n-fold 2-nilpotent(solvable) ideal of a BCK-algebra

E. Mohammadzadeh ${ }^{1}$ and F. Mohammadzadeh ${ }^{2}$
1,2 Department of Mathematics, Faculty of Science, Payame Noor University, 19395-3697, Tehran, Iran

mohamadzadeh@pnu.ac.ir, f.mohammadzadeh@pnu.ac.ir

Abstract

In this paper, first we introduce the notions of k nilpotent (solvable) ideals and k-nilpotent BCK-algebras. Specially, we show that every commutative ideal is 1nilpotent (solvable). Second, we state an equivalent condition to k-nilpotency (solvablity) ideals and BCKalgebra. Finally, we study n-fold 2 -nilpotent (solvable) ideals and BCK-algebras as a generalization of n-fold commutative ideals and BCK-algebras, and we study the relation between these two concepts. Basically, we compare 2-nilpotent and solvable ideals (BCK-algebras).

Article Information

Corresponding Author:
E. Mohammadzadeh;

Received: October 2022;
Revised: January 2023;
Accepted: January 2023;
Paper type: Original.

Keywords:

BCK-algebra, ideal, nilpotent (solvable) BCK-algebra.

1 Introduction

In 1966, Y. Imai and K. Iseki [2, 4], defined an algebra of type (2, 0), also known as BCK-algebra, as a generalization of the notion of algebra sets with the subtraction set with only a fundamental, non-nullary operation and the notion of implication algebra [3, 5] on the other hand. Since then many scholars have studied in this area. It has been used in other branches of mathematics such as hyperstructures and fuzzy sets, too (see [6, 7]).
Nilpotency is a vital concept is used in structures such as groups and rings. Different types of commutators of BCI-algebras are defined. Najafi and et.all [9], introduced the notion of commutators in a BCI-algebra to study solvable BCI-algebras. Then, we defined nilpotent BCI-algebras by a new definition of commutators $[8]$. Now, we redefine the notions of commutators and introduce k-nilpotent BCK-algebras. In particular, with an example, we show that these two notions are different. In addition, we try to generalize the concept of commutative ideals of BCK-algebras to k-nilpotent(solvable) ideals of BCK-algebras and we get some main results on k-nilpotent BCKalgebras. Then, using ideals we characterize nilpotent BCK-algebras. We extend some results of
https://doi.org/10.52547/HATEF.JAHLA.3.4.6
n-fold commutative ideals to n-fold 2-nilpotent(solvable) ideals. Finally, we show that every n-fold 2-nilpotent ideal is solvable, but the converse is not valid.

2 Preliminary

Definition 2.1. An algebra $(X, *, 0)$ of type (2, 0) is called a BCI-algebra, if for any $x, y, z \in X$, the following conditions hold.
(I1) $((x * y) *(x * z)) *(z * y)=0$,
(I2) $(x *(x * y)) * y=0$,
(I3) $x * x=0$,
(I4) $x * y=y * x=0 \quad$ implies $x=y$.
Adding the condition $0 * x=0$, make X a BCK-algebra.
For a BCK-algebra X, the order \leq is defined as follows:

$$
x \leq y \Leftrightarrow x * y=0 .
$$

Theorem 2.2. 10] Suppose that X is a BCK-algebra and x, y, z are arbitrary elements of X. Then we have the following statements.
(i) $(x * y) * z=(x * z) * y$,
(ii) $x * y \leq x$,
(iii) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$,
(iv) $x * 0=x$.

Definition 2.3. A non-empty subset I of BCK-algebra X is called
(i) an ideal (we write $I \triangleleft X$) if $0 \in I$ and for any $x, y \in X$ if $x * y \in I$ and $y \in I$, then $x \in I$.
(ii) a subalgebra of X if $x * y \in I$, whenever $x, y \in I$.

A BCK-algebra X is said to be commutative if it satisfies $x *(x * y)=y *(y * x)$ for any $x, y \in X$.

Definition 2.4. Let S be a subset of a BCK-algebra X. We call the least ideal of X containing S, the generated ideal of X by S, denoted by $\langle S\rangle$.

Note. From now on, let $(X, *, 0)$ be a BCK-algebra unless we notify.
Definition 2.5. 8] Let $[x, y]=(y *(y * x)) *(x *(x * y))$, for any $x, y \in X, V_{1}(X)=[X, X]=$ $\langle\{[x, y]$ for any $x, y \in X\}\rangle$ and for any $k \in \mathbb{N}$,

$$
V_{k}(X)=\left[V_{k-1}(X), V_{k-1}(X)\right] .
$$

The BCK-algebra X is called k-solvable if $V_{k}(X)=\{0\}$. We use kSBCK for the set of all k-solvable BCK algebras.

Definition 2.6. 8] Let $Z_{0}(X)=\{0\}, Z_{1}(X)=\langle\{x \in X:[x, y]=0$, for any $y \in X\}\rangle$ and for any $k \in \mathbb{N}$,

$$
Z_{k}(X)=\left\langle\left\{x \in X:\left[\left[\left[x, y_{1}\right], y_{2}\right], \ldots, y_{k}\right]=0, \text { for any } y_{1}, y_{2}, \ldots, y_{k} \in X\right\}\right\rangle
$$

The BCK-algebra X is called nilpotent of class k if $Z_{k}(X)=X$.
Definition 2.7. 10 Let $I \subseteq X, x, y \in X$ and $z \in I$. Then I is called a commutative ideal of X if $0 \in I$ and $(x y) z \in I$ implies $x(y(y x)) \in I$.

$3 k$-nilpotent BCK-algebras

In this section, we redefine a nilpotent BCK-algebra to introduce nilpotent ideals. In addition, we introduce k-nilpotent BCK-algebras. Then we state an equivalent condition to k-nilpotency of a BCK-algebra. Although most of the results on nilpotent BCK-algebras are valid with this new definition, with an example we show that these are not the same.

Note. From now on, let $x_{1}, x_{2}, \ldots, x_{k}$ be arbitrary elements of BCK-algebra X and $n, k \in \mathbb{N}$, unless we notify. Also, for any $x, y \in X$, we use $x y$ and $\mathbf{0}$ instead of $x * y$ and zero ideal of X, respectively.

