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Abstract

In this paper, by considering the notion of L-algebra,
we show that there are relations between L-algebras and
some of other logical algebras such as residuated lat-
tices, MTL-algebras, BL-algebras, MV -algebras, BCK-
algebras, equality algebras, EQ-algebras and Hilbert al-
gebras. The aim of this paper is to find under what condi-
tions L-algebras are equivalent to these logical algebras.
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1 Introduction
The quantum Yang-Baxter equation (QYBE for short) was created by Z. Yang and R. J. Baxter
in 1967 and 1972, respectively. QYBE is closely related to a series of mathematical structures,
such as quantum binomial algebras [19, 20], I-type semigroups and Bieberbach groups [21, 39],
plane curves and dyeing of bijective 1-type cocycles [17], semimunipolar small triangular Hopf
algebra [41], dynamic system [16], geometric crystal [14], etc. Many early solutions of QYBE have
been discovered and their related algebraic structures have been studied extensively, but these
solutions are all variants of the common identity solutions, so it is necessary to find some non-
trivial solutions. Drinfeld suggested the study of a class of &-quot: Solutions of set theory &-quot;
that consider linear operators [14] whose vector spaces V are generated by a set A and are induced
by a mapping A×A→ A×A. In 2005, W. Rump studied the algebraic solution of the quantum
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Yang-Baxter equation. He pointed out that A is a set with a binary operation →. The equation

(x→ y) → (x→ z) = (y → x) → (y → z), (L)

is a true statement of propositional logic and some of its generalizations [40]. On the other hand,
(L) is closely related to the quantum Yang-Baxter equation [34]. In algebraic logic, new aspects
were recently found in [35]. We say that an element 1 ∈ A is a logical unit [35] if x→ x = x→ 1 = 1
and 1 → x = x holds for all x ∈ A. In the presence of (L), a logical unit defines a quasi-ordering
x ≤ y if and only if x → y = 1, and if this is a partial order, we call A an L-algebra [35]. For the
theory of L-algebras, the reader is referred to [35, 36].

In this paper, we investigate the relations among hoops and some logical algebras such as resid-
uated lattices, MTL-algebras, BL-algebras, MV -algebras, BCK-algebras and Hilbert algebras.

2 Preliminaries
This section lists the known default contents that will be used later.

Definition 2.1. [35] An algebraic structure (A,→, 1) is called an L-algebra if for any x, y, z ∈ A
satisfies in the following conditions:
(L1) x→ x = x→ 1 = 1 and 1 → x = x,
(L) (x→ y) → (x→ z) = (y → x) → (y → z),
(L3) if x→ y = y → x = 1, then x = y.
Condition (L1) satisfies that 1 is a logical unit, while (L) is related to the quantum Yang-Baxter
equation.

Remark 2.2. A logical unit is always unique and it is the element of an L-algebra. You can see
the proof in [35].
If the operation → is taken as logical implication, then there is a partial order on A defined by

x ≤ y if and only if x→ y = 1, (1)

for any x, y ∈ A.
If A has a smallest element 0, then A is called a bounded L-algebra.

Remark 2.3. For an element x of a bounded L-algebra (A,→, 0, 1), we define an operation ′ on A
such that x′ = x→ 0. We say that an L-algebra A has a negation if A admits a smallest element
0 such that the map x 7→ x′ is bijective. The inverse map will then be denoted by x 7→ x∼. If
x∼ = x′, then L is called an L-algebra with double negation, where (x′)′ = x.
For an L-algebra (A,→, 0, 1) with negation, for any x, y ∈ A we set

x ∧ y := ((x→ y) → x′)∼, x ∨ y := (x∼ → y∼) → x. (2)

Now, we introduce a second implication

x⇝ y := y∼ → x∼, (3)

for an L-algebra (A,→, 0, 1) with negation. In particular, this gives a second negation

x⇝ 0 = x∼. (4)
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Definition 2.4. [35] An L-algebra (A,→, 1) is said to be semi-regular if the equation

((x→ y) → z) → ((y → x) → z) = ((x→ y) → z) → z, (5)

holds.

Definition 2.5. [35] A semi-regular L-algebra (A,→, 1) is called a regular L-algebra if for any
pair of element x ≤ y in A, there is an element z ≥ x in A with z → x = y.

Definition 2.6. [35] An L-algebra (A,→, 1) which satisfies the following condition

x→ (y → x) = 1, (K)

for any x, y ∈ A is called a KL-algebra.

Definition 2.7. [35] A CL-algebra is an L-algebra which satisfies the following condition

(x→ (y → z)) → (y → (x→ z)) = 1, (C)

for any x, y, z ∈ A. It follows that in any L-algebra (A,→, 1) satisfying condition (C) we have

x→ (y → z) = y → (x→ z), (Ex)

for all x, y, z ∈ A.

Proposition 2.8. [9] Any CL-algebra is a KL-algebra.

3 Relation between L-algebras and other logical algebras
3.1 Relation with hoops
Hoops are naturally ordered commutative residuated integral monoids, introduced by B. Bosbach
in [2, 3]. In the last years, hoops theory was enriched with deep structure theorems. Many of these
results have a strong impact in fuzzy logic. Particularly, from the structure theorem of finite basic
hoops one obtains an elegant short proof of the completeness theorem for propositional basic logic,
introduced by Hájek. The algebraic structures corresponding to Hájek’s propositional (fuzzy) basic
logic, BL-algebras, are particular cases of hoops.

