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Abstract

In this paper, first we introduce the notions of k-
nilpotent (solvable) ideals and k-nilpotent BCK-algebras.
Specially, we show that every commutative ideal is 1-
nilpotent (solvable). Second, we state an equivalent
condition to k-nilpotency (solvablity) ideals and BCK-
algebra. Finally, we study n-fold 2-nilpotent (solvable)
ideals and BCK-algebras as a generalization of n-fold
commutative ideals and BCK-algebras, and we study the
relation between these two concepts. Basically, we com-
pare 2-nilpotent and solvable ideals (BCK-algebras).
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1 Introduction
In 1966, Y. Imai and K. Iseki [2, 4], defined an algebra of type (2, 0), also known as BCK-algebra,
as a generalization of the notion of algebra sets with the subtraction set with only a fundamental,
non-nullary operation and the notion of implication algebra [3, 5] on the other hand. Since then
many scholars have studied in this area. It has been used in other branches of mathematics such
as hyperstructures and fuzzy sets, too (see [6, 7]).
Nilpotency is a vital concept is used in structures such as groups and rings. Different types of
commutators of BCI-algebras are defined. Najafi and et.all [9], introduced the notion of commuta-
tors in a BCI-algebra to study solvable BCI-algebras. Then, we defined nilpotent BCI-algebras by
a new definition of commutators [8]. Now, we redefine the notions of commutators and introduce
k-nilpotent BCK-algebras. In particular, with an example, we show that these two notions are
different. In addition, we try to generalize the concept of commutative ideals of BCK-algebras to
k-nilpotent(solvable) ideals of BCK-algebras and we get some main results on k-nilpotent BCK-
algebras. Then, using ideals we characterize nilpotent BCK-algebras. We extend some results of
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n-fold commutative ideals to n-fold 2-nilpotent(solvable) ideals. Finally, we show that every n-fold
2-nilpotent ideal is solvable, but the converse is not valid.

2 Preliminary
Definition 2.1. An algebra (X, ∗, 0) of type (2, 0) is called a BCI-algebra, if for any x, y, z ∈ X,
the following conditions hold.
(I1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(I2) (x ∗ (x ∗ y)) ∗ y = 0,
(I3) x ∗ x = 0,
(I4) x ∗ y = y ∗ x = 0 implies x = y.

Adding the condition 0 ∗ x = 0, make X a BCK-algebra.
For a BCK-algebra X, the order ≤ is defined as follows:

x ≤ y ⇔ x ∗ y = 0.

Theorem 2.2. [10] Suppose that X is a BCK-algebra and x, y, z are arbitrary elements of X.
Then we have the following statements.
(i) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(ii) x ∗ y ≤ x,
(iii) x ≤ y implies that x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,
(iv) x ∗ 0 = x.

Definition 2.3. A non-empty subset I of BCK-algebra X is called
(i) an ideal (we write I ◁ X) if 0 ∈ I and for any x, y ∈ X if x ∗ y ∈ I and y ∈ I, then x ∈ I.
(ii) a subalgebra of X if x ∗ y ∈ I, whenever x, y ∈ I.

A BCK-algebra X is said to be commutative if it satisfies x ∗ (x ∗ y) = y ∗ (y ∗ x) for any
x, y ∈ X.

Definition 2.4. Let S be a subset of a BCK-algebra X. We call the least ideal of X containing
S, the generated ideal of X by S, denoted by < S >.

Note. From now on, let (X, ∗, 0) be a BCK-algebra unless we notify.

Definition 2.5. [8] Let [x, y] = (y ∗ (y ∗ x)) ∗ (x ∗ (x ∗ y)), for any x, y ∈ X, V1(X) = [X,X] =
⟨{[x, y] for any x, y ∈ X}⟩ and for any k ∈ N,

Vk(X) = [Vk−1(X), Vk−1(X)].

The BCK-algebra X is called k-solvable if Vk(X) = {0}. We use kSBCK for the set of all k-solvable
BCK algebras.

Definition 2.6. [8] Let Z0(X) = {0}, Z1(X) = ⟨{x ∈ X : [x, y] = 0, for any y ∈ X}⟩ and for any
k ∈ N,

Zk(X) = ⟨{x ∈ X : [[[x, y1], y2], ..., yk] = 0, for any y1, y2, ..., yk ∈ X}⟩.

