

Volume 3, Number 4, (2022), pp. 75-85

$n\mbox{-fold}$ 2-nilpotent (solvable) ideal of a BCK-algebra

E. Mohammadzadeh¹ and F. Mohammadzadeh²

^{1,2}Department of Mathematics, Faculty of Science, Payame Noor University, 19395-3697, Tehran, Iran

 $mohamadzadeh@pnu.ac.ir,\,f.mohammadzadeh@pnu.ac.ir$

Abstract

In this paper, first we introduce the notions of k-nilpotent (solvable) ideals and k-nilpotent BCK-algebras. Specially, we show that every commutative ideal is 1nilpotent (solvable). Second, we state an equivalent condition to k-nilpotency (solvablity) ideals and BCKalgebra. Finally, we study n-fold 2-nilpotent (solvable) ideals and BCK-algebras as a generalization of n-fold commutative ideals and BCK-algebras, and we study the relation between these two concepts. Basically, we compare 2-nilpotent and solvable ideals (BCK-algebras).

Article Information

Corresponding Author: E. Mohammadzadeh; Received: October 2022; Revised: January 2023; Accepted: January 2023; Paper type: Original.

Keywords:

BCK-algebra, ideal, nilpotent (solvable) BCK-algebra.

1 Introduction

In 1966, Y. Imai and K. Iseki [2, 4], defined an algebra of type (2, 0), also known as BCK-algebra, as a generalization of the notion of algebra sets with the subtraction set with only a fundamental, non-nullary operation and the notion of implication algebra [3, 5] on the other hand. Since then many scholars have studied in this area. It has been used in other branches of mathematics such as hyperstructures and fuzzy sets, too (see [6, 7]).

Nilpotency is a vital concept is used in structures such as groups and rings. Different types of commutators of BCI-algebras are defined. Najafi and et.all [9], introduced the notion of commutators in a BCI-algebra to study solvable BCI-algebras. Then, we defined nilpotent BCI-algebras by a new definition of commutators [8]. Now, we redefine the notions of commutators and introduce k-nilpotent BCK-algebras. In particular, with an example, we show that these two notions are different. In addition, we try to generalize the concept of commutative ideals of BCK-algebras to k-nilpotent(solvable) ideals of BCK-algebras and we get some main results on k-nilpotent BCK-algebras. Then, using ideals we characterize nilpotent BCK-algebras. We extend some results of

n-fold commutative ideals to n-fold 2-nilpotent(solvable) ideals. Finally, we show that every n-fold 2-nilpotent ideal is solvable, but the converse is not valid.

2 Preliminary

Definition 2.1. An algebra (X, *, 0) of type (2, 0) is called a BCI-algebra, if for any $x, y, z \in X$, the following conditions hold.

 $\begin{array}{l} (I1) \ ((x*y)*(x*z))*(z*y)=0, \\ (I2) \ (x*(x*y))*y=0, \\ (I3) \ x*x=0, \\ (I4) \ x*y=y*x=0 \quad implies \ x=y. \end{array}$

Adding the condition 0 * x = 0, make X a BCK-algebra. For a BCK-algebra X, the order \leq is defined as follows:

$$x \le y \Leftrightarrow x * y = 0.$$

Theorem 2.2. [10] Suppose that X is a BCK-algebra and x, y, z are arbitrary elements of X. Then we have the following statements.

(i) (x * y) * z = (x * z) * y, (ii) $x * y \le x$, (iii) $x \le y$ implies that $x * z \le y * z$ and $z * y \le z * x$, (iv) x * 0 = x.

Definition 2.3. A non-empty subset I of BCK-algebra X is called (i) an ideal (we write $I \triangleleft X$) if $0 \in I$ and for any $x, y \in X$ if $x * y \in I$ and $y \in I$, then $x \in I$. (ii) a subalgebra of X if $x * y \in I$, whenever $x, y \in I$.

A BCK-algebra X is said to be commutative if it satisfies x * (x * y) = y * (y * x) for any $x, y \in X$.

Definition 2.4. Let S be a subset of a BCK-algebra X. We call the least ideal of X containing S, the generated ideal of X by S, denoted by $\langle S \rangle$.

Note. From now on, let (X, *, 0) be a BCK-algebra unless we notify.

Definition 2.5. [8] Let [x, y] = (y * (y * x)) * (x * (x * y)), for any $x, y \in X$, $V_1(X) = [X, X] = \langle \{[x, y] \text{ for any } x, y \in X\} \rangle$ and for any $k \in \mathbb{N}$,

$$V_k(X) = [V_{k-1}(X), V_{k-1}(X)].$$

The BCK-algebra X is called k-solvable if $V_k(X) = \{0\}$. We use kSBCK for the set of all k-solvable BCK algebras.