We consider $A_{1}=\left[x_{1}\right]=x_{1}$ and we define the commutator of x_{2} and x_{1}, by $A_{2}=\left[x_{2}, x_{1}\right]=$ $\left(x_{1}\left(x_{1} x_{2}\right)\right)\left(x_{2}\left(x_{2} x_{1}\right)\right)$ and inductively for any $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in X$, we have

$$
A_{k}=\left[x_{k},\left[x_{k-1}, \ldots,\left[x_{3},\left[x_{2}, x_{1}\right]\right] \ldots\right], C_{k}=\left[y_{k},\left[y_{k-1}, \ldots,\left[y_{3},\left[y_{2}, y_{1}\right]\right] \ldots\right] .\right.\right.
$$

Definition 3.1. Let $S_{0}(X)=\{0\}, S_{1}(X)=\{x \in X:[y, x]=0$, for any $y \in X\}$ and for any $k \in \mathbb{N}$,

$$
S_{k}(X)=\left\{x \in X:\left[y_{k},, \ldots,\left[y_{2},\left[y_{1}, x\right]\right] \ldots\right]=0, \text { for any } y_{1}, y_{2}, \ldots, y_{k} \in X\right\}
$$

The BCK-algebra X is called k-nilpotent if $S_{k}(X)=X$. We use kNBCK for the set of all k-nilpotent BCK algebras.

Remark 3.2. If $X \in$ kNBCK, then $X \in k S B C K$.
By the following two examples, we state a difference between $k N B C K$ and the definition of nilpotency in $[8]$. Also, we see that the converse of Remark 3.2, is not valid.

Example 3.3. Let $X=[0,1]$ and operation " $*$ " be given by:

$$
x * y=\left\{\begin{array}{lc}
0, & x \leq y \\
x, & \text { otherwise }
\end{array}\right.
$$

Then $(X, *, 0)$ is a BCK-algebra. If $x, y \in X$ such that $x \leq y$, then $[x, y]=0$ and so $[y, x]=$ $(x(x y))(y(y x))=x(y(y x))=x$. From $x \leq y$, we get $[y, \ldots,[y,[y, x]] \ldots]=x \neq 0$. Therefore, $X \notin \mathrm{kNBCK}$ for some $k \in \mathbb{N}$. On the other hand if $x \leq y$, then $[y, x]=x$ and so $[[y, x], x]=[x, x]=0$ and $[[y, x], y]=[x, y]=0$. Consequently, X is nilpotent by Definition 2.6.

Theorem 3.4. [1] Every finite BCK-algebra is solvable.
Example 3.5. Assume $(X, *, 0)$, where $X=\{0,1,2, \ldots, n\}(n \in \mathbb{N})$ and the operation $*$ is as Example 3.3. Then by Theorem 3.4, X is solvable. Similar to Example 3.5, X is not k-nilpotent. Therefore, every solvable BCK-algebra is not k-nilpotent while the converse is holds by Remark 3.2.

Theorem 3.6. X is a commutative BCK-algebra if and only if $X \in 1 N B C K(X \in 1 S B C K$.).
Proof. X is a commutative BCK-algebra if and only if for any $x, y \in X, x(x y)=y(y x)$ if and only if $[x, y]=0$ if and only if $S_{1}(X)=X$ if and only if $X \in 1 N B C K$.

Theorem 3.7. $X \in$ kNBCK if and only if for any $y_{1}, y_{2}, \ldots, y_{k} \in X,\left[y_{k}, \ldots,\left[y_{2},\left[y_{1}, x\right]\right] \ldots\right]=0$.
Proof. By Definition 3.1, $X \in$ kNBCK if and only if $S_{k}(X)=X$ if and only if for any $y_{1}, y_{2}, \ldots, y_{k} \in$ $X,\left[y_{k},, \ldots,\left[y_{2},\left[y_{1}, x\right]\right] \ldots\right]=0$.

Example 3.8. Let $X=\{0,1,2\}$. Define the operation " *" on X as follows. Then $X \in 1$ NBCK.

$*$	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Theorem 3.9. $\left[X, S_{k}(X)\right] \subseteq S_{k-1}(X)$.
Proof. Consider $x \in S_{k}(X)$. Then by Theorem 3.7, for any $y_{1}, y_{2}, \ldots, y_{k} \in X$, we have $\left[y_{k},, \ldots,\left[y_{2},\left[y_{1}, x\right]\right] \ldots\right]=$ 0 , i.e $\left[y_{1}, x\right] \in S_{k-1}(X)$. Therefore, $\left[X, S_{k}(X)\right] \subseteq S_{k-1}(X)$.
Theorem 3.10. If $X \in k N B C K$, then $X \in(k+1) N B C K$.
Proof. Assume x_{1}, \ldots, x_{k} are arbitrary elements of X. By $X \in k N B C K$, we get

$$
\left[\left[x_{k}, \ldots,\left[x_{3},\left[x_{2}, x_{1}\right]\right] \ldots\right]=0\right.
$$

Then

$$
\left[x_{k+1},\left[x_{k}, \ldots,\left[x_{3},\left[x_{2}, x_{1}\right]\right] \ldots\right]\right]=\left[x_{k+1}, A_{k}\right]=\left[x_{k+1}, 0\right]=0
$$

Therefore, $X \in(k+1) N B C K$.
It is interesting that k NBCKs have almost the same properties as nilpotent BCK-algebras of class k that were introduced in Definition 2.6. In what follows, we state some of them. Since the proofs are similar to the ones in [8], we omit the proofs.

Let $(X, *, 0)$ and $\left(Y, \cdot, 0^{\prime}\right)$ be two BCK-algebras. A mapping f from $(X, *, 0)$ to $\left(Y, \cdot, 0^{\prime}\right)$ is called a homomorphism of BCK-algebras if for any $x, y \in X, f(x * y)=f(x) \cdot f(y)$. Also, $X \times Y$ with the operation \bullet is a BCK-algebra where

$$
\left(x_{1}, y_{1}\right) \bullet\left(x_{2}, y_{2}\right)=\left(x_{1} * x_{2}, y_{1} \cdot y_{2}\right)
$$

for any $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$ (see 10]).
Theorem 3.11. Let $f: X \rightarrow Y$ be an isomorphism of BCK-algebras. Then $X \in \mathrm{kNBCK}$ if and only if $Y \in$ kNBCK.