In this section, we investigate the relation between hoops and L-algebras.

Definition 3.1. [2, 3] A left hoop is an algebraic structure (A,�,→, 1) of type (2, 2, 0) such that,
for all x, y, z ∈ A:
(LH1) x� 1 = 1� x = x,
(LH2) x→ x = 1,
(LH3) (x� y) → z = x→ (y → z),
(LH4) (x→ y)� x = (y → x)� y.

Also, a right hoop is an algebraic structure (A,�,⇝, 1) of type (2, 2, 0) such that, for all
x, y, z ∈ A:
(RH1) x� 1 = 1� x = x,
(RH2) x⇝ x = 1,
(RH3) (x� y)⇝ z = y ⇝ (x⇝ z),
(RH4) x� (x⇝ y) = y � (y ⇝ x).
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An algebraic structure (A,�,→,⇝, 1) is called a pseudo-hoop if (A,�,→, 1) and (A,�,⇝, 1) are
a left hoop and a right hoop, respectively.

On pseudo-hoop A, we define x ≤ y if and only if x → y = 1 if and only if x ⇝ y = 1.
Obviously, ≤ is a partial order relation on A. If � is commutative (or equivalently →=⇝), then
A is called a hoop.

A pseudo-hoop A is bounded if there is an element 0 ∈ A such that for all x ∈ A, x ≥ 0. For
any x ∈ A, we consider x′ = x→ 0 and x∼ = x⇝ 0.

Proposition 3.2. [38] For any x, y in a hoop (A,�,→, 1), define

x ∨ y = ((x→ y) → y) ∧ ((y → x) → x).

Then the next equivalent conditions hold:
(i) ∨ is an associative operation on A,
(ii) x ≤ y implies x ∨ z ≤ y ∨ z,
(iii) x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z),
(iv) ∨ is the join operation on A.

Definition 3.3. [38] (A,�,→, 1) is called a ∨-hoop if ∨ is a join operation on A.

Theorem 3.4. [38] A semi-regular L-algebra (A,→, 0, 1) with negation is a left hoop, where for
any x, y ∈ A, x� y = (x→ y′)∼.

Corollary 3.5. [38] If (A,→, 0, 1) is a semi-regular L-algebra with negation, then (A,�,→,⇝, 1)
is a pseudo-hoop, where for any x, y ∈ A, x� y = (x→ y′)∼.

Remark 3.6. Clearly, every L-algebra is not a hoop, since every L-algebra is not bounded and so
we can not define negation on L-algebra (A,→, 1).

Example 3.7. Let (A = {a, b, c, 1},≤) be a poset with the following Hasse diagram:

1

b

a c

Define the operation → on A as follows:

→ a b c 1

a 1 1 a 1
b a 1 c 1
c a 1 1 1
1 a b c 1

.

Then (A,→, 1) is an L-algebra without zero element. So, (A,→, 1) does not have a negation
operation.

Theorem 3.8. [9] Let (A,�,→,⇝, 1) be a pseudo-hoop. Then (A,→, 1) and (A,⇝, 1) are L-
algebras.
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3.2 Relation with residuated lattices (MTL, BL and MV -algebras)
A residuated lattice is an algebraic structure which is defined by Dilworth in 1939, [10, 11]. In recent
years, due to the development of artificial intelligence and the use of logical algebraic structures in
this field, the study of these structures has become particularly important and has attracted the
attention of many mathematicians.

Among various non-classical logic systems, monoidal t-norm based logic (MTL for short) is one
of the most significant of them. The point of departure in defining MTL and the corresponding
MTL-algebras is the structure introduced on [0, 1] by a left continuous t-norm [15].

BL-algebras have been introduced by Hájek [24] in order to investigate many valued logic by
algebraic way. He provided an algebraic counterpart of a propositional logic, called Basic Logic,
which typifies a portion common to some of the most important many-valued logics, namely,
Łukasiewicz logic, Gödel logic and Product logic. This Basic Logic (BL for short) is proposed as the
most general many-valued logic with truth values in [0, 1] and BL-algebras are the corresponding
Lindenbaum-Tarski algebras. Also, Hájek presented an algebraic mean for the study of continuous
t-norms (or triangular norms) on the unit real interval [0, 1].

In 1958, C. C. Chang defined MV -algebras [8] as the algebraic counterpart of N0-valued
Łukasiewicz logic, which allowed him to give another completeness proof for this logic. In fact,
MV -algebras are BL-algebras but, the converse is not true. Proved by Höhle [25], a BL-algebra
A becomes an MV -algebra if we adjoin to the axioms the double negation law, i.e., x′′ = x, for
every x ∈ A. Thus, a BL-algebra is in some intuitive way, a non-double negation MV -algebra.
Hence, the theory of MV -algebras becomes one of the guiding to the development of the theory
of BL-algebras.

In this section, we investigate the relation between L-algebras and residuated lattice and some
of their sub-algebras such as MTL, BL and MV -algebras.

Definition 3.9. [43] A residuated lattice is an algebraic structure (A,∨,∧,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) satisfying the following axioms:
(RL1) (A,∨,∧, 0, 1) is a bounded lattice,
(RL2) (A,�, 1) is a commutative monoid,
(RL3) x� y ≤ z if and only if x ≤ y → z, for all x, y, z ∈ A.

