 1
... 0 0 1 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0
... 1 0 0 0 0

0 0 0 0
... 0 1 0 0 0

0 0 0 0
... 0 0 1 0 0

0 0 0 0
... 0 0 0 1 0

0 0 0 0
... 0 0 0 0 1
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Since the first row is not 11 · · · 1︸ ︷︷ ︸
9

, using Theorem 4.14, we insert a new row 11 · · · 1︸ ︷︷ ︸
10

as a first row

and a new column 10 · · · 0︸ ︷︷ ︸
10

as a first column. We obtain the following matrix:

B′ =



1
... 1 1 1 1

... 1 1 1 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0
... 1 0 0 0

... 1 1 1 0 1

0
... 0 1 0 0

... 1 1 1 0 0

0
... 0 0 1 0

... 0 1 1 0 0

0
... 0 0 0 1

... 0 0 1 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0
... 0 0 0 0

... 1 0 0 0 0

0
... 0 0 0 0

... 0 1 0 0 0

0
... 0 0 0 0

... 0 0 1 0 0

0
... 0 0 0 0

... 0 0 0 1 0

0
... 0 0 0 0

... 0 0 0 0 1


The binary block-code W = {w1, · · · , w10}, whose code-words are the rows of the matrix B′, de-
termines an L-algebra (W,�, w1) by using (4). Let A = {w6, w7, w8, w9, w10} and f : A → W,
f(wi) = wi, i ∈ {6, 7, 8, 9, 10} be an ℓ-function which determines the binary block-code

U = {11111, 11101, 11100, 01100, 00100, 10000, 01000, 00100, 00010, 00001}.

The code C is a subset of the code U .

Conclusion

By using the notion of L-algebras, the notions of block code, x-function and x-subsets on an
arbitrary L-algebra are defined. Then some related properties and examples are provided. Also,
by using these notions, an equivalence relation on L-algebra and a new order on the generated
code based on L-algebras are introduced. Finally, a method is provided which allows us to find
an L-algebra starting from a given binary block code. The main motivation of this work is that
by using an algebraic structure L-algebras, it is possible to create block codes, and vice versa,
by using arbitrary given binary codes and using the lexicographic relation to create an L-algebra,
that is, a binary operation of the definition to satisfy the characteristics of L-algebra.
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