The BCK-algebra X is called nilpotent of class k if Zk(X) = X.

Definition 2.7. [10] Let I ⊆ X, x, y ∈ X and z ∈ I. Then I is called a commutative ideal of X
if 0 ∈ I and (xy)z ∈ I implies x(y(yx)) ∈ I.
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3 k-nilpotent BCK-algebras
In this section, we redefine a nilpotent BCK-algebra to introduce nilpotent ideals. In addition,
we introduce k-nilpotent BCK-algebras. Then we state an equivalent condition to k-nilpotency of
a BCK-algebra. Although most of the results on nilpotent BCK-algebras are valid with this new
definition, with an example we show that these are not the same.

Note. From now on, let x1, x2, ..., xk be arbitrary elements of BCK-algebra X and n, k ∈ N,
unless we notify. Also, for any x, y ∈ X, we use xy and 0 instead of x ∗ y and zero ideal of X,
respectively.

We consider A1 = [x1] = x1 and we define the commutator of x2 and x1, by A2 = [x2, x1] =
(x1(x1x2))(x2(x2x1)) and inductively for any x1, ..., xk, y1, ..., yk ∈ X, we have

Ak = [xk, [xk−1, ..., [x3, [x2, x1]]...], Ck = [yk, [yk−1, ..., [y3, [y2, y1]]...].

Definition 3.1. Let S0(X) = {0}, S1(X) = {x ∈ X : [y, x] = 0, for any y ∈ X} and for any
k ∈ N,

Sk(X) = {x ∈ X : [yk, , ..., [y2, [y1, x]]...] = 0, for any y1, y2, ..., yk ∈ X}.

The BCK-algebra X is called k-nilpotent if Sk(X) = X. We use kNBCK for the set of all k-nilpotent
BCK algebras.

Remark 3.2. If X ∈ kNBCK, then X ∈ kSBCK.

By the following two examples, we state a difference between kNBCK and the definition of
nilpotency in [8]. Also, we see that the converse of Remark 3.2, is not valid.

Example 3.3. Let X = [0, 1] and operation ” ∗ ” be given by:

x ∗ y =

{
0, x ≤ y
x, otherwise

Then (X, ∗, 0) is a BCK-algebra. If x, y ∈ X such that x ≤ y, then [x, y] = 0 and so [y, x] =
(x(xy))(y(yx)) = x(y(yx)) = x. From x ≤ y, we get [y, ..., [y, [y, x]]...] = x ̸= 0. Therefore,
X ̸∈ kNBCK for some k ∈ N. On the other hand if x ≤ y, then [y, x] = x and so [[y, x], x] = [x, x] = 0
and [[y, x], y] = [x, y] = 0. Consequently, X is nilpotent by Definition 2.6.

Theorem 3.4. [1] Every finite BCK-algebra is solvable.

Example 3.5. Assume (X, ∗, 0), where X = {0, 1, 2, ..., n}(n ∈ N) and the operation ∗ is as
Example 3.3. Then by Theorem 3.4, X is solvable. Similar to Example 3.3, X is not k-nilpotent.
Therefore, every solvable BCK-algebra is not k-nilpotent while the converse is holds by Remark
3.2.

Theorem 3.6. X is a commutative BCK-algebra if and only if X ∈ 1NBCK(X ∈ 1SBCK.).

Proof. X is a commutative BCK-algebra if and only if for any x, y ∈ X, x(xy) = y(yx) if and only
if [x, y] = 0 if and only if S1(X) = X if and only if X ∈ 1NBCK.

Theorem 3.7. X ∈ kNBCK if and only if for any y1, y2, ..., yk ∈ X, [yk, , ..., [y2, [y1, x]]...] = 0.

Proof. By Definition 3.1, X ∈ kNBCK if and only if Sk(X) = X if and only if for any y1, y2, ..., yk ∈
X, [yk, , ..., [y2, [y1, x]]...] = 0.
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Example 3.8. Let X = {0, 1, 2}. Define the operation ” ∗ ” on X as follows. Then X ∈ 1NBCK.

∗ 0 1 2

0 0 0 0
1 1 0 1
2 2 2 0

Theorem 3.9. [X,Sk(X)] ⊆ Sk−1(X).