Definition 3.10. [8, 10, 11, 15, 24, 34] Let (A,∧,∨,�,→, 0, 1) be a residuated lattice. Then L is
called;
(i) a divisible residuated lattice, if for any x, y ∈ A,

x ∧ y = x� (x→ y), (div)

(ii) an MTL-algebra, if for any x, y ∈ A,

(x→ y) ∨ (y → x) = 1, (prel)

(iii) a BL-algebra, if A is an MTL-algebra and, for any x, y ∈ A,

x ∧ y = x� (x→ y), (div)

(iv) an MV -algebra, if A is a BL-algebra and, for any x ∈ A,

x′′ = x, (DN)

where x′ = x→ 0.
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Let us remark that residuated lattices and L-algebras are incomparable. Indeed, clearly, not
all L-algebras are residuated lattices. The following counterexample indicates that any residuated
lattices is not an L-algebra, in general.

Example 3.11. Consider the formed lattice (A = {0, a, b, c, d, e, f,m, 1},≤, 0, 1) with the following
Hasse diagram.

0

ad b

f ce

m

1

Define the operations → and � on A as follows:

→ 0 a b c d e f m 1

0 1 1 1 1 1 1 1 1 1
a m 1 m 1 m 1 m 1 1
b m m 1 1 m m 1 1 1
c m m m 1 m m m 1 1
d m m m m 1 1 1 1 1
e m m m m m 1 m 1 1
f m m m m m m 1 1 1
m m m m m m m m 1 1
1 0 a b c d e f m 1

� 0 a b c d e f m 1

0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 0 c
d 0 0 0 0 0 0 0 0 d
e 0 0 0 0 0 0 0 0 e
f 0 0 0 0 0 0 0 0 f
m 0 0 0 0 0 0 0 0 m
1 0 a b c d e f m 1

.

Then (L,∧,∨,�,→, 0, 1) is a residuated lattice which is not an L-algebra, since (L) is not
satisfied

(e→ a) → (e→ f) = m→ m = 1 6= m = 1 → m = (a→ e) → (a→ f).

Proposition 3.12. Let (A,∧,∨,�,→, 0, 1) be a divisible residuated lattice. Then (L,→, 1) is an
L-algebra.

Proof. Assume (A,∧,∨,�,→, 0, 1) is a divisible residuated lattice, then by [1, Proposition 3.4],
(A,�,→, 1) is a hoop. Thus, by Theorem 3.8, (A,→, 1) is an L-algebra.

Corollary 3.13. Any BL-algebra is an L-algebra.

Proof. Since every BL-algebra (A,∧,∨,�,→, 0, 1) is a divisible residuated lattice, by Proposition
3.12, (A,→, 1) is an L-algebra.

Theorem 3.14. Assume (A,→, 0, 1) is a bounded semi-regular L-algebra with negation. Then
(A,∧,∨,�,→, 0, 1) is a divisible residuated lattice, where for any x, y ∈ A, x � y = (x → y′)∼,
x� y = y � x and x ∨ y = (x∼ → y∼) → x.
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Proof. Assume (A,→, 0, 1) is a bounded semi-regular L-algebra with negation. By Corollary 3.5,
(A,∨,�,→, 0, 1) is a bounded ∨-hoop. Then by [1, Theorem 3.5], (A,∧,∨,�,→, 0, 1) is a divisible
residuated lattice.

The following counterexample indicates that any MTL-algebra is not an L-algebra, in general
and conversely, does not hold, clearly.

Example 3.15. Let (A = {0, a, b, 1},≤) be a chain. Define the operations � and → on A as
follows:

� 0 a b 1

0 0 0 0 0
a 0 0 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a b 1 1 1
b a a 1 1
1 0 a b 1

.

Then (A,∨,∧,�,→, 0, 1) is an MTL-algebra which is not an L-algebra since (L) is not satisfied,

(b→ a) → (b→ 0) = a→ a = 1 6= b = 1 → b = (a→ b) → (a→ 0).

Remark 3.16. Clearly, a divisible MTL-algebra (A,∨,∧,�,→, 0, 1) is a BL-algebra and by Corol-
lary 3.13, (A,→, 1) is an L-algebra.

Corollary 3.17. Let (A,→, 0, 1) be a bounded semi-regular L-algebra with negation.
Then (A,∧,∨,�,→, 0, 1) is a/an
(i) MTL-algebra if condition (prel) holds.
(ii) BL-algebra if conditions (prel) and (div) hold,
where for any x, y ∈ A, x� y = (x→ y′)∼ and (2) holds.

Remark 3.18. Since every MV -algebra (A,∨,∧,�,→, 0, 1) is a BL-algebra, we get (A,→, 1) is
an L-algebra, by Corollary 3.13.

Theorem 3.19. Let (A,→, 0, 1) be a bounded semi-regular L-algebra with double negation (x′′ = x).
Then (A,�,→,′ , 0, 1) is an MV -algebra, where for any x, y ∈ A, x�y = (x→ y′)

′ and x�y = y�x.