Proof. Since f is an isomorphism for any $y_{i} \in Y$ there exist $x_{i} \in X$ such that $f\left(x_{i}\right)=y_{i}(1 \leq i \leq k)$. Then,

$$
\left.\left[y_{k}, \ldots,\left[y_{3},\left[y_{2}, y_{1}\right]\right] \ldots\right]=\left[f\left(x_{k}\right), \ldots,\left[f\left(x_{3}\right),\left[f\left(x_{2}\right), f\left(x_{1}\right)\right]\right] \ldots\right]=f\left[x_{k}, \ldots, x_{3},\left[x_{2}, x_{1}\right]\right] \ldots\right] .
$$

If $X \in$ kNBCK, then $\left.\left.0=f(0)=f\left[x_{k}, \ldots, x_{3},\left[x_{2}, x_{1}\right]\right] \ldots\right]=\left[y_{k}, \ldots, y_{3},\left[y_{2}, y_{1}\right]\right] \ldots\right]$. Therefore, $Y \in$ kNBCK. Similarly, we have the converse.

Corollary 3.12. . If $X \in k N B C K$, then any subalgebra of X is k-nilpotent. Also if $I \unlhd X$, then $X / I \in k N B C K$.

Lemma 3.13. $X / S_{1}(X) \in n N B C K$ if and only if $X \in(n+1) N B C K$.
Theorem 3.14. Let $I \unlhd X$ and $n, m \in N$. If $I \in m N B C K$ and $X / I \in n N B C K$, then $X \in$ $(n+m) N B C K$.

Lemma 3.15. Let $X \in n N B C K$ and M be a non-trivial ideal of X. Then $M \bigcap S(X) \neq 0$.

Proof. First note that if $x \in X$ and $m \in M$, then $[x, m] \in M$, because

$$
[x, m]=(m(m x))(x(x m)) \leq m(m x) \leq m
$$

Now, the proof is similar to [8, Theorem 4.11].
Theorem 3.16. Let $X \in n N B C K$. If M is a minimal ideal of X, then $M \leq S(X)$.
Proof. The proof is similar to [8, Theorem 4.11].
Theorem 3.17. Every BCK-algebra of order less than 5, is k-nilpotent for some $k \in \mathbb{N}$.
Theorem 3.18. If $X, Y \in k N B C K$, then $X \bigcap Y, X \times Y \in k N B C K$.
Proof. It is straightforward.

$4 k$-nilpotent(solvable) ideals

In this section, first we extend the notion of commutative ideals and define k-nilpotent(solvable) ideals and investigate some main theorems. Then, using K-nilpotent(solvable) BCK-algebras we obtain a relation between k-nilpotency(solvableity) of a BCK-algebra and ideals.

Definition 4.1. Assume $B \triangleleft X$. Then B is called
(i) a k-nilpotent ideal of X (we write $B \boldsymbol{⿶}_{k} X$) if $A_{k} z \in B$ implies $A_{k}\left(z\left(z A_{k}\right)\right) \in B$ for any $z \in X$.
(ii) a k-solvable ideal of X (we write $B \triangle_{k} X$) if $A_{k} C_{k} \in B$ implies $A_{k}\left(C_{k}\left(C_{k} A_{k}\right)\right) \in B$ for any $C_{k} \in X$.

Note. If we replace z with C_{k} in Definition 4.1 (i), we can see that every k-nilpotent ideal is k-solvable. Therefore, we state and prove some results on k-nilpotent ideals. Then in a similar way, by replacing z with C_{k}, you can get the results on k-solvable ideals. This caused us to omit the proof when B is a k-solvable ideal. Although, the results are similar with these two definitions, we see they are not the same.

Theorem 4.2. $B \boldsymbol{\iota}_{1} X\left(B \triangle_{1} X\right)$ if and only if B is a commutative ideal of X.
Proof. Since for any $x_{1} \in X$, we have $A_{1}=\left[x_{1}\right]=x_{1}$. Then we get the result by definitions.
Example 4.3. Assume $Y=X \bigcup\{1\}$ is the Iséki's extension of X (see [10]). Then X is a commutative ideal of Y. By Theorem 4.2, $X \boldsymbol{4}_{1} Y$.

Theorem 4.4. Let $B \unlhd X, X \in \mathrm{kNBCK}$ and $z\left(z A_{k}\right) \in B$. Then $B \boldsymbol{\iota}_{k} X$.
Proof. By $X \in \operatorname{kNBCK}$ for any $x_{1}, \ldots, x_{k}, z \in X$ we have $0=\left[z,\left[x_{k}, \ldots, x_{1}\right]\right]=\left[z, A_{k}\right]=\left(A_{k}\left(A_{k} z\right)\right)\left(z\left(z A_{k}\right)\right)$. Then $B \unlhd X$ and $z\left(z A_{k}\right) \in B$ implies $A_{k}\left(A_{k} z\right) \in B\left(^{*}\right)$. Therefore, if $A_{k} z \in B$, then by $B \unlhd X$ and $\left(^{*}\right)$, we obtain $A_{k} \in B$. Consequently, $A_{k}\left(z\left(z A_{k}\right)\right) \leq A_{k} \in B$ and so $A_{k}\left(z\left(z A_{k}\right)\right) \in B$. Therefore, $B \boldsymbol{\hookrightarrow}_{k} X$.

Example 4.5. Let $X=\{0,1,2\}$. Define the operation " $*$ " on X as Example 3.8. Then X is a BCK-algebra. Put $B=\{0,1\}$. Clearly $B \unlhd X$. For any $x, y \in X$ we have $A=[x, y]=0$. It implies that for any $z \in X$ if $A z \in B$, then $A(z(z A))=0\left(z(z A)=0 \in B\right.$, i.e. $B ⿶_{2} X$.