Proof. Consider x ∈ Sk(X). Then by Theorem 3.7, for any y1, y2, ..., yk ∈ X, we have [yk, , ..., [y2, [y1, x]]...] =
0, i.e [y1, x] ∈ Sk−1(X). Therefore, [X,Sk(X)] ⊆ Sk−1(X).

Theorem 3.10. If X ∈ kNBCK, then X ∈ (k + 1)NBCK.

Proof. Assume x1, ..., xk are arbitrary elements of X. By X ∈ kNBCK, we get

[[xk, ..., [x3, [x2, x1]]...] = 0.

Then
[xk+1, [xk, ..., [x3, [x2, x1]]...]] = [xk+1, Ak] = [xk+1, 0] = 0.

Therefore, X ∈ (k + 1)NBCK.

It is interesting that kNBCKs have almost the same properties as nilpotent BCK-algebras of
class k that were introduced in Definition 2.6. In what follows, we state some of them. Since the
proofs are similar to the ones in [8], we omit the proofs.

Let (X, ∗, 0) and (Y, ·, 0′
) be two BCK-algebras. A mapping f from (X, ∗, 0) to (Y, ·, 0′

) is
called a homomorphism of BCK-algebras if for any x, y ∈ X, f(x ∗ y) = f(x) · f(y). Also, X × Y
with the operation • is a BCK-algebra where

(x1, y1) • (x2, y2) = (x1 ∗ x2, y1 · y2),

for any x1, x2 ∈ X and y1, y2 ∈ Y (see [10]).

Theorem 3.11. Let f : X → Y be an isomorphism of BCK-algebras. Then X ∈ kNBCK if and
only if Y ∈ kNBCK.

Proof. Since f is an isomorphism for any yi ∈ Y there exist xi ∈ X such that f(xi) = yi (1 ≤ i ≤ k).
Then,

[yk, ..., [y3, [y2, y1]]...] = [f(xk), ..., [f(x3), [f(x2), f(x1)]]...] = f [xk, ..., x3, [x2, x1]]...].

If X ∈ kNBCK, then 0 = f(0) = f [xk, ..., x3, [x2, x1]]...] = [yk, ..., y3, [y2, y1]]...]. Therefore, Y ∈
kNBCK. Similarly, we have the converse.

Corollary 3.12. . If X ∈ kNBCK, then any subalgebra of X is k-nilpotent. Also if I ⊴X, then
X/I ∈ kNBCK.

Lemma 3.13. X/S1(X) ∈ nNBCK if and only if X ∈ (n+ 1)NBCK.

Theorem 3.14. Let I ⊴ X and n,m ∈ N . If I ∈ mNBCK and X/I ∈ nNBCK, then X ∈
(n+m)NBCK.

Lemma 3.15. Let X ∈ nNBCK and M be a non-trivial ideal of X. Then M
∩
S(X) ̸= 0.
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Proof. First note that if x ∈ X and m ∈ M , then [x,m] ∈ M , because

[x,m] = (m(mx))(x(xm)) ≤ m(mx) ≤ m.

Now, the proof is similar to [8, Theorem 4.11].

Theorem 3.16. Let X ∈ nNBCK. If M is a minimal ideal of X, then M ≤ S(X).

Proof. The proof is similar to [8, Theorem 4.11].

Theorem 3.17. Every BCK-algebra of order less than 5, is k-nilpotent for some k ∈ N.

Theorem 3.18. If X,Y ∈ kNBCK, then X
∩
Y,X × Y ∈ kNBCK.

Proof. It is straightforward.

4 k-nilpotent(solvable) ideals
In this section, first we extend the notion of commutative ideals and define k-nilpotent(solvable)
ideals and investigate some main theorems. Then, using K-nilpotent(solvable) BCK-algebras we
obtain a relation between k-nilpotency(solvableity) of a BCK-algebra and ideals.

Definition 4.1. Assume B ◁X. Then B is called
(i) a k-nilpotent ideal of X (we write B ◀k X) if Akz ∈ B implies Ak(z(zAk)) ∈ B for any z ∈ X.
(ii) a k-solvable ideal of X (we write B △k X) if AkCk ∈ B implies Ak(Ck(CkAk)) ∈ B for any
Ck ∈ X.