Proof. Let (A,→, 0, 1) be a bounded semi-regular L-algebra with double negation. Then by Corol-
lary 3.5, (A,�,→, 0, 1) is a bounded hoop with (DNP). Thus by [1, Theorem 3.12], (A,�,→,′ , 0, 1)
is an MV -algebra.
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MV -algebra

BL-algebra

MTL-algebra Divisible RL

RL

∨-hoop

hoop

L-algebra

(Div)

(DN)

In the following, according to Subsections 3.1 and 3.2, we add some results about pseudo-MV-
algebras and pseudo BL-algebars:

Definition 3.20. [13, 12] A pseudo-BL algebra is a structure (A,∧,∨,�,→,⇝, 0, 1) where A is
a non-empty set, ∧, ∨, �,→, ⇝ are binary operations and 0, 1 are constant satisfying:
(PBL1) (A,∧,∨, 0, 1) is a bounded lattice;
(PBL2) (A,�, 1) is a monoid;
(PBL3) x� y ≤ z if and only if x ≤ y → z if and only if y ≤ x⇝ z;
(PBL4) x ∧ y = (x→ y)� x = x� (x⇝ y);
(PBL5) (x→ y) ∨ (y → x) = (x⇝ y) ∨ (y ⇝ x) = 1,
for all x, y ∈ A.

Theorem 3.21. Every pseudo BL-algebra is a pseudo-hoop.

Theorem 3.22. For any pseudo-BL-algebra (A,∧,∨,�,→,⇝, 0, 1), (A,→, 1) and (A,⇝, 1) are
L-algebras.

Proof. By Theorem 3.21 and Theorem 3.8, the proof is clear.

Definition 3.23. [22] A pseudo MV -algebra is an algebra (A;⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0)
such that the following axioms hold for all x, y, z ∈ A,
(PMV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(PMV2) x⊕ 0 = 0⊕ x = x,
(PMV3) x⊕ 1 = 1⊕ x = 1,
(PMV4) 1

− = 1∼ = 0,
(PMV5) (x

− ⊕ y−)∼ = (x∼ ⊕ y∼)−,
(PMV6) x⊕ (x∼ � y) = y ⊕ (y∼ � x) = (x� y−)⊕ y = (y � x−)⊕ x,
(PMV7) x� (x− ⊕ y) = (x⊕ y∼)� y,
(PMV8) (x

−)∼ = x,
where x� y = (x− � y−)∼.
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Theorem 3.24. Every pseudo MV -algebra is a pseudo BL-algebra.

Theorem 3.25. For any pseudo MV -algebra (A;⊕,−,∼, 0, 1), (A,→, 1) and (A,⇝, 1) are L-
algebras, where x→ y = x− ⊕ y and x⇝ y = x∼ ⊕ y.

Proof. By Theorems 3.24, 3.21 and 3.8, the proof is clear.

Chang introduced MV -algebras as an algebraic counterpart of many-valued reasoning. It
was recognized that every interval in a unital Abelian ℓ-group gives an example of MV -algebras.
Moreover, in [23, Example 5.1] we can see that:
Let G = (G,+,−, 0,∨,∧) be an arbitrary ℓ-group. For an arbitrary element u ∈ G, u ≥ 0 define
on the set G[u] = [0, u] the following operations:

x� y = (x− u+ y) ∧ 0, x→ y = (y − x+ u) ∧ u, and x⇝ y = (u− x+ y) ∧ u.

Then G[u] = (G[u],�,→,⇝, u) is a bounded Wajsberg pseudo-hoop that is term-wise equivalent
to a pseudo MV -algebra. So, we conclude the following proposition:

Proposition 3.26. Let G = (G,+,−, 0,∨,∧) be an arbitrary ℓ-group. For an arbitrary element
u ∈ G, u ≥ 0 define on the set G[u] = [0, u] the following operations:

x→ y = (y − x+ u) ∧ u,

for x, y ∈ G[u]. Then (G[u],→, u) is an L-algebra.

3.3 Relation with BCK(BCI)-algebras
In 1966, Imai and Iseki [27] introduced two classes of abstract algebras, BCK-algebras and BCI-
algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-
algebras. It is well known that the class of MV -algebras is a proper subclass of the class of
BCK-algebras. Therefore, both BCK-algebras and MV -algebras are important for the study of
fuzzy logic. These algebras have been intensively studied by many authors.

In this section, we investigate the relation between L-algebras and BCK-algebras. Since every
BCK-algebra is a BCI-algebra, the relation between L-algebra and BCI-algebra is clear.

Definition 3.27. [27] An algebraic structure (A,→, 1) of type (2, 0) is called a BCK-algebra if
for any x, y, z ∈ A the following conditions hold:
(BCK1) (x→ y) → ((y → z) → (x→ z)) = 1,
(BCK2) 1 → x = x,
(BCK3) x→ 1 = 1,
(L3) if x→ y = y → x = 1, then x = y.

Remark 3.28. Any BCK-algebra (A,→, 1) satisfies condition (Ex), that is x→ (y → z) = y →
(x→ z), for any x, y, z ∈ A (See [27]).

By the following examples we show that every L-algebra is not a BCK-algebra and vice versa,
in general.

Example 3.29. According to Example 3.7, (A,→, 1) is not a BCK-algebra, since (BCK1) is not
satisfied

(a→ b) → ((b→ c) → (a→ c)) = 1 → (c→ a) = 1 → a = a 6= 1.
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Example 3.30. Let (A = {a, b, c, 1},≤) be a poset with the following Hasse diagram;

1

a

b c

Define the operation → on A as follows:

→ a b c 1

a 1 a a 1
b 1 1 a 1
c 1 a 1 1
1 a b c 1

.

Then (A,→, 1) is a BCK-algebra which is not an L-algebra, since

(c→ a) → (c→ b) = 1 → a = a 6= 1 = a→ a = (a→ c) → (a→ b).