Definition 2.6. [8] Let $Z_0(X) = \{0\}$, $Z_1(X) = \langle \{x \in X : [x, y] = 0, \text{ for any } y \in X\} \rangle$ and for any $k \in \mathbb{N}$,

$$Z_k(X) = \langle \{x \in X : [[[x, y_1], y_2], ..., y_k] = 0, \text{ for any } y_1, y_2, ..., y_k \in X \} \rangle.$$

The BCK-algebra X is called nilpotent of class k if $Z_k(X) = X$.

Definition 2.7. [10] Let $I \subseteq X$, $x, y \in X$ and $z \in I$. Then I is called a commutative ideal of X if $0 \in I$ and $(xy)z \in I$ implies $x(y(yx)) \in I$.

3 k-nilpotent BCK-algebras

In this section, we redefine a nilpotent BCK-algebra to introduce nilpotent ideals. In addition, we introduce k-nilpotent BCK-algebras. Then we state an equivalent condition to k-nilpotency of a BCK-algebra. Although most of the results on nilpotent BCK-algebras are valid with this new definition, with an example we show that these are not the same.

Note. From now on, let $x_1, x_2, ..., x_k$ be arbitrary elements of BCK-algebra X and $n, k \in \mathbb{N}$, unless we notify. Also, for any $x, y \in X$, we use xy and **0** instead of x * y and zero ideal of X, respectively.

We consider $A_1 = [x_1] = x_1$ and we define the commutator of x_2 and x_1 , by $A_2 = [x_2, x_1] = (x_1(x_1x_2))(x_2(x_2x_1))$ and inductively for any $x_1, \dots, x_k, y_1, \dots, y_k \in X$, we have

$$A_{k} = [x_{k}, [x_{k-1}, ..., [x_{3}, [x_{2}, x_{1}]]...], C_{k} = [y_{k}, [y_{k-1}, ..., [y_{3}, [y_{2}, y_{1}]]...].$$

Definition 3.1. Let $S_0(X) = \{0\}$, $S_1(X) = \{x \in X : [y, x] = 0$, for any $y \in X\}$ and for any $k \in \mathbb{N}$,

$$S_k(X) = \{x \in X : [y_k, ..., [y_2, [y_1, x]]...] = 0, \text{ for any } y_1, y_2, ..., y_k \in X\}.$$

The BCK-algebra X is called k-nilpotent if $S_k(X) = X$. We use kNBCK for the set of all k-nilpotent BCK algebras.

Remark 3.2. If $X \in kNBCK$, then $X \in kSBCK$.

By the following two examples, we state a difference between kNBCK and the definition of nilpotency in [8]. Also, we see that the converse of Remark 3.2, is not valid.

Example 3.3. Let X = [0, 1] and operation " *" be given by:

$$x * y = \begin{cases} 0, & x \le y \\ x, & otherwise \end{cases}$$

Then (X, *, 0) is a BCK-algebra. If $x, y \in X$ such that $x \leq y$, then [x, y] = 0 and so [y, x] = (x(xy))(y(yx)) = x(y(yx)) = x. From $x \leq y$, we get $[y, ..., [y, [y, x]]...] = x \neq 0$. Therefore, $X \notin kNBCK$ for some $k \in \mathbb{N}$. On the other hand if $x \leq y$, then [y, x] = x and so [[y, x], x] = [x, x] = 0 and [[y, x], y] = [x, y] = 0. Consequently, X is nilpotent by Definition 2.6.

Theorem 3.4. [1] Every finite BCK-algebra is solvable.

Example 3.5. Assume (X, *, 0), where $X = \{0, 1, 2, ..., n\}$ $(n \in \mathbb{N})$ and the operation * is as Example 3.3. Then by Theorem 3.4, X is solvable. Similar to Example 3.3, X is not k-nilpotent. Therefore, every solvable BCK-algebra is not k-nilpotent while the converse is holds by Remark 3.2.

Theorem 3.6. X is a commutative BCK-algebra if and only if $X \in 1NBCK (X \in 1SBCK)$.

Proof. X is a commutative BCK-algebra if and only if for any $x, y \in X$, x(xy) = y(yx) if and only if [x, y] = 0 if and only if $S_1(X) = X$ if and only if $X \in 1NBCK$.

Theorem 3.7. $X \in \text{kNBCK}$ if and only if for any $y_1, y_2, ..., y_k \in X$, $[y_k, ..., [y_2, [y_1, x]]...] = 0$.

Proof. By Definition 3.1, $X \in kNBCK$ if and only if $S_k(X) = X$ if and only if for any $y_1, y_2, ..., y_k \in X$, $[y_k, ..., [y_2, [y_1, x]]...] = 0$.

Example 3.8. Let $X = \{0, 1, 2\}$. Define the operation "*" on X as follows. Then $X \in 1NBCK$.

*	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Theorem 3.9. $[X, S_k(X)] \subseteq S_{k-1}(X)$.