Note. If we replace z with Ck in Definition 4.1(i), we can see that every k-nilpotent ideal is
k-solvable. Therefore, we state and prove some results on k-nilpotent ideals. Then in a similar
way, by replacing z with Ck, you can get the results on k-solvable ideals. This caused us to omit
the proof when B is a k-solvable ideal. Although, the results are similar with these two definitions,
we see they are not the same.

Theorem 4.2. B ◀1 X(B △1 X) if and only if B is a commutative ideal of X.

Proof. Since for any x1 ∈ X, we have A1 = [x1] = x1. Then we get the result by definitions.

Example 4.3. Assume Y = X
∪
{1} is the Iséki,s extension of X (see [10]). Then X is a

commutative ideal of Y . By Theorem 4.2, X ◀1 Y .

Theorem 4.4. Let B ⊴X, X ∈ kNBCK and z(zAk) ∈ B. Then B ◀k X.

Proof. By X ∈ kNBCK for any x1, ..., xk, z ∈ X we have 0 = [z, [xk, ..., x1]] = [z,Ak] = (Ak(Akz))(z(zAk)).
Then B⊴X and z(zAk) ∈ B implies Ak(Akz) ∈ B (*). Therefore, if Akz ∈ B, then by B⊴X and
(*), we obtain Ak ∈ B. Consequently, Ak(z(zAk)) ≤ Ak ∈ B and so Ak(z(zAk)) ∈ B. Therefore,
B ◀k X.

Example 4.5. Let X = {0, 1, 2}. Define the operation ” ∗ ” on X as Example 3.8. Then X is
a BCK-algebra. Put B = {0, 1}. Clearly B ⊴ X. For any x, y ∈ X we have A = [x, y] = 0. It
implies that for any z ∈ X if Az ∈ B, then A(z(zA)) = 0(z(zA) = 0 ∈ B, i.e. B ◀2 X.
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Theorem 4.6. If B ⊴X and X ∈ 1NBCK, then B ◀2 X.

Proof. By X ∈ 1NBCK for any x, y, z ∈ X we have A = [x, y] = 0 and so A(z(zA)) = 0 ∈ B.
Thus, B ◀2 X.

Example 4.7. Consider X as Example 3.3. If x ≤ y, then [y, x] = x and so [y, [y, x]] = [y, x] = x.
(i) Take x = 0.6, y = z = 0.7 and B is the interval [0, 0.5]. Clearly, B◁X and A = [0.7, 0.6] = 0.6.
Then Az = 0.6 ∗ 0.7 = 0 ∈ B but A(z(zA)) = 0.6 ̸∈ B. Therefore, B ̸◀2 X.
(ii) Clearly, X ∈ BCK∗.

In what follows, we see that for an ideal B of X, there is not any k such that B ◀k X.

Example 4.8. Let X, operation ” ∗ ” and B be as Example 4.7. Then for x ≤ y, we get
Ak = [y, ..., [y, [y, x]]...] = x. Now, put x = 0.6, y = z = 0.7. Then Akz = 0.6 ∗ 0.7 = 0 ∈ B and
Ak ∗ (z ∗ (z ∗Ak)) = 0.6 ̸∈ B.

Theorem 4.9. If B ◀k X, then B ◀k+1 X.

Proof. Let B ◀k X, C = [x2, x1] and Ak+1z ∈ B. Then

Ak+1 = [xk+1, [xk, ...x3, [x2, x1]]...] = [xk+1, [xk, ...x3, x
′
]...] = A

′
k.

Since B ◀k X we get A
′
k(z(zA

′
k)) ∈ B for any z ∈ X and so Ak+1(z(zAk+1)) = A

′
k(z(zA

′
k)) ∈ B,

i.e B ◀k+1 X.

Theorem 4.10. Let f : X → Y be an epimorphism of BCK-algebras and J,B1, B2 ◀k X, C1 ◀k Y
and I ◁ Y with J = f−1(I). Then
(i) J ◀k X if and only if I ◀k Y .
(ii) B1

∩
B2 ◀k X.

(iii) H = B1 × C1 ◀k X × Y .

Proof. (i) Let J ◀k X and Akz ∈ I, where z, y1, y2, ..., yk ∈ Y , Ak = [yk, ..., [y2, y1]...]. Then
f−1(Ak)f

−1(z) = f−1(Akz) ∈ f−1(I) = J and so by J ◀k X we have

f−1(Ak)(f
−1(z)(f−1(z)f−1(Ak))) = f−1(Ak(z(zAk))) ∈ J = f−1(I).