Theorem 3.31. [9] Any CL-algebra is a BCK-algebra.

Let (A,→, 1) be an L-algebra. Then, for any x, y ∈ A, the following condition is called
commutative.

(x→ y) → y = (y → x) → x. (Com)

Theorem 3.32. [9] Any commutative KL-algebra is a BCK-algebra.

Definition 3.33. [27] A BCK-algebra (A,→, 1) is called positive implicative if it satisfies condi-
tion

x→ (y → z) = (x→ y) → (x→ z), (pimpl)

and it is said to be implicative if

(x→ y) → x = x. (impl)

Proposition 3.34. [27] Let (A,→, 1) be a BCK-algebra. Then the following statements are
equivalent, for all x, y ∈ A:
(i) A is positive implicative,
(ii) x→ (x→ y) = x→ y,
(iii) ((x→ y) → y) → (x→ y) = x→ y.

Proposition 3.35. [27] A BCK-algebra is implicative if and only if it is both positive implicative
and commutative.

Proposition 3.36. [9] Any positive implicative BCK-algebra is a CL-algebra.

Corollary 3.37. [9] Any implicative BCK-algebra is a CL-algebra.
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Definition 3.38. [26] A BCK-algebra (A,→, 1) satisfying condition

x� y = min{z | x ≤ y → z} exists for all x, y ∈ A,

is called a BCK-algebra with product (BCK(P)-algebra, for short) and it is denoted by (A,�,→
, 1).

A BCK(P)-algebra (A,�,→, 1) is of Gödel type if x� x = x, for x ∈ A.

Proposition 3.39. [9] Let (A,�,→, 1) be a BCK(P)-algebra of Gödel type. Then (A,→, 1) is an
L-algebra.

3.4 Relation with BE, Hilbert and quantum B-algebras
In 2007, Kim and Kim [31] introduced the notion of BE-algebras, which is another generalization
of BCK-algebras. In recent years, the study of these structures has become particularly important
and has attracted the attention of many mathematicians.

In this section, we investigate the relation between L-algebras and BE, Hilbert and quantum
B-algebras.

Definition 3.40. [31] An algebraic structure (A,→, 1) is called a BE-algebra where 1 is a logical
unit and for any x, y, z ∈ A,

x→ (y → z) = y → (x→ z). (Ex) (6)

A BE-algebra (A,→, 1) is called a positive implicative if it satisfies condition

x→ (y → z) = (x→ y) → (x→ z). (pimpl)

Example 3.41. Let (A = {a, b, c, 1},≤) be a poset with the following Hasse diagram:

1

b

a c

Define the operation → on A as follows:

→ a b c 1

a 1 1 a 1
b a 1 c 1
c c 1 1 1
1 a b c 1

.

Then (A,→, 1) is an L-algebra which is not a BE-algebra, since (Ex) is not satisfied

a→ (c→ a) = a→ c = a 6= 1 = c→ 1 = c→ (a→ a).
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Example 3.42. Assume (A,→, 1) is an algebra as in Example 3.30. Then A is a BE-algebra
which is not an L-algebra, since (L) is not satisfied

(a→ b) → (a→ c) = a→ a = 1 6= a = 1 → a = (b→ a) → (b→ c).

Proposition 3.43. [9] Any commutative positive implicative BE-algebra (A,→, 1) is an L-algebra.

Definition 3.44. [33] An algebraic structure (A,→, 1) satisfying the axioms:
(H1) x→ (y → x) = 1,
(H2) (x→ (y → z)) → ((x→ y) → (x→ z)) = 1,
(H3) if x→ y = y → x = 1, then x = y,
is called a Hilbert algebra.

Proposition 3.45. [26] Any Hilbert algebra and positive implicative BCK-algebra are equivalent.

Proposition 3.46. [33] Any Hilbert algebra and commutative positive implicative BE-algebra are
equivalent.

Example 3.47. According to Example 3.41, (A,→, 1) is not a Hilbert algebra, since

a→ (c→ a) = a→ c = a 6= 1.

Corollary 3.48. [9] Any Hilbert algebra is a KL-algebra.

Corollary 3.49. [9] Any Hilbert algebra is a CL-algebra.

Proof. By Corollary 3.48 and Proposition 3.45(iii) the proof is clear.

Definition 3.50. [37] The commutative quantum B-algebra is an algebraic structure (A,≤,→),
where (A,≤) is a partial order set with a binary operation → satisfying the following conditions,
for all x, y, z ∈ A:
(QB1) y → z ≤ (x→ y) → (x→ z),
(QB2) y ≤ z implies x→ y ≤ x→ z,
(QB3) x ≤ y → z iff y ≤ x→ z.
If there is an element 1 ∈ A such that 1 → x = x, for all x ∈ A, then A is called unital.

If A satisfies condition x → x = 1, then it is a commutative normal quantum B-algebra. If
x→ 1 = 1, for all x ∈ A, then A is a commutative integral quantum B-algebra. An integral quantum
B-algebra is normal. Note that in the case of quantum B-algebras the notion of commutativity
differs from the one used in the present paper.

Proposition 3.51. [9] Any CL-algebra is a commutative integral quantum B-algebra.