Proof. Consider $x \in S_k(X)$. Then by Theorem 3.7, for any $y_1, y_2, ..., y_k \in X$, we have $[y_k, ..., [y_2, [y_1, x]]...] = 0$, i.e $[y_1, x] \in S_{k-1}(X)$. Therefore, $[X, S_k(X)] \subseteq S_{k-1}(X)$.

Theorem 3.10. If $X \in kNBCK$, then $X \in (k+1)NBCK$.

Proof. Assume $x_1, ..., x_k$ are arbitrary elements of X. By $X \in kNBCK$, we get

$$[[x_k, ..., [x_3, [x_2, x_1]]...] = 0.$$

Then

$$[x_{k+1}, [x_k, \dots, [x_3, [x_2, x_1]] \dots]] = [x_{k+1}, A_k] = [x_{k+1}, 0] = 0$$

Therefore, $X \in (k+1)NBCK$.

It is interesting that kNBCKs have almost the same properties as nilpotent BCK-algebras of class k that were introduced in Definition 2.6. In what follows, we state some of them. Since the proofs are similar to the ones in [8], we omit the proofs.

Let (X, *, 0) and $(Y, \cdot, 0')$ be two BCK-algebras. A mapping f from (X, *, 0) to $(Y, \cdot, 0')$ is called a *homomorphism* of BCK-algebras if for any $x, y \in X$, $f(x * y) = f(x) \cdot f(y)$. Also, $X \times Y$ with the operation • is a BCK-algebra where

$$(x_1, y_1) \bullet (x_2, y_2) = (x_1 * x_2, y_1 \cdot y_2),$$

for any $x_1, x_2 \in X$ and $y_1, y_2 \in Y$ (see [10]).

Theorem 3.11. Let $f : X \to Y$ be an isomorphism of BCK-algebras. Then $X \in kNBCK$ if and only if $Y \in kNBCK$.

Proof. Since f is an isomorphism for any $y_i \in Y$ there exist $x_i \in X$ such that $f(x_i) = y_i$ $(1 \le i \le k)$. Then,

$$[y_k, ..., [y_3, [y_2, y_1]]...] = [f(x_k), ..., [f(x_3), [f(x_2), f(x_1)]]...] = f[x_k, ..., x_3, [x_2, x_1]]...]$$

If $X \in kNBCK$, then $0 = f(0) = f[x_k, ..., x_3, [x_2, x_1]]...] = [y_k, ..., y_3, [y_2, y_1]]...]$. Therefore, $Y \in kNBCK$. Similarly, we have the converse.

Corollary 3.12. If $X \in kNBCK$, then any subalgebra of X is k-nilpotent. Also if $I \leq X$, then $X/I \in kNBCK$.

Lemma 3.13. $X/S_1(X) \in nNBCK$ if and only if $X \in (n+1)NBCK$.

Theorem 3.14. Let $I \trianglelefteq X$ and $n, m \in N$. If $I \in mNBCK$ and $X/I \in nNBCK$, then $X \in (n+m)NBCK$.

Lemma 3.15. Let $X \in nNBCK$ and M be a non-trivial ideal of X. Then $M \bigcap S(X) \neq 0$.

Proof. First note that if $x \in X$ and $m \in M$, then $[x, m] \in M$, because

$$[x,m] = (m(mx))(x(xm)) \le m(mx) \le m$$

Now, the proof is similar to [8, Theorem 4.11].

Theorem 3.16. Let $X \in nNBCK$. If M is a minimal ideal of X, then $M \leq S(X)$.

Proof. The proof is similar to [8, Theorem 4.11].

Theorem 3.17. Every BCK-algebra of order less than 5, is k-nilpotent for some $k \in \mathbb{N}$.

Theorem 3.18. If $X, Y \in kNBCK$, then $X \cap Y, X \times Y \in kNBCK$.

Proof. It is straightforward.

4 k-nilpotent(solvable) ideals

In this section, first we extend the notion of commutative ideals and define k-nilpotent(solvable) ideals and investigate some main theorems. Then, using K-nilpotent(solvable) BCK-algebras we obtain a relation between k-nilpotency(solvableity) of a BCK-algebra and ideals.

Definition 4.1. Assume $B \triangleleft X$. Then B is called

(i) a k-nilpotent ideal of X (we write $B \blacktriangleleft_k X$) if $A_k z \in B$ implies $A_k(z(zA_k)) \in B$ for any $z \in X$. (ii) a k-solvable ideal of X (we write $B \bigtriangleup_k X$) if $A_k C_k \in B$ implies $A_k(C_k(C_kA_k)) \in B$ for any $C_k \in X$.

Note. If we replace z with C_k in Definition 4.1(i), we can see that every k-nilpotent ideal is k-solvable. Therefore, we state and prove some results on k-nilpotent ideals. Then in a similar way, by replacing z with C_k , you can get the results on k-solvable ideals. This caused us to omit the proof when B is a k-solvable ideal. Although, the results are similar with these two definitions, we see they are not the same.