Then Ak(z(zAk)) ∈ I. Therefore, I ◀k Y . The converse of the theorem is proved similarly.
(ii) It is straightforward.
(iii) Let (Ak, A

′
k)(z1, z2) = (Akz1, A

′
kz2) ∈ H where z1, x1, x2, ..., xk ∈ X and z2, y1, y2, ..., yk ∈ Y ,

Ak = [x1, x2, ..., xk], A
′
k = [y1, y2, ..., yk]. Then by B1 ◀k X, C1 ◀k Y we have

(Ak, A
′
k) • ((z1, z2) • ((z1, z2) • (Ak, A

′
k))) = (Ak(z1(z1Ak)), A

′
k(z2(z2A

′
k))) ∈ H.

Consequently, H ◀k X × Y .

Theorem 4.11. X ∈ kNBCK (X ∈ kSBCK) if and only if Akz = Ak(z(zAk)) (AkCk = Ak(Ck(CkAk))).

Proof. (⇒) If X ∈ kNBCK, then 0 = [z, [xk, ..., [x2, x1]...]] = [z,Ak] = (Ak(Akz))(z(zAk)) and so
Ak(Akz) ≤ z(zAk). It follows by Theorem 2.2, Ak(z(zAk)) ≤ Ak(Ak(Akz)) = Akz. On the other
hand z(zAk) ≤ z, implies Akz ≤ Ak(z(zAk)). Consequently, Akz = Ak(z(zAk)).
(⇐) By Theorem 2.2 and hypotheses, we obtain

[z,Ak] = (Ak(Akz))(z(zAk)) = (Ak(Ak(z(zAk))))(z(zAk)) = (Ak(z(zAk)))(Ak(z(zAk))) = 0.

Therefore, X ∈ kNBCK.
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Definition 4.12. X is called a BCK-algebra with condition (∗) if Ak(Akz) = [sk, ..., [s2, s1]...] for
some s1, s2, ..., sk ∈ X. We use BCKk∗ for the set of all BCK-algebras with condition (∗).

Proposition 4.13. Let X ∈ BCKk∗ and I ◀k X. Then X/I ∈ BCKk∗.

Proof. Since X ∈ BCKk∗ we have Ak(Akz) = [xk, ..., [x2, x1]...] for some x1, x2, ..., xk ∈ X and so
IAk

(IAk
Iz) = IAk(Akz) = I[xk,...,[x2,x1]...], i.e X/I ∈ BCKk∗.

Theorem 4.14. Suppose that X ∈ BCKk∗ and I,B ◁ X and I ⊆ B. If I ◀k X(I △k X), then
B ◀k X(B △k X).

Proof. Assume u = Akz ∈ B. Then by Theorem 2.2,

(Aku)z = (Akz)u = (Akz)(Akz) = 0 ∈ I.

Now by X ∈ BCKk∗ since I ◀k X, we have

(Aku)(z(z(Aku)) ∈ I ⊆ B.

It follows by B ⊴ X that Ak(z(z(Aku))) ∈ B. Since Aku ≤ Ak we have z(z(Aku)) ≤ z(zAk).
Now, using Theorem 2.2, we have Ak(z(zAk)) ≤ Ak(z(z(Akz))). Therefore, Ak(z(zAk)) ∈ B, i.e
B ◀k X.

Corollary 4.15. Assume X ∈ BCKk∗. Then 0 ◀k X(0 △k X) if and only if all ideals of X are
k-nilpotent(solvable).

Theorem 4.16. If X ∈ kNBCK, then 0 ◀k X(0△k X).

Proof. Assume X ∈ kNBCK and Akz ∈ 0. Then by assumption we have

0 = [z,Ak] = (Ak(Akz))(z(zAk)) = Ak(z(zAk)).

Therefore, 0 ◀k X.

Theorem 4.17. Let X ∈ BCKk∗ and X ∈ kNBCK(X ∈ kSBCK). Then all ideals of X are k-
nilpotent(solvable).

Proof. It is clear by Corollary 4.15 and Theorem 4.16.