Theorem 4．6．If $B \unlhd X$ and $X \in 1 N B C K$ ，then $B \boldsymbol{⿶}_{2} X$ ．
Proof．By $X \in 1 N B C K$ for any $x, y, z \in X$ we have $A=[x, y]=0$ and so $A(z(z A))=0 \in B$ ． Thus，$B \boldsymbol{⿶}_{2} X$ ．

Example 4．7．Consider X as Example 3．3．If $x \leq y$ ，then $[y, x]=x$ and so $[y,[y, x]]=[y, x]=x$ ． （i）Take $x=0.6, y=z=0.7$ and B is the interval $[0,0.5]$ ．Clearly，$B \triangleleft X$ and $A=[0.7,0.6]=0.6$ ． Then $A z=0.6 * 0.7=0 \in B$ but $A(z(z A))=0.6 \notin B$ ．Therefore，$B \not \star_{2} X$ ．
（ii）Clearly，$X \in B C K^{*}$ ．
In what follows，we see that for an ideal B of X ，there is not any k such that $B \boldsymbol{⿶}_{k} X$ ．
Example 4．8．Let X ，operation＂＊＂and B be as Example 4．7．Then for $x \leq y$ ，we get $A_{k}=[y, \ldots,[y,[y, x]] \ldots]=x$ ．Now，put $x=0.6, y=z=0.7$ ．Then $A_{k} z=0.6 * 0.7=0 \in B$ and $A_{k} *\left(z *\left(z * A_{k}\right)\right)=0.6 \notin B$ ．

Theorem 4．9．If $B \boldsymbol{\iota}_{k} X$ ，then $B \boldsymbol{⿶}_{k+1} X$ ．
Proof．Let $B \boldsymbol{⿶}_{k} X, C=\left[x_{2}, x_{1}\right]$ and $A_{k+1} z \in B$ ．Then

$$
A_{k+1}=\left[x_{k+1},\left[x_{k}, \ldots x_{3},\left[x_{2}, x_{1}\right]\right] \ldots\right]=\left[x_{k+1},\left[x_{k}, \ldots x_{3}, x^{\prime}\right] \ldots\right]=A_{k}^{\prime} .
$$

Since $B \boldsymbol{⿶}_{k} X$ we get $A_{k}^{\prime}\left(z\left(z A_{k}^{\prime}\right)\right) \in B$ for any $z \in X$ and so $A_{k+1}\left(z\left(z A_{k+1}\right)\right)=A_{k}^{\prime}\left(z\left(z A_{k}^{\prime}\right)\right) \in B$ ， i．e $B \boldsymbol{4}_{k+1} X$ ．

Theorem 4．10．Let $f: X \rightarrow Y$ be an epimorphism of $B C K$－algebras and $J, B_{1}, B_{2} \boldsymbol{\iota}_{k} X, C_{1} \boldsymbol{\iota}_{k} Y$ and $I \triangleleft Y$ with $J=f^{-1}(I)$ ．Then
（i）$J \boldsymbol{\iota}_{k} X$ if and only if $I \boldsymbol{\iota}_{k} Y$ ．
（ii）$B_{1} \cap B_{2} \boldsymbol{\iota}_{k} X$ ．
（iii）$H=B_{1} \times C_{1} \boldsymbol{⿶}_{k} X \times Y$ ．
Proof．（i）Let $J \boldsymbol{⿶}_{k} X$ and $A_{k} z \in I$ ，where $z, y_{1}, y_{2}, \ldots, y_{k} \in Y, A_{k}=\left[y_{k}, \ldots,\left[y_{2}, y_{1}\right] \ldots\right]$ ．Then $f^{-1}\left(A_{k}\right) f^{-1}(z)=f^{-1}\left(A_{k} z\right) \in f^{-1}(I)=J$ and so by $J \boldsymbol{⿶}_{k} X$ we have

$$
f^{-1}\left(A_{k}\right)\left(f^{-1}(z)\left(f^{-1}(z) f^{-1}\left(A_{k}\right)\right)\right)=f^{-1}\left(A_{k}\left(z\left(z A_{k}\right)\right)\right) \in J=f^{-1}(I) .
$$

Then $A_{k}\left(z\left(z A_{k}\right)\right) \in I$ ．Therefore，$I \boldsymbol{⿶}_{k} Y$ ．The converse of the theorem is proved similarly．
（ii）It is straightforward．
（iii）Let $\left(A_{k}, A_{k}^{\prime}\right)\left(z_{1}, z_{2}\right)=\left(A_{k} z_{1}, A_{k}^{\prime} z_{2}\right) \in H$ where $z_{1}, x_{1}, x_{2}, \ldots, x_{k} \in X$ and $z_{2}, y_{1}, y_{2}, \ldots, y_{k} \in Y$ ， $A_{k}=\left[x_{1}, x_{2}, \ldots, x_{k}\right], A_{k}^{\prime}=\left[y_{1}, y_{2}, \ldots, y_{k}\right]$ ．Then by $B_{1} \boldsymbol{⿶}_{k} X, C_{1} \boldsymbol{⿶}_{k} Y$ we have

$$
\left(A_{k}, A_{k}^{\prime}\right) \bullet\left(\left(z_{1}, z_{2}\right) \bullet\left(\left(z_{1}, z_{2}\right) \bullet\left(A_{k}, A_{k}^{\prime}\right)\right)\right)=\left(A_{k}\left(z_{1}\left(z_{1} A_{k}\right)\right), A_{k}^{\prime}\left(z_{2}\left(z_{2} A_{k}^{\prime}\right)\right)\right) \in H
$$

Consequently，$H \boldsymbol{⿶}_{k} X \times Y$ ．
Theorem 4．11．$X \in \operatorname{kNBCK}(X \in \operatorname{kSBCK})$ if and only if $A_{k} z=A_{k}\left(z\left(z A_{k}\right)\right)\left(A_{k} C_{k}=A_{k}\left(C_{k}\left(C_{k} A_{k}\right)\right)\right)$ ．
Proof．(\Rightarrow) If $X \in \mathrm{kNBCK}$ ，then $0=\left[z,\left[x_{k}, \ldots,\left[x_{2}, x_{1}\right] \ldots\right]\right]=\left[z, A_{k}\right]=\left(A_{k}\left(A_{k} z\right)\right)\left(z\left(z A_{k}\right)\right)$ and so $A_{k}\left(A_{k} z\right) \leq z\left(z A_{k}\right)$ ．It follows by Theorem 2．2，$A_{k}\left(z\left(z A_{k}\right)\right) \leq A_{k}\left(A_{k}\left(A_{k} z\right)\right)=A_{k} z$ ．On the other hand $z\left(z A_{k}\right) \leq z$ ，implies $A_{k} z \leq A_{k}\left(z\left(z A_{k}\right)\right)$ ．Consequently，$A_{k} z=A_{k}\left(z\left(z A_{k}\right)\right)$ ．
(\Leftarrow) By Theorem 2.2 and hypotheses，we obtain

$$
\left[z, A_{k}\right]=\left(A_{k}\left(A_{k} z\right)\right)\left(z\left(z A_{k}\right)\right)=\left(A_{k}\left(A_{k}\left(z\left(z A_{k}\right)\right)\right)\right)\left(z\left(z A_{k}\right)\right)=\left(A_{k}\left(z\left(z A_{k}\right)\right)\right)\left(A_{k}\left(z\left(z A_{k}\right)\right)\right)=0
$$

