Relations between L-algebras and other logical algebras

Document Type : Original Article

Author

Hatef Higher Education Institute, Zahedan, Iran

Abstract

In this paper, by considering the notion of L-algebra,  we show that there are relations between L-algebras and some of other logical algebras such as residuated lattices, MTL-algebras, BL-algebras, MV-algebras, BCK-algebras, equality algebras, EQ-algebras and Hilbert algebras. The  aim of this paper is to find  under what conditions L-algebras are equivalent to these logical algebras.

Keywords


[1] R.A. Borzooei, M. Aaly Kologani, Results on hoops, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1) (2020), 61–77.
[2] B. Bosbach, Komplementäre halbgruppen. Axiomatik und arithmetik, Fundamenta Mathematicae, 64 (1969), 257–287.
[3] B. Bosbach, Komplementäre halbgruppen. Kongruenzen and quotienten, Fundamenta Mathematicae, 69 (1970), 1–14.
[4] M. Botur, An example of a commutative basic algebra which is not an MV-algebra, Mathematica Slovaca, 60(2) (2010), 171–178.
[5] I. Chajda, Basic algebras and their applications, An overview. Contributions to general algebra, Vol 20. Heyn, Klagenfurt, (2012), 1–10.
[6] I. Chajda, R. Halaš, J. Kühr, Semilattice structure, Heldermann Verlag, Lemgo, 2007.
[7] I. Chajda, R. Halaš, J. Kühr, Many-valued quantum algebras, Algebra Universalis, 60(1) (2009), 63–90.
[8] C.C. Chang, Algebraic analysis of many-vlaued logics, Transactions of the AMS - American Mathematical Society, 88 (1958), 467–490.
[9] L.C. Ciungu, Results in L-algebra, Algebra Universalis, 82 (2021), 7–18.
[10] R.P. Dilworth, Abstract residuation over lattices, Bulletin of the AMS - American Mathematical Society, 44 (1938), 262–268.
[11] R.P. Dilworth, Non-commutative residuated lattices, Transactions of the American Mathematical Society, 46 (1939), 426–444.
[12] A. Di Nola, Pseudo-BL algebras: part II, Multi- Valued Logic, 8 (2002), 717–750.
[13] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: part I, Multi-Valued Logic, 8 (5-6) (2002), 673–716.
[14] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: P.P. Kulish (Ed.), Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, Vol. 1510, Springer, Berlin, 1992.
[15] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left continuoust-norms, Fuzzy Sets and Systems, 124 (2001), 271–288.
[16] P. Etingof, Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Communications in Algebra, 31(4) (2003), 1961–1973.
[17] P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Mathematical Journal, 100 (1999), 169–209.
[18] D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Foundations of Physics, 24(10) (1994), 1331–1352.
[19] T. Gateva-Ivanova, Noetherian properties of skew-polynomial rings with binomial relations, Transactions of the AMS - American Mathematical Society, 343 (1994), 203–219.
[20] T. Gateva-Ivanova, Skew polynomial rings with binomial relations, Journal of Algebra, 185 (1996), 710–753.
[21] T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, Journal of Algebra, 206 (1998), 97–112.
[22] G. Georgescu, A. Iorgulescu, Pseudo MV-algebras, Multiple-Valued Logics, 6 (2001), 193–215.
[23] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of Multiple-Valued logic and Soft Computing, 11(1-2) (2005), 153–184.
[24] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998.
[25] U. Höhle, Residuated l-monoids, in non-classical logics and their applications to fuzzy subsets, A Handbook of the Mathematical Foundations of Fuzzy Set Theory (Eds. U. Höhle and E.P. Klement), Kluwer, Boston, 1994.
[26] A. Iorgulescu, Algebras of logic as BCK-algebras, Bucharest: Editura ASE, 2008. [27] K. Isèki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 2(3) (1978), 1–26.
[28] S. Jenei, Equality algebras, Proceeding of CINTI 2010 conference-11th IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 2010.
[29] S. Jenei, Equality algebras, Studia Logica, 100 (2012), 1201–1209.
[30] G. Kalmbach, Othomodular lattices, Acad. Press, London, 1983.
[31] H.S. Kim, Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 6(6) (2007), 113– 116.
[32] V. Novák, B. De Baets, EQ-algebras, Fuzzy Sets and Systems, 160(2) (2009), 2956–2978.
[33] A. Rezaei, A. Borumand Saeid, R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Applied Mathematics, 8 (2013), 573–584.
[34] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Advances in Mathematics, 193 (2005), 40–55.
[35] W. Rump, L-algebras, self-similarity, and ℓ-groups, Journal of Algebra, 320 (2008), 2328– 2348.
[36] W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, Journal of Algebra and Its Applications, 7 (2008), 471–490.
[37] W. Rump, Quantum B-algebras, Central European Journal of Mathematics, 1(1) (2013), 1881–1899.
[38] W. Rump, Y. Yang, Interval in ℓ-groups as L-algebras, Algebra Universalis, 67(2) (2012), 121–130.
[39] J. Tate, M. Van den Bergh, Homological properties of Sklyanin algebras, Inventiones Mathematicae, 124 (1996), 619–647.
[40] T. Traczyk, On the structure of BCK-algebras with zxyx = zyxy, Mathematica Japonica, 33 (1988), 319–324.
[41] A.P. Veselov, Yang-Baxter maps and integral dynamics, Preprint.
[42] J. Wang, Y. Wu, Y. Yang, Basic algebras and L-algebras, Soft Computing, 24 (2020), 14327– 14332.
[43] M. Ward, R.P. Dilworth, Residuated lattices, Transactions of the American Mathematical Society, 45(3) (1939), 335–354.
[44] Y.L. Wu, W. Rump, Y.C. Yang, Orthomodular lattices as L-algebras, Soft Computing, 24 (2020), 14391–14400.
[45] Y.L. Wu, J. Wang, Y.C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets and Systems, 369 (2019), 103–113.
[46] F. Zebardast, R.A. Borzooei, M. Aaly Kologani, Results on equality algebras, Information Sciences, 381 (2017), 270–282.