3.5 Relation with equality and EQ-algebras
A new structure, called equality algebra, is introduced by Jenei in [28]. The basic idea for examining
equations of equality algebra is taken from EQ-algebras of Novák et al. [32]. The equality algebra
has two connectives, a meet operation and an equivalence, and a constant. Given that equality
algebra can be considered as corresponding algebras with fuzzy type theory, it is important to
study this field. Other mathematicians studied the relation between equality algebra and BCK-
meet semilattice and they proved that every BCK(D)-meet semilattice and equality algebra are
equivalent.

In this section, we study the relation among L-algebras, equality algebras and EQ-algebras.



Relations between L-algebras and other logical algebras 39

Definition 3.52. [29] An algebraic structure (A,∧,∼, 1) of type (2, 2, 0) is called an equality
algebra if for any x, y, z ∈ A the following statements hold:
(E1) (A,∧, 1) is a commutative idempotent monoid (i.e. meet semilattice with top element 1).
(E2) x ∼ y = y ∼ x.
(E3) x ∼ x = 1.
(E4) x ∼ 1 = x.
(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y.
(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z).
(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).

The operation ∧ is called meet (infimum) and ∼ is an equality operation. We write x ≤ y if
and only if x ∧ y = x, as usual. Define the following two derived operations, the implication and
the equivalence operation of the equality algebra by,

x→ y = x ∼ (x ∧ y) and x↔ y = (x→ y) ∧ (y → x).

Theorem 3.53. [29, 46] The following two statements hold:
(i) For any equality algebra A = (A,∧,∼, 1), ψ(A) = (A,∧,→, 1) is a BCK-meet-semilattice,
where x→ y = (x ∧ y) ∼ x, for any x, y ∈ A.
(ii) For any BCK-meet-semilattice L = (A,∧,→, 1) such that, for any x, y, z ∈ A, x → (y ∧ z) =
(x → y) ∧ (x → z), we get that φ(A) = (A,∧,↔, 1) is an equality algebra, where x ↔ y = (x →
y) ∧ (y → x). Moreover, the implication of φ(A) coincides with →, that is x→ y = x↔ (x ∧ y).

Theorem 3.54. Let (A,→, 0, 1) be a bounded semi-regular L-algebra with negation. Then the
structure ψ(A) = (A,∧,↔, 1) is an equality algebra, where x ↔ y = (x → y) ∧ (y → x) and
x ∧ y = ((x→ y) → x′)∼, for x, y ∈ A.

Proof. Let (A,→, 0, 1) be a bounded semi-regular L-algebra with negation. Then by Corollary 3.5,
(A,→,�, 0, 1) is a hoop and by [1, Theorem 3.28], ψ(A) = (A,∧,↔, 1) is an equality algebra.

Clearly, any L-algebra is not an equality algebra, in general. The following example shows that
every equality algebra is not an L-algebra, too.

Example 3.55. Let (A = {0, a, b, c, d, 1},≤, 0, 1) with the next Hasse diagram. Define two opera-

0

ba

c

d

1



40 M. Aaly Kologani

tions ∼ and → on A as follows:

∼ 0 a b c d 1

0 1 d d d c 0
a d 1 c d c a
b d c 1 d c b
c d d d 1 d c
d c c c d 1 d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 1 1
b d d 1 1 1 1
c d d d 1 1 1
d c c c d 1 1
1 0 a b c d 1

.

Then (A,∧,∼, 1) is an equality algebra which is not an L-algebra, since (L) is not satisfies

(a→ d) → (a→ b) = 1 → d = d 6= 1 = c→ c = (d→ a) → (d→ b).

Theorem 3.56. Consider (A,∧,∼, 1) be an involutive equality algebra and x� y = (x→ y′)′ and
x∧y = x�(x→ y), for any x, y ∈ A. Then (A,�,→, 1) is a hoop and so (A,→, 1) is an L-algebra.

Proof. By [1, Theorem 3.29] and Theorem 3.8, the proof is clear.

Theorem 3.57. Let (A,∧,∼, 1) be an equality algebra and x � y = x ∧ y, for any x, y ∈ A. If
(x� y) → z = x→ (y → z), then (A,→, 1) is an L-algebra.

Proof. By [1, Theorem 3.30] and Theorem 3.8, the proof is clear.

Definition 3.58. [29] An algebraic structure (A,∧,�,∼, 1) of type (2, 2, 2, 0) is called an EQ-
algebra if for any x, y, z, w ∈ A the following statements hold:
(EQ1) (A,∧, 1) is a commutative idempotent monoid(i.e. meet semilattice with top element 1).
(EQ2) (A,�, 1) is a monoid such that the operation � is isotone.
(EQ3) x ∼ x = 1.
(EQ4) ((x ∧ y) ∼ z)� (w ∼ x) ≤ z ∼ (w ∧ y).
(EQ5) (x ∼ y)� (z ∼ w) ≤ (x ∼ z) ∼ (y ∼ w).
(EQ6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x.
(EQ7) x� y ≤ x ∼ y.

The operations ∧, �, and ∼ are called meet, multiplication, and fuzzy equality, respectively.
For any a, b ∈ A, we set a ≤ b if and only if a ∧ b = a and we defined the binary operation
implication on A by, a→ b = (a ∧ b) ∼ a. Also, in particular 1 → a = 1 ∼ a = ã. If A contains a
bottom element 0, we denote it by BEQ-algebra and then an unary operation ′ is defined on A by
a′ = a ∼ 0.

An EQ-algebra is good if x ∼ 1 = x.

Theorem 3.59. [46] Every good EQ-algebra (A,∧,�,∼, 1) is an equality algebra.