Now, we show that there is a 2-solvable ideal that is not a 2-nilpotent ideal.
Example 4.18. Consider (X, ∗, 0) as Example 3.5, A = [5, 4] = 4, z = 5 and B = {0, 1, 2}. Now,
Az = 0 ∈ B but A(z(zA)) = 4(5(5(4))) = 4 ̸∈ B. Therefore, B ̸◀2 X. Clearly, X ∈ BCK2∗.
According to Theorem 3.4, X ∈ 2SBCK and so Theorem 4.17, implies B △2 X

Theorem 4.19. Let X ∈ BCKk∗ and z ∈ X. Then the following statements are equivalent.
(i) Ak ≤ z implies Ak ≤ z(zAk)
(ii) Akz = Ak(z(zAk)).

Proof. (i ⇒ ii) Since Ak(Akz) ≤ z by (i), we have Ak(Akz) ≤ z(z(Ak(Akz))). Then by Theorem
2.2,

Ak(z(z(Ak(Akz)))) ≤ Ak(Ak(Akz)). (I)

Also, since Ak(Akz) ≤ Ak, by Theorem 2.2, we have zAk ≤ z(Ak(Akz)). It follows by Theorem
2.2, Ak(z(zAk)) ≤ Ak(z(z(Ak(Akz)))). Then by (I), we obtain Ak(z(zAk)) ≤ Akz, (II). On the
other hand by z(zAk) ≤ z and Theorem 2.2, we get Akz ≤ Ak(z(zAk)). It follows by (II), that
Akz = Ak(z(zAk)).
(ii ⇒ i) Assume Ak ≤ z. Then by (ii), we get 0 = Akz = Ak(z(zAk)) and so Ak ≤ z(zAk).
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Let I ◁X and x, y ∈ X. Define the congruence relation ⋍ on X as follows

x ⋍ y ⇔ x ∗ y, y ∗ x ∈ I.

Take Ix = [x] and X/I = {Ix;x ∈ X}. Then (X/I, ∗) is a BCK-algebra, where Ix ∗ Iy = Ix∗y (see
[10]).

Theorem 4.20. Let X ∈ BCKk∗ and I ◀k X(I △k X). Then X/I ∈ kNBCK(X/I ∈ kSBCK).

Proof. We get the result from Corollary 4.15 and Theorem 4.17.

Corollary 4.21. Let X ∈ BCKk∗ and I ◀k X. Then for any z ∈ X, z(zAk) ∈ I imply Ak(Akz) ∈ I.

Proof. By Theorem 4.20 and I ◀k X, we have X/I ∈ kNBCK and so for any z, x1, ..., xk ∈ X,

I0 = [Iz, [Ixk
, ..., Ix1 ]] = [Iz, I[xk,...,x1]] = [Iz, IAk

] = (IAk
(IAk

Iz))(Iz(IzIAk
)) (∗).

On the other hand 0 ∗ z(zAk) = 0 ∈ I if z(zAk) ∈ I, then z(zAk) ≃ 0. It follows that Iz(zAk) = I0
and so Iz(IzIAk

) = I0. Consequently, by (*), (IAk
(IAk

Iz)) = I0, i.e Ak(Akz) ∈ I.

Theorem 4.22. Assume X ∈ BCKk∗, f : X → Y is an epimorphism. Then Kern(f) ◀k X if
and only if Y ∈ kNBCK.

Proof. (⇒) Since Kern(f) ◀k X by Theorem 4.20, we get that X ∈ kNBCK. Therefore, X/kern(f) ∈
kNBCK. From X/Kern(f) ≊ Y we obtain Y ∈ kNBCK.
(⇐) From Theorem 4.16 and Y ∈ kNBCK we obtain 0 ◀k Y . Consider Az ∈ Kern(f). Then
f(A)f(z) = f(Az) = 0 ∈ 0 ◀k Y implies that f(A)(f(z)(f(z)f(A))) = f(A(z(zA)) ∈ 0. There-
fore, f(A(z(zA)) = 0, i.e A(z(zA)) ∈ Kern(f). Consequently, Kern(f) ◀k X .

Theorem 4.23. Let X ∈ BCK2∗ and I ◀2 X. Then for any x, y, z ∈ X, [z, [y, x]] ∈ I.

Proof. Since I ◀2 X by Theorem 4.20, we get X/I ∈ 2NBCK. Then for any x, y, z ∈ X, we have
[Iz, [Iy, Ix]] = I0 and so I[z,[y,x]] = I0. It implies [z, [y, x]] ∈ I, as we need.