Therefore，$X \in$ kNBCK．

Definition 4．12．X is called a BCK－algebra with condition $(*)$ if $A_{k}\left(A_{k} z\right)=\left[s_{k}, \ldots,\left[s_{2}, s_{1}\right] \ldots\right]$ for some $s_{1}, s_{2}, \ldots, s_{k} \in X$ ．We use BCK ${ }^{k *}$ for the set of all BCK－algebras with condition（＊）．
Proposition 4．13．Let $X \in B C K^{k *}$ and $I \boldsymbol{⿶}_{k} X$ ．Then $X / I \in B C K^{k *}$ ．
Proof．Since $X \in B C K^{k *}$ we have $A_{k}\left(A_{k} z\right)=\left[x_{k}, \ldots,\left[x_{2}, x_{1}\right] \ldots\right]$ for some $x_{1}, x_{2}, \ldots, x_{k} \in X$ and so $I_{A_{k}}\left(I_{A_{k}} I_{z}\right)=I_{A_{k}\left(A_{k} z\right)}=I_{\left[x_{k}, \ldots,\left[x_{2}, x_{1}\right] \ldots\right]}$ ，i．e $X / I \in B C K^{k *}$ ．
Theorem 4．14．Suppose that $X \in \mathrm{BCK}^{\mathrm{k} *}$ and $I, B \triangleleft X$ and $I \subseteq B$ ．If $I \boldsymbol{⿶}_{k} X\left(I \triangle_{k} X\right)$ ，then $B \boldsymbol{⿶}_{k} X\left(B \triangle_{k} X\right)$ ．
Proof．Assume $u=A_{k} z \in B$ ．Then by Theorem 2．2，

$$
\left(A_{k} u\right) z=\left(A_{k} z\right) u=\left(A_{k} z\right)\left(A_{k} z\right)=0 \in I .
$$

Now by $X \in \mathrm{BCK}^{\mathrm{k} *}$ since $I \boldsymbol{⿶}_{k} X$ ，we have

$$
\left(A_{k} u\right)\left(z\left(z\left(A_{k} u\right)\right) \in I \subseteq B\right.
$$

It follows by $B \unlhd X$ that $A_{k}\left(z\left(z\left(A_{k} u\right)\right)\right) \in B$ ．Since $A_{k} u \leq A_{k}$ we have $z\left(z\left(A_{k} u\right)\right) \leq z\left(z A_{k}\right)$ ． Now，using Theorem 2．2，we have $A_{k}\left(z\left(z A_{k}\right)\right) \leq A_{k}\left(z\left(z\left(A_{k} z\right)\right)\right)$ ．Therefore，$A_{k}\left(z\left(z A_{k}\right)\right) \in B$ ，i．e $B \boldsymbol{\iota}_{k} X$ ．

Corollary 4．15．Assume $X \in \mathrm{BCK}^{\mathrm{k} *}$ ．Then $\mathbf{0} \boldsymbol{⿶}_{k} X\left(0 \triangle_{k} X\right)$ if and only if all ideals of X are k－nilpotent（solvable）．
Theorem 4．16．If $X \in \mathrm{kNBCK}$ ，then $\mathbf{0} \boldsymbol{⿶}_{k} X\left(0 \triangle_{k} X\right)$ ．
Proof．Assume $X \in \operatorname{kNBCK}$ and $A_{k} z \in \mathbf{0}$ ．Then by assumption we have

$$
0=\left[z, A_{k}\right]=\left(A_{k}\left(A_{k} z\right)\right)\left(z\left(z A_{k}\right)\right)=A_{k}\left(z\left(z A_{k}\right)\right)
$$

Therefore， $\mathbf{0} \boldsymbol{\iota}_{k} X$ ．
Theorem 4．17．Let $X \in \operatorname{BCK}^{k *}$ and $X \in \operatorname{kNBCK}(X \in \mathrm{kSBCK})$ ．Then all ideals of X are k－ nilpotent（solvable）．
Proof．It is clear by Corollary 4.15 and Theorem 4.16 ．
Now，we show that there is a 2 －solvable ideal that is not a 2 －nilpotent ideal．
Example 4．18．Consider $(X, *, 0)$ as Example 3．5，$A=[5,4]=4, z=5$ and $B=\{0,1,2\}$ ．Now， $A z=0 \in B$ but $A(z(z A))=4(5(5(4)))=4 \notin B$ ．Therefore，$B \boldsymbol{\wedge}_{2} X$ ．Clearly，$X \in B C K^{2 *}$ ． According to Theorem 3．4，$X \in 2 \mathrm{SBCK}$ and so Theorem 4．17，implies $B \triangle_{2} X$
Theorem 4．19．Let $X \in \mathrm{BCK}^{\mathrm{k} *}$ and $z \in X$ ．Then the following statements are equivalent．
（i）$A_{k} \leq z$ implies $A_{k} \leq z\left(z A_{k}\right)$
（ii）$A_{k} z=A_{k}\left(z\left(z A_{k}\right)\right)$ ．
Proof．$\left(i \Rightarrow\right.$ ii）Since $A_{k}\left(A_{k} z\right) \leq z$ by（i），we have $A_{k}\left(A_{k} z\right) \leq z\left(z\left(A_{k}\left(A_{k} z\right)\right)\right.$ ．Then by Theorem 2．2，

$$
A_{k}\left(z\left(z\left(A_{k}\left(A_{k} z\right)\right)\right)\right) \leq A_{k}\left(A_{k}\left(A_{k} z\right)\right)
$$