Example 3.60. Let (A = {0, a, b, 1},≤) be a chain where 0 ≤ a ≤ b ≤ 1. Define the operations
�, ∼ and → on A as follows:

� 0 a b 1

0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1

0 1 a a a
a a 1 b b
b a b 1 1
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b a b 1 1
1 0 a b 1

.
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Then (A,∧,�,∼, 0, 1) is an EQ-algebra which is not an L-algebra, since (L) is not satisfied

(b→ a) → (b→ 0) = b→ a = b 6= a = 1 → a = (a→ b) → (a→ 0).

Corollary 3.61. Assume (A,→, 0, 1) is a bounded semi-regular L-algebra with negation. Then
the structure ψ(A) = (A,∧,�,↔, 1) is an EQ-algebra, where x ↔ y = (x → y) ∧ (y → x) and
x↔ 1 = x, for x, y ∈ A.

Proof. By Corollary 3.5 and [1, Corollary 3.33], the proof is clear.

Corollary 3.62. Consider (A,∧,�,∼, 1) be an involutive good EQ-algebra where x�y = (x→ y′)′

and x ∧ y = x � (x → y), for any x, y ∈ A. Then (A,�,→, 1) is a hoop and so (A,→, 1) is an
L-algebra.

Corollary 3.63. Let (A,∧,�,∼, 1) be a good EQ-algebra where x� y = x ∧ y, for any x, y ∈ A.
If (x� y) → z = x→ (y → z), then (A,→, 1) is an L-algebra, where x→ y = (x ∧ y) ∼ x.

3.6 Relation with basic algebra
Basic algebras, which generalize both MV -algebras and orthomodular lattices, were introduced
by Chajda in [7, 6] as a common base for axiomatization of many-valued propositional logics as
well as of the logic of quantum mechanics. The relationship between basic algebras, MV -algebras,
orthomodular lattices and lattice-ordered effect algebras was considered in Botur [4].

Definition 3.64. [42] A basic algebra is an algebraic structure A = (A,⊕,¬, 0) of type (2, 1, 0)
satisfying the following identities:
(BA1) x⊕ 0 = x,
(BA2) ¬¬x = x,
(BA3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
(BA4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0,
for any x, y, z ∈ A. For the sake of brevity, we denote by 1 := ¬0.

Let A = (A,⊕,¬, 0) be a basic algebra. The relation ≤ defined by

x ≤ y if and only if ¬x⊕ y = 1

is a partial order on A such that 0 and 1 are the least and the greatest element of A, respectively.

Definition 3.65. [18] An effect algebra is a system (A,+, 0, 1) consisting of a set A with two
special elements 0, 1 ∈ A, called the zero and the unit, and with a partially defined binary operation
+ satisfying the following conditions for all x, y, z ∈ A:
(E1) (Commutative law) If x+ y is defined, then y + x is defined and x+ y = y + x.
(E2) (Associative law) If x+ y and (x+ y) + z are defined, then y + z and x+ (y + z) are defined
and (x+ y) + z = x+ (y + z).
(E3) (Orthosupplement law) For every x ∈ A, there exists a unique y ∈ A such that x+y is defined
and x+ y = 1. The unique element y is written as x′ and called the orthosupplement of x.
(E4) (Zero-one law) If x+ 1 is defined, then x = 0.
Let (A,+, 0, 1) be an effect algebra. Define a binary relation on A by a ≤ b if for some c ∈ A,
c+a = b, which is a partial order on A such that 0 and 1 are the smallest element and the greatest
element of A, respectively. If the poset (A,≤) is a lattice, then A is called a lattice-ordered effect
algebra (LO-effect algebra for short).
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Theorem 3.66. [5] Let A = (A,+, 0, 1) be a lattice-ordered effect algebra. Define

x⊕ y := (x ∧ y′) + y and ¬x := x′.

Then, B(A) = (A,⊕,¬, 0) is a basic algebra (whose lattice order coincides with the original one).

Define x→ y := (x ∧ y) + x′.

Proposition 3.67. [42] Let (A,+, 0, 1) be a lattice-ordered effect algebra. Then (A,→, 0, 1) is an
L-algebra with negation, where

x→ y := (x ∧ y) + x′.

The following example shows that every basic algebra is not an L-algebra, in general.

Example 3.68. Let (A = {0, a, b, a′, b′, 1},≤, 0, 1) be a bounded lattice with the next Hasse diagram.

0

b′a

b a′

1

Consider the operation ⊕ as follows:

⊕ 0 a b b′ a′ 1

0 0 a b b′ a′ 1
a a a b a′ 1 1
b b a b 1 1 1
b′ b′ b 1 b′ a′ 1
a′ a′ 1 1 b′ a′ 1
1 1 1 1 1 1 1

.

Then, (A,⊕,¬, 0) is a basic algebra, where ¬x = x′, but (A,→, 1) is not an L-algebra since

(b→ a) → (b→ 0) = a′ → a′ = 1 6= a′ = 1 → a′ = (a→ b) → (a→ 0),

where x→ y := (x ∧ y)⊕ x′.

Theorem 3.69. [42] Let (A,⊕,¬, 0) be a basic algebra which satisfies the following condition:

(z ⊕ ¬x)⊕ ¬(y ⊕ ¬x) = (z ⊕ ¬y)⊕ ¬(x⊕ ¬y).