Theorem 4.2. $B \triangleleft_1 X(B \bigtriangleup_1 X)$ if and only if B is a commutative ideal of X.

Proof. Since for any $x_1 \in X$, we have $A_1 = [x_1] = x_1$. Then we get the result by definitions. \Box

Example 4.3. Assume $Y = X \bigcup \{1\}$ is the Iséki's extension of X (see [10]). Then X is a commutative ideal of Y. By Theorem 4.2, $X \triangleleft_1 Y$.

Theorem 4.4. Let $B \leq X$, $X \in kNBCK$ and $z(zA_k) \in B$. Then $B \blacktriangleleft_k X$.

Proof. By $X \in kNBCK$ for any $x_1, ..., x_k, z \in X$ we have $0 = [z, [x_k, ..., x_1]] = [z, A_k] = (A_k(A_k z))(z(zA_k))$. Then $B \leq X$ and $z(zA_k) \in B$ implies $A_k(A_k z) \in B$ (*). Therefore, if $A_k z \in B$, then by $B \leq X$ and (*), we obtain $A_k \in B$. Consequently, $A_k(z(zA_k)) \leq A_k \in B$ and so $A_k(z(zA_k)) \in B$. Therefore, $B \blacktriangleleft_k X$.

Example 4.5. Let $X = \{0, 1, 2\}$. Define the operation "*" on X as Example 3.8. Then X is a BCK-algebra. Put $B = \{0, 1\}$. Clearly $B \leq X$. For any $x, y \in X$ we have A = [x, y] = 0. It implies that for any $z \in X$ if $Az \in B$, then $A(z(zA)) = 0(z(zA) = 0 \in B, i.e. B \blacktriangleleft_2 X$.

Theorem 4.6. If $B \leq X$ and $X \in 1NBCK$, then $B \blacktriangleleft_2 X$.

Proof. By $X \in 1NBCK$ for any $x, y, z \in X$ we have A = [x, y] = 0 and so $A(z(zA)) = 0 \in B$. Thus, $B \triangleleft_2 X$.

Example 4.7. Consider X as Example 3.3. If $x \leq y$, then [y, x] = x and so [y, [y, x]] = [y, x] = x. (i) Take x = 0.6, y = z = 0.7 and B is the interval [0, 0.5]. Clearly, $B \triangleleft X$ and A = [0.7, 0.6] = 0.6. Then $Az = 0.6 * 0.7 = 0 \in B$ but $A(z(zA)) = 0.6 \notin B$. Therefore, $B \neq 2X$. (ii) Clearly, $X \in BCK^*$.

In what follows, we see that for an ideal B of X, there is not any k such that $B \blacktriangleleft_k X$.

Example 4.8. Let X, operation "*" and B be as Example 4.7. Then for $x \leq y$, we get $A_k = [y, ..., [y, [y, x]]...] = x$. Now, put x = 0.6, y = z = 0.7. Then $A_k z = 0.6 * 0.7 = 0 \in B$ and $A_k * (z * (z * A_k)) = 0.6 \notin B.$

Theorem 4.9. If $B \triangleleft_k X$, then $B \triangleleft_{k+1} X$.

Proof. Let $B \triangleleft_k X$, $C = [x_2, x_1]$ and $A_{k+1}z \in B$. Then

$$A_{k+1} = [x_{k+1}, [x_k, \dots x_3, [x_2, x_1]] \dots] = [x_{k+1}, [x_k, \dots x_3, x'] \dots] = A'_k.$$

Since $B \blacktriangleleft_k X$ we get $A'_k(z(zA'_k)) \in B$ for any $z \in X$ and so $A_{k+1}(z(zA_{k+1})) = A'_k(z(zA'_k)) \in B$, i.e $B \blacktriangleleft_{k+1} X$.

Theorem 4.10. Let $f: X \to Y$ be an epimorphism of BCK-algebras and $J, B_1, B_2 \blacktriangleleft_k X, C_1 \blacktriangleleft_k Y$ and $I \triangleleft Y$ with $J = f^{-1}(I)$. Then (i) $J \triangleleft_k X$ if and only if $I \triangleleft_k Y$. (*ii*) $B_1 \bigcap B_2 \blacktriangleleft_k X$. (*iii*) $H = B_1 \times C_1 \blacktriangleleft_k X \times Y$.

Proof. (i) Let $J \triangleleft_k X$ and $A_k z \in I$, where $z, y_1, y_2, ..., y_k \in Y$, $A_k = [y_k, ..., [y_2, y_1]...]$. Then $f^{-1}(A_k)f^{-1}(z) = f^{-1}(A_k z) \in f^{-1}(I) = J$ and so by $J \blacktriangleleft_k X$ we have

$$f^{-1}(A_k)(f^{-1}(z)(f^{-1}(z)f^{-1}(A_k))) = f^{-1}(A_k(z(zA_k))) \in J = f^{-1}(I).$$

Then $A_k(z(zA_k)) \in I$. Therefore, $I \triangleleft_k Y$. The converse of the theorem is proved similarly. (ii) It is straightforward.