Also，since $A_{k}\left(A_{k} z\right) \leq A_{k}$ ，by Theorem 2．2，we have $z A_{k} \leq z\left(A_{k}\left(A_{k} z\right)\right)$ ．It follows by Theorem 2．2，$A_{k}\left(z\left(z A_{k}\right)\right) \leq A_{k}\left(z\left(z\left(A_{k}\left(A_{k} z\right)\right)\right)\right)$ ．Then by（I），we obtain $A_{k}\left(z\left(z A_{k}\right)\right) \leq A_{k} z$ ，（II）．On the other hand by $z\left(z A_{k}\right) \leq z$ and Theorem 2．2，we get $A_{k} z \leq A_{k}\left(z\left(z A_{k}\right)\right)$ ．It follows by（II），that $A_{k} z=A_{k}\left(z\left(z A_{k}\right)\right)$ ．
$(i i \Rightarrow i)$ Assume $A_{k} \leq z$ ．Then by（ii），we get $0=A_{k} z=A_{k}\left(z\left(z A_{k}\right)\right)$ and so $A_{k} \leq z\left(z A_{k}\right)$ ．

Let $I \triangleleft X$ and $x, y \in X$ ．Define the congruence relation \simeq on X as follows

$$
x \simeq y \Leftrightarrow x * y, y * x \in I
$$

Take $I_{x}=[x]$ and $X / I=\left\{I_{x} ; x \in X\right\}$ ．Then $(X / I, *)$ is a BCK－algebra，where $I_{x} * I_{y}=I_{x * y}$（see ［10］）．
Theorem 4．20．Let $X \in \mathrm{BCK}^{\mathrm{k} *}$ and $I \boldsymbol{\triangleleft}_{k} X\left(I \triangle_{k} X\right)$ ．Then $X / I \in \mathrm{kNBCK}(X / I \in \mathrm{kSBCK})$ ．
Proof．We get the result from Corollary 4.15 and Theorem 4．17．
Corollary 4．21．Let $X \in \mathrm{BCK}^{\mathrm{k} *}$ and $I \boldsymbol{⿶}_{k} X$ ．Then for any $z \in X, z\left(z A_{k}\right) \in I$ imply $A_{k}\left(A_{k} z\right) \in I$ ．
Proof．By Theorem 4.20 and $I \boldsymbol{⿶}_{k} X$ ，we have $X / I \in$ kNBCK and so for any $z, x_{1}, \ldots, x_{k} \in X$ ，

$$
I_{0}=\left[I_{z},\left[I_{x_{k}}, \ldots, I_{x_{1}}\right]\right]=\left[I_{z}, I_{\left[x_{k}, \ldots, x_{1}\right]}\right]=\left[I_{z}, I_{A_{k}}\right]=\left(I_{A_{k}}\left(I_{A_{k}} I_{z}\right)\right)\left(I_{z}\left(I_{z} I_{A_{k}}\right)\right) \quad(*)
$$

On the other hand $0 * z\left(z A_{k}\right)=0 \in I$ if $z\left(z A_{k}\right) \in I$ ，then $z\left(z A_{k}\right) \simeq 0$ ．It follows that $I_{z\left(z A_{k}\right)}=I_{0}$ and so $I_{z}\left(I_{z} I_{A_{k}}\right)=I_{0}$ ．Consequently，by $\left({ }^{*}\right),\left(I_{A_{k}}\left(I_{A_{k}} I_{z}\right)\right)=I_{0}$ ，i．e $A_{k}\left(A_{k} z\right) \in I$ ．

Theorem 4．22．Assume $X \in B C K^{k *}, f: X \rightarrow Y$ is an epimorphism．Then $\operatorname{Kern}(f) \boldsymbol{\iota}_{k} X$ if and only if $Y \in \mathrm{kNBCK}$ ．

Proof．(\Rightarrow) Since $\operatorname{Kern}(f) \boldsymbol{⿶}_{k} X$ by Theorem 4．20，we get that $X \in$ kNBCK．Therefore，$X / \operatorname{kern}(f) \in$ kNBCK．From $X / \operatorname{Kern}(f) \approx Y$ we obtain $Y \in$ kNBCK．
(\Leftarrow) From Theorem 4.16 and $Y \in \operatorname{kNBCK}$ we obtain $0 \boldsymbol{⿶}_{k} Y$ ．Consider $A z \in \operatorname{Kern}(f)$ ．Then $f(A) f(z)=f(A z)=0 \in \mathbf{0} \boldsymbol{⿶}_{k} Y$ implies that $f(A)(f(z)(f(z) f(A)))=f(A(z(z A)) \in \mathbf{0}$ ．There－ fore，$f\left(A(z(z A))=0\right.$ ，i．e $A(z(z A)) \in \operatorname{Kern}(f)$ ．Consequently， $\operatorname{Kern}(f) \boldsymbol{⿶}_{k} X$ ．

Theorem 4．23．Let $X \in \mathrm{BCK}^{2 *}$ and $I \boldsymbol{4}_{2} X$ ．Then for any $x, y, z \in X,[z,[y, x]] \in I$ ．
Proof．Since $I \boldsymbol{⿶}_{2} X$ by Theorem 4．20，we get $X / I \in 2$ NBCK．Then for any $x, y, z \in X$ ，we have $\left[I_{z},\left[I_{y}, I_{x}\right]\right]=I_{0}$ and so $I_{[z,[y, x]]}=I_{0}$ ．It implies $[z,[y, x]] \in I$ ，as we need．

Theorem 4．24．$X / I \in 2$ NBCK if and only if $[z, A] \in I$ ，where $A=[y, x]$ and x, y are arbitrary elements of X ．
Proof．(\Rightarrow) It is clear by the proof of Theorem 4．23．
(\Leftarrow) Assume for any $z \in X,[z, A] \in I$ ．Then $[z, A] * 0=[z, A], 0 *[z, A]=0 \in I$ and so $[z, A] \simeq 0$ ． Therefore，$I_{[z, A]}=I_{0}$ ，i．e．$I_{0}=I_{[z, A]}=\left[I_{z}, I_{A}\right]$ ．Consequently，$X / I \in 2 \mathrm{NBCK}$ ．

Clearly，if $X \in 2$ NBCK then $X / I \in 2$ NBCK．In the following we obtain the converse．
Theorem 4．25．Let $X \in \mathrm{BCK}^{2 *}, I \boldsymbol{⿶}_{2} X$ and I be a k－nilpotent subalgebra of X ．Then $X \in$ $(\mathrm{k}+2) \mathrm{NBCK}$ ．