Theorem 4.24. X/I ∈ 2NBCK if and only if [z,A] ∈ I, where A = [y, x] and x, y are arbitrary
elements of X.

Proof. (⇒) It is clear by the proof of Theorem 4.23.
(⇐) Assume for any z ∈ X, [z,A] ∈ I. Then [z,A] ∗ 0 = [z,A], 0 ∗ [z,A] = 0 ∈ I and so [z,A] ≃ 0.
Therefore, I[z,A] = I0, i.e. I0 = I[z,A] = [Iz, IA]. Consequently, X/I ∈ 2NBCK.

Clearly, if X ∈ 2NBCK then X/I ∈ 2NBCK. In the following we obtain the converse.

Theorem 4.25. Let X ∈ BCK2∗, I ◀2 X and I be a k-nilpotent subalgebra of X. Then X ∈
(k+ 2)NBCK.

Proof. By Theorem 4.23, for any x, y, z ∈ X, [z, [y, x]] ∈ I. Since I is a kNBCK for any xk, ..., x2 ∈
X, we have [xk, ..., [x2, [z, [y, x]]]...] = 0, i.e X ∈ (k+ 2)NBCK.
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5 n-fold 2-nilpotent(solvable) ideals
In this section, we generalize the notion of n-fold commutative ideals(BCK-algebra) to n-fold
k-nilpotent(solvable) ideals of BCK-algebra. Specially, we study the case k = 2.

Definition 5.1. Let A = [x, y], C = [s, t] and x, y, s, t ∈ X. Then X is called
(i) n-fold 2-nilpotent if there exists a fixed integer n ≥ 0 such that Az = A(z(zAn)).
(ii) n-fold 2-solvable if there exists a fixed integer n ≥ 0 such that AC = A(C(CAn)),
We use nF2NBCK and nF2SBCK for the set of all n-fold 2-nilpotent and solvable BCK-algebras,
respectively.

Proposition 5.2. X ∈ 1F2NBCK if and only if X ∈ 2NBCK and X ∈ 1F1NBCK if and only if
X ∈ 1NBCK if and only if X is commutative.

Proof. It follows by Theorems 4.11 and 3.6.

Example 5.3. Let X = {0, 1, ..., n} (n ≥ 4). Define the operation ” ∗ ” on X as follows. Then by
Theorem 3.6 and Proposition 5.2, X ∈ 2F1NBCK but X ̸∈ 1F1NBCK.

x ∗ y =


0 x ≤ y
x y=0
n− y x=0
1 0 <y<x<n.

Theorem 5.4. Every nF2NBCK is (n+ 1)F2NBCK.

Proof. Let X ∈ nF2NBCK. Then Az = A(z(zAn)). Clearly, 0 ≤ zAn+1 ≤ zAn. Thus,

z = z0 ≥ z(zAn+1) ≥ z(zAn)

and so Az ≤ A(z(zAn+1)) = A(z(zAn)) = Az. Therefore, Az = A(z(zAn+1)), i.e X ∈ (n+ 1)F2NBCK.

Definition 5.5. Assume B ◁X, z ∈ X. Then B is called a
(i) n-fold 2-nilpotent ideal of X (we write B ◀nf X) if Az ∈ B implies A(z(zAn)) ∈ B.
(ii) n-fold 2-solvable ideal of X (we write B △nf X) if AC ∈ B implies A(C(CAn)) ∈ B.

Theorem 5.6. If B ◀nf X(B △nf X), then B ◀(n+1)f X(B △(n+1)f X).

Proof. Assume Az ∈ B. Then A(z(zAn)) ∈ B. Also, by zAn+1 ≤ zAn, we get

A(z(zAn+1)) ≤ A(z(zAn)) ∈ B.

Consequently, A(z(zAn+1)) ∈ B, i.e B ◀(n+1)f X.

Obviously, the notions of 2-nilpotent ideals and 1-fold 2-nilpotent ideals are the same.

Theorem 5.7. If I is a commutative ideal of X, then I ◀nf X.

Proof. Using Proposition 5.2 and Theorem 5.6, we get the result.