(iii) Let $(A_k, A'_k)(z_1, z_2) = (A_k z_1, A'_k z_2) \in H$ where $z_1, x_1, x_2, ..., x_k \in X$ and $z_2, y_1, y_2, ..., y_k \in Y$, $A_{k} = [x_{1}, x_{2}, ..., x_{k}], A'_{k} = [y_{1}, y_{2}, ..., y_{k}].$ Then by $B_{1} \blacktriangleleft_{k} X, C_{1} \blacktriangleleft_{k} Y$ we have

$$(A_k, A'_k) \bullet ((z_1, z_2) \bullet ((z_1, z_2) \bullet (A_k, A'_k))) = (A_k(z_1(z_1A_k)), A'_k(z_2(z_2A'_k))) \in H.$$

uently, $H \blacktriangleleft_k X \times Y.$

Consequently, $H \blacktriangleleft_k X \times Y$.

Theorem 4.11. $X \in \text{kNBCK}$ ($X \in \text{kSBCK}$) if and only if $A_k z = A_k(z(zA_k))$ ($A_k C_k = A_k(C_k(C_kA_k))$).

Proof. (\Rightarrow) If $X \in kNBCK$, then $0 = [z, [x_k, ..., [x_2, x_1]...]] = [z, A_k] = (A_k(A_k z))(z(zA_k))$ and so $A_k(A_kz) \leq z(zA_k)$. It follows by Theorem 2.2, $A_k(z(zA_k)) \leq A_k(A_kz) = A_kz$. On the other hand $z(zA_k) \leq z$, implies $A_k z \leq A_k(z(zA_k))$. Consequently, $A_k z = A_k(z(zA_k))$. (\Leftarrow) By Theorem 2.2 and hypotheses, we obtain

$$[z, A_k] = (A_k(A_k z))(z(zA_k)) = (A_k(A_k(z(zA_k))))(z(zA_k)) = (A_k(z(zA_k)))(A_k(z(zA_k))) = 0.$$

Therefore, $X \in kNBCK$.

Definition 4.12. X is called a BCK-algebra with condition (*) if $A_k(A_k z) = [s_k, ..., [s_2, s_1]...]$ for some $s_1, s_2, ..., s_k \in X$. We use BCK^{k*} for the set of all BCK-algebras with condition (*).

Proposition 4.13. Let $X \in BCK^{k*}$ and $I \blacktriangleleft_k X$. Then $X/I \in BCK^{k*}$.

Proof. Since $X \in BCK^{k*}$ we have $A_k(A_k z) = [x_k, ..., [x_2, x_1]...]$ for some $x_1, x_2, ..., x_k \in X$ and so $I_{A_k}(I_{A_k}I_z) = I_{A_k(A_k z)} = I_{[x_k, ..., [x_2, x_1]...]}$, i.e $X/I \in BCK^{k*}$.

Theorem 4.14. Suppose that $X \in \mathsf{BCK}^{k*}$ and $I, B \triangleleft X$ and $I \subseteq B$. If $I \blacktriangleleft_k X(I \bigtriangleup_k X)$, then $B \blacktriangleleft_k X(B \bigtriangleup_k X)$.

Proof. Assume $u = A_k z \in B$. Then by Theorem 2.2,

$$(A_k u)z = (A_k z)u = (A_k z)(A_k z) = 0 \in I.$$

Now by $X \in BCK^{k*}$ since $I \blacktriangleleft_k X$, we have

$$(A_k u)(z(z(A_k u)) \in I \subseteq B.$$

It follows by $B \leq X$ that $A_k(z(z(A_ku))) \in B$. Since $A_ku \leq A_k$ we have $z(z(A_ku)) \leq z(zA_k)$. Now, using Theorem 2.2, we have $A_k(z(zA_k)) \leq A_k(z(z(A_kz)))$. Therefore, $A_k(z(zA_k)) \in B$, i.e $B \blacktriangleleft_k X$.

Corollary 4.15. Assume $X \in BCK^{k*}$. Then $\mathbf{0} \triangleleft_k X(\mathbf{0} \bigtriangleup_k X)$ if and only if all ideals of X are *k*-nilpotent(solvable).

Theorem 4.16. If $X \in kNBCK$, then $\mathbf{0} \triangleleft_k X(\mathbf{0} \bigtriangleup_k X)$.

Proof. Assume $X \in kNBCK$ and $A_k z \in \mathbf{0}$. Then by assumption we have

$$0 = [z, A_k] = (A_k(A_k z))(z(zA_k)) = A_k(z(zA_k)).$$

Therefore, $\mathbf{0} \triangleleft_k X$.