Proof．By Theorem 4．23，for any $x, y, z \in X,[z,[y, x]] \in I$ ．Since I is a k NBCK for any $x_{k}, \ldots, x_{2} \in$ X ，we have $\left[x_{k}, \ldots,\left[x_{2},[z,[y, x]]\right] \ldots\right]=0$ ，i．e $X \in(\mathrm{k}+2)$ NBCK．

$5 n$－fold 2－nilpotent（solvable）ideals

In this section，we generalize the notion of n－fold commutative ideals（BCK－algebra）to n－fold k－nilpotent（solvable）ideals of BCK－algebra．Specially，we study the case $k=2$ ．

Definition 5．1．Let $A=[x, y], C=[s, t]$ and $x, y, s, t \in X$ ．Then X is called （i）n－fold 2－nilpotent if there exists a fixed integer $n \geq 0$ such that $A z=A\left(z\left(z A^{n}\right)\right)$ ．
（ii）n－fold 2－solvable if there exists a fixed integer $n \geq 0$ such that $A C=A\left(C\left(C A^{n}\right)\right)$ ，
We use nF 2 NBCK and nF 2 SBCK for the set of all n－fold 2－nilpotent and solvable BCK－algebras， respectively．

Proposition 5．2．$X \in 1$ F2NBCK if and only if $X \in 2$ NBCK and $X \in 1 F 1 N B C K$ if and only if $X \in 1$ NBCK if and only if X is commutative．
Proof．It follows by Theorems 4.11 and 3．6．
Example 5．3．Let $X=\{0,1, \ldots, n\}(n \geq 4)$ ．Define the operation＂＊＂on X as follows．Then by Theorem 3.6 and Proposition 5．2，$X \in 2$ F1NBCK but $X \notin 1$ F1NBCK．

$$
x * y= \begin{cases}0 & x \leq y \\ x & y=0 \\ n-y & x=0 \\ 1 & 0<y<x<n\end{cases}
$$

Theorem 5．4．Every nF2NBCK is（ $\mathrm{n}+1$ ）F2NBCK．
Proof．Let $X \in \mathrm{nF} 2 \mathrm{NBCK}$ ．Then $A z=A\left(z\left(z A^{n}\right)\right)$ ．Clearly， $0 \leq z A^{n+1} \leq z A^{n}$ ．Thus，

$$
z=z 0 \geq z\left(z A^{n+1}\right) \geq z\left(z A^{n}\right)
$$

and so $A z \leq A\left(z\left(z A^{n+1}\right)\right)=A\left(z\left(z A^{n}\right)\right)=A z$ ．Therefore，$A z=A\left(z\left(z A^{n+1}\right)\right)$ ，i．e $X \in(\mathrm{n}+1)$ F2NBCK．

Definition 5．5．Assume $B \triangleleft X, z \in X$ ．Then B is called a
（i）n－fold 2－nilpotent ideal of X（we write $B \boldsymbol{⿶}_{n f} X$ ）if $A z \in B$ implies $A\left(z\left(z A^{n}\right)\right) \in B$ ．
（ii）n－fold 2－solvable ideal of X（we write $B \triangle_{n f} X$ ）if $A C \in B$ implies $A\left(C\left(C A^{n}\right)\right) \in B$ ．
Theorem 5．6．If $B \boldsymbol{⿶}_{n f} X\left(B \triangle_{n f} X\right)$ ，then $B \boldsymbol{⿶}_{(n+1) f} X\left(B \triangle_{(n+1) f} X\right)$ ．
Proof．Assume $A z \in B$ ．Then $A\left(z\left(z A^{n}\right)\right) \in B$ ．Also，by $z A^{n+1} \leq z A^{n}$ ，we get

$$
A\left(z\left(z A^{n+1}\right)\right) \leq A\left(z\left(z A^{n}\right)\right) \in B
$$

Consequently，$A\left(z\left(z A^{n+1}\right)\right) \in B$ ，i．e $B \boldsymbol{⿶}_{(n+1) f} X$ ．
Obviously，the notions of 2－nilpotent ideals and 1－fold 2－nilpotent ideals are the same．
Theorem 5．7．If I is a commutative ideal of X ，then $I \boldsymbol{⿶}_{n f} X$ ．
Proof．Using Proposition 5.2 and Theorem 5．6，we get the result．
Theorem 5．8．Let $f: X \rightarrow Y$ be an epimorphism of BCK－algebras and $J, B_{1}, B_{2} \boldsymbol{⿶}_{n f} X$ ， $C_{1} ⿶_{n f} Y$ and $I \triangleleft_{n f} Y$ with $J=f^{-1}(I)$ ．Then the following statements hold．
（i）$J \boldsymbol{\iota}_{n f} X$ if and only if $I \boldsymbol{⿶}_{n f} Y$ ，
（ii）$B_{1} \cap B_{2} ⿶_{n f} X$ ，
（iii）$K=B_{1} \times C_{1} \boldsymbol{\triangleleft}_{n f} X \times Y$ ．

Proof．（i）Let $J \boldsymbol{⿶}_{n f} X$ and $A z \in I$ where $z, y_{1}, y_{2} \in Y, A=\left[y_{1}, y_{2}\right]$ ．Then