Theorem 5.8. Let f : X → Y be an epimorphism of BCK-algebras and J,B1, B2 ◀nf X,
C1 ◀nf Y and I ◁nf Y with J = f−1(I). Then the following statements hold.
(i) J ◀nf X if and only if I ◀nf Y ,
(ii) B1

∩
B2 ◀nf X,

(iii) K = B1 × C1 ◀nf X × Y .
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Proof. (i) Let J ◀nf X and Az ∈ I where z, y1, y2 ∈ Y , A = [y1, y2]. Then

f−1(A)f−1(z) = f−1(Az) ∈ f−1(I) = J

and so by J ◀nf X we have f−1(A(z(zAn))) ∈ J = f−1(I), i.e. A(z(zAn)) ∈ I. Therefore,
I ◀nf Y .
(ii) and (iii) are similar to Theorem 4.10.

Theorem 5.9. Consider X ∈ BCK2∗ and I,B ◁ X and I ⊆ B. If I ◀nf X(I △nf X), then
B ◀nf X(B △nf X).

Proof. Assume Az ∈ B and u = A(Az). Then uz = 0 ∈ I. Since I ◀nf X and X ∈ BCK2∗ we
conclude that u(z(zun)) ∈ I, i.e (A(Az))(z(zun)) ∈ I ⊆ B. Then (A(z(zun)))(Az) ∈ B. It follows
by B ◁X and Az ∈ B that A(z(zun)) ∈ B, (∗). In other word, by u ≤ A we obtain zAn ≤ zun

and so A(z(zAn)) ≤ A(z(zun)). Hence by (*), A(z(zAn)) ∈ B, i.e B ◀nf X.

Corollary 5.10. Assume X ∈ BCK2∗. Then 0 ◀nf X( 0△nf X) if and only if all ideals of X are
n-fold 2-nilpotent(solvable).

Similarly, we have the following.

Theorem 5.11. If X ∈ nf2NBCK(X ∈ nf2SBCK), then 0 ◀nf X(0△nf X.).

Corollary 5.12. Let X ∈ BCK2∗ and X ∈ nf2NBCK( X ∈ nf2SBCK). Then all ideals of X are
n-fold 2-nilpotent(solvable).

Theorem 5.13. let f : X → Y be an epimorphism. Then Ker(f) ◀nf X.

Proof. By Theorem 5.11, if Y ∈ nf2NBCK, then 0 ◀nf Y . Then by Theorem 4.10(i), Kerf =
f−1(0) ◀nf X.

Theorem 5.14. Let X ∈ BCK2∗ and z ∈ X. Then the following are equivalent.
(i) A ≤ z implies A ≤ z(zAn)
(ii) Az = A(z(zAn)).

Proof. (i ⇒ ii) Since A(Az) ≤ z by Theorem 2.2, we have zAn ≤ z(A(Az))n and so

A(z(zAn)) ≤ A(z(z(A(Az))n)) (∗)

Then A(Az) ≤ z implies that A(Az) ≤ z(z(A(Az))n). Therefore,

A(z(z(A(Az))n)) ≤ A(A(Az)) = Az.

It follows by (*) that A(z(zAn)) ≤ Az. In addition, by z(zAn) ≤ z we have Az ≤ A(z(zAn)).
Consequently Az = A(z(zAn)).
(ii ⇒ i) It is similar to Theorem 4.19.

Now, we give a characterization of n-fold 2-nilpotent BCK-algebras. In addition, we obtain a
relation between n-fold 2-nilpotency of a BCK-algebra and all ideals of it.

Theorem 5.15. Let X ∈ BCK2∗. Then X ∈ nF2NBCK(X ∈ nF2SBCK) if and only if all ideals of X
are n-fold 2-nilpotent(solvable).

Theorem 5.16. Let X ∈ BCK2∗ and I ◀nf X(I △nf X). Then X/I ∈ nF2NBCK(X/I ∈ nF2SBCK).
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6 Conclusions
First the notion of k-nilpotent BCK-algebra was introduced. Also, an equivalent condition to
k-nilpotency of a BCK-algebra was obtained. Then k-nilpotent ideal of a BCK-algebra as a gen-
eralization of commutative ideals was defined and investigated. In addition, most of the theorems
on commutative ideals were obtained on k-nilpotent ideals. Finally, n-fold 2-nilpotent ideals were
studied. Continuing this method, we can define k-Engels and solvable ideals of BCI-algebras, too.
This reduce or exchange some problems of BCI-algebras.
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