Theorem 4.17. Let $X \in BCK^{k*}$ and $X \in kNBCK(X \in kSBCK)$. Then all ideals of X are k-nilpotent(solvable).

Proof. It is clear by Corollary 4.15 and Theorem 4.16.

Now, we show that there is a 2-solvable ideal that is not a 2-nilpotent ideal.

Example 4.18. Consider (X, *, 0) as Example 3.5, A = [5, 4] = 4, z = 5 and $B = \{0, 1, 2\}$. Now, $Az = 0 \in B$ but $A(z(zA)) = 4(5(5(4))) = 4 \notin B$. Therefore, $B \not\models_2 X$. Clearly, $X \in BCK^{2*}$. According to Theorem 3.4, $X \in 2$ SBCK and so Theorem 4.17, implies $B \bigtriangleup_2 X$

Theorem 4.19. Let $X \in BCK^{k*}$ and $z \in X$. Then the following statements are equivalent. (i) $A_k \leq z$ implies $A_k \leq z(zA_k)$ (ii) $A_k z = A_k(z(zA_k))$.

Proof. $(i \Rightarrow ii)$ Since $A_k(A_k z) \leq z$ by (i), we have $A_k(A_k z) \leq z(z(A_k(A_k z)))$. Then by Theorem 2.2,

$$A_k(z(z(A_k(A_kz)))) \le A_k(A_k(A_kz)). \quad (I)$$

Also, since $A_k(A_kz) \leq A_k$, by Theorem 2.2, we have $zA_k \leq z(A_k(A_kz))$. It follows by Theorem 2.2, $A_k(z(zA_k)) \leq A_k(z(z(A_k(A_kz))))$. Then by (I), we obtain $A_k(z(zA_k)) \leq A_kz$, (II). On the other hand by $z(zA_k) \leq z$ and Theorem 2.2, we get $A_kz \leq A_k(z(zA_k))$. It follows by (II), that $A_kz = A_k(z(zA_k))$.

 $(ii \Rightarrow i)$ Assume $A_k \leq z$. Then by (ii), we get $0 = A_k z = A_k(z(zA_k))$ and so $A_k \leq z(zA_k)$. \Box

Let $I \triangleleft X$ and $x, y \in X$. Define the congruence relation \simeq on X as follows

$$x \simeq y \Leftrightarrow x * y, \ y * x \in I.$$

Take $I_x = [x]$ and $X/I = \{I_x; x \in X\}$. Then (X/I, *) is a BCK-algebra, where $I_x * I_y = I_{x*y}$ (see [10]).

Theorem 4.20. Let $X \in BCK^{k*}$ and $I \blacktriangleleft_k X(I \bigtriangleup_k X)$. Then $X/I \in kNBCK(X/I \in kSBCK)$.

Proof. We get the result from Corollary 4.15 and Theorem 4.17.

Corollary 4.21. Let $X \in BCK^{k*}$ and $I \blacktriangleleft_k X$. Then for any $z \in X$, $z(zA_k) \in I$ imply $A_k(A_k z) \in I$.

Proof. By Theorem 4.20 and $I \blacktriangleleft_k X$, we have $X/I \in kNBCK$ and so for any $z, x_1, ..., x_k \in X$,

$$I_0 = [I_z, [I_{x_k}, ..., I_{x_1}]] = [I_z, I_{[x_k, ..., x_1]}] = [I_z, I_{A_k}] = (I_{A_k}(I_{A_k}I_z))(I_z(I_zI_{A_k})) \quad (*).$$

On the other hand $0 * z(zA_k) = 0 \in I$ if $z(zA_k) \in I$, then $z(zA_k) \simeq 0$. It follows that $I_{z(zA_k)} = I_0$ and so $I_z(I_zI_{A_k}) = I_0$. Consequently, by (*), $(I_{A_k}(I_{A_k}I_z)) = I_0$, i.e $A_k(A_kz) \in I$.

Theorem 4.22. Assume $X \in BCK^{k*}$, $f : X \to Y$ is an epimorphism. Then $Kern(f) \blacktriangleleft_k X$ if and only if $Y \in kNBCK$.

Proof. (\Rightarrow) Since $Kern(f) \blacktriangleleft_k X$ by Theorem 4.20, we get that $X \in kNBCK$. Therefore, $X/kern(f) \in kNBCK$. From $X/Kern(f) \cong Y$ we obtain $Y \in kNBCK$.

(⇐) From Theorem 4.16 and $Y \in kNBCK$ we obtain $\mathbf{0} \blacktriangleleft_k Y$. Consider $Az \in Kern(f)$. Then $f(A)f(z) = f(Az) = 0 \in \mathbf{0} \blacktriangleleft_k Y$ implies that $f(A)(f(z)(f(z)f(A))) = f(A(z(zA)) \in \mathbf{0}$. Therefore, $f(A(z(zA)) = 0, \text{ i.e } A(z(zA)) \in Kern(f)$. Consequently, $Kern(f) \blacktriangleleft_k X$.