$$
f^{-1}(A) f^{-1}(z)=f^{-1}(A z) \in f^{-1}(I)=J
$$

and so by $J \boldsymbol{⿶}_{n f} X$ we have $f^{-1}\left(A\left(z\left(z A^{n}\right)\right)\right) \in J=f^{-1}(I)$ ，i．e．$A\left(z\left(z A^{n}\right)\right) \in I$ ．Therefore， $I \boldsymbol{4}_{n f} Y$ ．
（ii）and（iii）are similar to Theorem 4．10．
Theorem 5．9．Consider $X \in \mathrm{BCK}^{2 *}$ and $I, B \triangleleft X$ and $I \subseteq B$ ．If $I \boldsymbol{⿶}_{n f} X\left(I \triangle_{n f} X\right)$ ，then $B \boldsymbol{4}_{n f} X\left(B \triangle_{n f} X\right)$ ．
Proof．Assume $A z \in B$ and $u=A(A z)$ ．Then $u z=0 \in I$ ．Since $I \boldsymbol{⿶}_{n f} X$ and $X \in$ BCK $^{2 *}$ we conclude that $u\left(z\left(z u^{n}\right)\right) \in I$ ，i．e $(A(A z))\left(z\left(z u^{n}\right)\right) \in I \subseteq B$ ．Then $\left(A\left(z\left(z u^{n}\right)\right)\right)(A z) \in B$ ．It follows by $B \triangleleft X$ and $A z \in B$ that $A\left(z\left(z u^{n}\right)\right) \in B, \quad(*)$ ．In other word，by $u \leq A$ we obtain $z A^{n} \leq z u^{n}$ and so $A\left(z\left(z A^{n}\right)\right) \leq A\left(z\left(z u^{n}\right)\right)$ ．Hence by $\left(^{*}\right), A\left(z\left(z A^{n}\right)\right) \in B$ ，i．e $B \boldsymbol{\triangleleft}_{n f} X$ ．
Corollary 5．10．Assume $X \in \mathrm{BCK}^{2 *}$ ．Then $\mathbf{0} \boldsymbol{4}_{n f} X\left(\mathbf{0} \triangle_{n f} X\right)$ if and only if all ideals of X are n－fold 2－nilpotent（solvable）．

Similarly，we have the following．
Theorem 5．11．If $X \in \operatorname{nf} 2 \operatorname{NBCK}(X \in \operatorname{nf} 2 \operatorname{SBCK})$ ，then $\mathbf{0} \boldsymbol{\triangleleft}_{n f} X\left(0 \triangle_{n f} X\right.$ ．）．
Corollary 5．12．Let $X \in \mathrm{BCK}^{2 *}$ and $X \in \operatorname{nf} 2 \operatorname{NBCK}(X \in \operatorname{nf} 2 \operatorname{SBCK})$ ．Then all ideals of X are n－fold 2－nilpotent（solvable）．
Theorem 5．13．let $f: X \rightarrow Y$ be an epimorphism．Then $\operatorname{Ker}(f) \boldsymbol{\iota}_{n f} X$ ．
Proof．By Theorem 5．11，if $Y \in n f 2 N B C K$ ，then $0 \boldsymbol{\iota}_{n f} Y$ ．Then by Theorem 4．10（i）， $\operatorname{Kerf}=$ $f^{-1}(0) \boldsymbol{⿶}_{n f} X$ ．

Theorem 5．14．Let $X \in \mathrm{BCK}^{2 *}$ and $z \in X$ ．Then the following are equivalent．
（i）$A \leq z$ implies $A \leq z\left(z A^{n}\right)$
（ii）$A z=A\left(z\left(z A^{n}\right)\right)$ ．
Proof．$\left(i \Rightarrow\right.$ ii）Since $A(A z) \leq z$ by Theorem 2．2，we have $z A^{n} \leq z(A(A z))^{n}$ and so

$$
\begin{equation*}
A\left(z\left(z A^{n}\right)\right) \leq A\left(z\left(z(A(A z))^{n}\right)\right) \tag{*}
\end{equation*}
$$

Then $A(A z) \leq z$ implies that $A(A z) \leq z\left(z(A(A z))^{n}\right)$ ．Therefore，

$$
A\left(z\left(z(A(A z))^{n}\right)\right) \leq A(A(A z))=A z .
$$

It follows by $\left(^{*}\right)$ that $A\left(z\left(z A^{n}\right)\right) \leq A z$ ．In addition，by $z\left(z A^{n}\right) \leq z$ we have $A z \leq A\left(z\left(z A^{n}\right)\right)$ ． Consequently $A z=A\left(z\left(z A^{n}\right)\right)$ ．
（ $i i \Rightarrow i$ ）It is similar to Theorem 4．19．
Now，we give a characterization of n－fold 2－nilpotent BCK－algebras．In addition，we obtain a relation between n－fold 2－nilpotency of a BCK－algebra and all ideals of it．

Theorem 5．15．Let $X \in \mathrm{BCK}^{2 *}$ ．Then $X \in \mathrm{nF} 2 \mathrm{NBCK}(X \in \mathrm{nF} 2 \mathrm{SBCK})$ if and only if all ideals of X are n－fold 2－nilpotent（solvable）．

Theorem 5．16．Let $X \in \mathrm{BCK}^{2 *}$ and $I \boldsymbol{4}_{n f} X\left(I \triangle_{n f} X\right)$ ．Then $X / I \in \mathrm{nF} 2 \mathrm{NBCK}(X / I \in \mathrm{nF} 2 \mathrm{SBCK})$ ．

6 Conclusions

First the notion of k-nilpotent BCK-algebra was introduced. Also, an equivalent condition to k-nilpotency of a BCK-algebra was obtained. Then k-nilpotent ideal of a BCK-algebra as a generalization of commutative ideals was defined and investigated. In addition, most of the theorems on commutative ideals were obtained on k-nilpotent ideals. Finally, n-fold 2-nilpotent ideals were studied. Continuing this method, we can define k-Engels and solvable ideals of BCI-algebras, too. This reduce or exchange some problems of BCI-algebras.

References

[1] W. A. Dudek, Finite BCK-algebras are solvable, Communications of the Korean Mathematical Society, 31(2) (2016), 261-262.
[2] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy, 42 (1966), 19-22.
[3] K. Iseki, An algebras related with a propositional calculus, Mathematica Japonica, 42 (1966), 26-29.
[4] K. Iseki, BCK-algebras, Mathematics Seminar Notes, 4 (1976), 77-86.
[5] K. Iseki, S. Tanaka, A. Rosenfeld, An introduction to theory of BCK-algebras, Mathematica Japonica, 23 (1978), 1-26.
[6] Y.B. Jun, X.L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Scientiae Mathematicae Japonicae, 53(2) (2001), 353-360.
[7] Y.B. Jun, M.M. Zahedi, X.L. Xin, R.A. Borzoei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 8 (2000), 127-136.
[8] E. Mohammadzadeh, R.A. Borzooei, Engel, nilpotent and solvable BCI-algebra, Analele stiintifice ale Universitatii Ovidius Constanta, 27(1) (2019), 169-192.
[9] A. Najafi, A. Borumand Saeid, E. Elami, Commutators in BCI-algebras, Journal of Intelligent and Fuzzy Systems, 31 (2016), 357-366.
[10] H. Yisheng, BCI-algebra, Science Pess, China, 2003.