Then, (A,→,¬0) is an L-algebra, where x→ y := (x ∧ y)⊕ ¬x.

Theorem 3.70. [42] Let (A,→, 0, 1) be a bounded L-algebra, where x ≤ y if and only if x→ y = 1
such that (A,≤) is a bounded lattice, where x′ = x → 0 and x′′ = x. Define x ⊕ y := y′ → x and
¬x := x′. If (A,⊕,¬, 0) is a basic algebra, then A must be a lattice ordered effect algebra.
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Proposition 3.71. [45] Let (A,→, 0, 1) be a bounded L-algebra with negation and x′ denote x→ 0.
Then the following conditions are equivalent for all x, y, z ∈ A, whenever the meets and joins exist
(The condition (2) holds).
(i) If x ≤ y, then y → x = x′ → y′,
(ii) ((y → x) → y′) → x′ = x→ y,
(iii) (y′ ∨ x′) → x′ = x→ y and x→ (x ∧ y) = x→ y,
(iv) (x′ → y′) → x = x′ → (x′ → y′)′,
(v) ((y ∨ z) → z)′ → (x′ ∧ z′) = z′ → ((y ∨ z) → (x′ ∧ z′)) and if x′ = 0, then x = 1,
(vi) if x ≤ y′ and y′ → x ≤ z′, then x′ → (z′ → y) = z′ → (y′ → x),
(vii) (x ∧ y′)′ → (y′ → ((y′ → x)′ ∧ z)) = ((y′ → x)′ ∧ z)′ → (y′ → x).

Definition 3.72. [45] We call (A,→, 0, 1) an LE − L-algebra, if it is an L-algebra with 0 and
satisfies one of the equivalent conditions of Proposition 3.71

Theorem 3.73. [45] A lattice-ordered effect algebra can be regarded as an LE − L-algebra. Con-
versely, an LE − L-algebra can be converted into a lattice-ordered effect algebra.

Theorem 3.74. [45] E(L(X)) = X and L(E(A)) = A, where (X,⊕, 0, 1) is a lattice-ordered effect
algebra, (A,→, 1) is an LE − L-algebra.

Definition 3.75. [30] Recall that an orthomodular lattice (OML) is a structure (A,≤,′ , 0, 1), where
(A,≤, 0, 1) is a bounded lattice, ′ is a unary operation on A such that the following conditions are
satisfied, for all x, y ∈ A:
(O1) x′′ = x,
(O2) if x ≤ y, then y′ ≤ x′,
(O3) x ∨ x′ = 1,
(O4) x ∧ x′ = 0,
(O5) if x ≤ y, then y = x ∨ (x′ ∧ y).

If A satisfies all the above properties except possibly (O5), then A is called an ortholattice (OL).

Definition 3.76. [44] An orthomodular lattice (OML) is an ortholattice satisfying (O5).

Definition 3.77. [44] We call (A,→, 0, 1) an OM − L-algebra, if it is a bounded L-algebra and
satisfies the following condition:

x′ ≤ y implies y → x = x.

Proposition 3.78. [44] Every OM − L-algebra is an orthomodular lattice, and vice versa.

Theorem 3.79. [45] (A,�,′ , 1) is an MV -algebra if and only if (A,→, 0, 1) is a bounded L-algebra
and satisfies the following condition:

x→ y = y′ → x′.

Theorem 3.80. [45] (A,→, 0, 1) is an OM −L-algebra if and only if A is an LE−L-algebra and
satisfies the following condition:

x ≤ x′ if and only if x = 0.

Corollary 3.81. [45] A lattice-ordered effect algebra is an OML if and only if

x ≤ x′ if and only if x = 0.
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Theorem 3.82. [44] Every orthomodular lattice (A,≤,′ , 0, 1) gives rise to an L-algebra (A,→, 1).

Theorem 3.83. [44] Let (A,→, 0, 1) be an OM − L-algebra. Then, (A,≤,′ , 0, 1) is an OML.
This lattice is denoted by L(A) and call it the associated orthomodular lattice of A.

Proposition 3.84. [44] A(L(X)) = X and L(A(A)) = A, where X is an OM − L-algebra, and
A is an OML.

Proposition 3.85. [44] An OM −L-algebra can be regarded as an OML-algebra. Conversely, an
OML-algebra can be converted into an OM − L-algebra.

Theorem 3.86. [44] Let (A,→, 0, 1) be a bounded L-algebra. Then, (A,→, 0, 1) is an OM − L-
algebra if and only if A satisfies (O1), (O2) and

x′ ≤ y if and only if x→ y = y,

for all x, y ∈ A.

An OM − L-algebra (A,→, 0, 1) is called an OM −KL-algebra, if it satisfies (K).

Theorem 3.87. [44] (A,→, 0, 1) is an OM −KL-algebra if and only if A is a Boolean algebra.

Corollary 3.88. [44] Let (A,→, 0, 1) be an OM −L-algebra. Then, A is a Boolean algebra if and
only if

(x→ y) ∨ (x→ y′) = 1,

for all x, y ∈ A.

LO-effect algebra

Basic algebra

L-algebra

MV -algebra OML-algebra

4 Conclusion
The aim of this paper was to study the relations between L-algebras and other logical algebras
such as residuated lattice, Hilbert and MTL-algebras, etc. In this way, we can see under what
conditions L-algebras are equivalent to these logical algebras. So, many results that are proved for
these logical algebras, hold for L-algebras.
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