Theorem 4.23. Let $X \in BCK^{2*}$ and $I \blacktriangleleft_2 X$. Then for any $x, y, z \in X$, $[z, [y, x]] \in I$.

Proof. Since $I \blacktriangleleft_2 X$ by Theorem 4.20, we get $X/I \in 2NBCK$. Then for any $x, y, z \in X$, we have $[I_z, [I_y, I_x]] = I_0$ and so $I_{[z, [y, x]]} = I_0$. It implies $[z, [y, x]] \in I$, as we need.

Theorem 4.24. $X/I \in 2NBCK$ if and only if $[z, A] \in I$, where A = [y, x] and x, y are arbitrary elements of X.

Proof. (\Rightarrow) It is clear by the proof of Theorem 4.23.

(⇐) Assume for any $z \in X$, $[z, A] \in I$. Then $[z, A] * 0 = [z, A], 0 * [z, A] = 0 \in I$ and so $[z, A] \simeq 0$. Therefore, $I_{[z,A]} = I_0$, i.e. $I_0 = I_{[z,A]} = [I_z, I_A]$. Consequently, $X/I \in \texttt{2NBCK}$.

Clearly, if $X \in 2NBCK$ then $X/I \in 2NBCK$. In the following we obtain the converse.

Theorem 4.25. Let $X \in BCK^{2*}$, $I \blacktriangleleft_2 X$ and I be a k-nilpotent subalgebra of X. Then $X \in (k+2)NBCK$.

Proof. By Theorem 4.23, for any $x, y, z \in X$, $[z, [y, x]] \in I$. Since I is a kNBCK for any $x_k, ..., x_2 \in X$, we have $[x_k, ..., [x_2, [z, [y, x]]] ...] = 0$, i.e $X \in (k + 2)$ NBCK.

5 *n*-fold 2-nilpotent(solvable) ideals

In this section, we generalize the notion of *n*-fold commutative ideals(BCK-algebra) to *n*-fold k-nilpotent(solvable) ideals of BCK-algebra. Specially, we study the case k = 2.

Definition 5.1. Let A = [x, y], C = [s, t] and $x, y, s, t \in X$. Then X is called

(i) n-fold 2-nilpotent if there exists a fixed integer $n \ge 0$ such that $Az = A(z(zA^n))$.

(ii) n-fold 2-solvable if there exists a fixed integer $n \ge 0$ such that $AC = A(C(CA^n))$,

We use nF2NBCK and nF2SBCK for the set of all n-fold 2-nilpotent and solvable BCK-algebras, respectively.

Proposition 5.2. $X \in 1$ F2NBCK if and only if $X \in 2$ NBCK and $X \in 1$ F1NBCK if and only if $X \in 1$ NBCK if and only if X is commutative.

Proof. It follows by Theorems 4.11 and 3.6.

Example 5.3. Let $X = \{0, 1, ..., n\}$ $(n \ge 4)$. Define the operation "*" on X as follows. Then by Theorem 3.6 and Proposition 5.2, $X \in 2F1NBCK$ but $X \notin 1F1NBCK$.

$$x * y = \begin{cases} 0 & x \le y \\ x & y = 0 \\ n - y & x = 0 \\ 1 & 0 < y < x < n. \end{cases}$$

Theorem 5.4. Every nF2NBCK is (n + 1)F2NBCK.

Proof. Let $X \in nF2NBCK$. Then $Az = A(z(zA^n))$. Clearly, $0 \le zA^{n+1} \le zA^n$. Thus,

$$z = z0 \ge z(zA^{n+1}) \ge z(zA^n)$$

and so $Az \leq A(z(zA^{n+1})) = A(z(zA^n)) = Az$. Therefore, $Az = A(z(zA^{n+1}))$, i.e $X \in (n+1)$ F2NBCK.

Definition 5.5. Assume $B \triangleleft X$, $z \in X$. Then B is called a (i) n-fold 2-nilpotent ideal of X (we write $B \blacktriangleleft_{nf} X$) if $Az \in B$ implies $A(z(zA^n)) \in B$. (ii) n-fold 2-solvable ideal of X (we write $B \bigtriangleup_{nf} X$) if $AC \in B$ implies $A(C(CA^n)) \in B$.

Theorem 5.6. If $B \triangleleft_{nf} X(B \bigtriangleup_{nf} X)$, then $B \triangleleft_{(n+1)f} X(B \bigtriangleup_{(n+1)f} X)$.

Proof. Assume $Az \in B$. Then $A(z(zA^n)) \in B$. Also, by $zA^{n+1} \leq zA^n$, we get

$$A(z(zA^{n+1})) \le A(z(zA^n)) \in B.$$

Consequently, $A(z(zA^{n+1})) \in B$, i.e $B \blacktriangleleft_{(n+1)f} X$.

Obviously, the notions of 2-nilpotent ideals and 1-fold 2-nilpotent ideals are the same.

Theorem 5.7. If I is a commutative ideal of X, then $I \triangleleft_{nf} X$.

Proof. Using Proposition 5.2 and Theorem 5.6, we get the result.

Theorem 5.8. Let $f : X \to Y$ be an epimorphism of BCK-algebras and $J, B_1, B_2 \blacktriangleleft_{nf} X$, $C_1 \blacktriangleleft_{nf} Y$ and $I \triangleleft_{nf} Y$ with $J = f^{-1}(I)$. Then the following statements hold. (i) $J \blacktriangleleft_{nf} X$ if and only if $I \blacktriangleleft_{nf} Y$, (ii) $B_1 \bigcap B_2 \blacktriangleleft_{nf} X$, (iii) $K = B_1 \times C_1 \blacktriangleleft_{nf} X \times Y$.

Proof. (i) Let $J \triangleleft_{nf} X$ and $Az \in I$ where $z, y_1, y_2 \in Y, A = [y_1, y_2]$. Then

$$f^{-1}(A)f^{-1}(z) = f^{-1}(Az) \in f^{-1}(I) = J$$

and so by $J \blacktriangleleft_{nf} X$ we have $f^{-1}(A(z(zA^n))) \in J = f^{-1}(I)$, i.e. $A(z(zA^n)) \in I$. Therefore, $I \blacktriangleleft_{nf} Y$.

(ii) and (iii) are similar to Theorem 4.10.

Theorem 5.9. Consider $X \in \text{BCK}^{2*}$ and $I, B \triangleleft X$ and $I \subseteq B$. If $I \blacktriangleleft_{nf} X(I \bigtriangleup_{nf} X)$, then $B \blacktriangleleft_{nf} X(B \bigtriangleup_{nf} X)$.

Proof. Assume $Az \in B$ and u = A(Az). Then $uz = 0 \in I$. Since $I \blacktriangleleft_{nf} X$ and $X \in \mathsf{BCK}^{2*}$ we conclude that $u(z(zu^n)) \in I$, i.e $(A(Az))(z(zu^n)) \in I \subseteq B$. Then $(A(z(zu^n)))(Az) \in B$. It follows by $B \triangleleft X$ and $Az \in B$ that $A(z(zu^n)) \in B$, (*). In other word, by $u \leq A$ we obtain $zA^n \leq zu^n$ and so $A(z(zA^n)) \leq A(z(zu^n))$. Hence by (*), $A(z(zA^n)) \in B$, i.e $B \blacktriangleleft_{nf} X$.

Corollary 5.10. Assume $X \in BCK^{2*}$. Then $\mathbf{0} \triangleleft_{nf} X(\mathbf{0} \bigtriangleup_{nf} X)$ if and only if all ideals of X are *n*-fold 2-nilpotent(solvable).

Similarly, we have the following.

Theorem 5.11. If $X \in nf2NBCK(X \in nf2SBCK)$, then $0 \triangleleft_{nf} X(\mathbf{0} \bigtriangleup_{nf} X)$.

Corollary 5.12. Let $X \in BCK^{2*}$ and $X \in nf2NBCK(X \in nf2SBCK)$. Then all ideals of X are *n*-fold 2-nilpotent(solvable).

Theorem 5.13. let $f: X \to Y$ be an epimorphism. Then $Ker(f) \blacktriangleleft_{nf} X$.

Proof. By Theorem 5.11, if $Y \in nf2NBCK$, then $0 \blacktriangleleft_{nf} Y$. Then by Theorem 4.10(i), $Kerf = f^{-1}(0) \blacktriangleleft_{nf} X$.

Theorem 5.14. Let $X \in BCK^{2*}$ and $z \in X$. Then the following are equivalent. (i) $A \leq z$ implies $A \leq z(zA^n)$ (ii) $Az = A(z(zA^n))$.

Proof. $(i \Rightarrow ii)$ Since $A(Az) \leq z$ by Theorem 2.2, we have $zA^n \leq z(A(Az))^n$ and so

$$A(z(zA^n)) \le A(z(z(A(Az))^n)) \qquad (*$$

Then $A(Az) \leq z$ implies that $A(Az) \leq z(z(A(Az))^n)$. Therefore,

$$A(z(z(A(Az))^n)) \le A(A(Az)) = Az.$$

It follows by (*) that $A(z(zA^n)) \leq Az$. In addition, by $z(zA^n) \leq z$ we have $Az \leq A(z(zA^n))$. Consequently $Az = A(z(zA^n))$. $(ii \Rightarrow i)$ It is similar to Theorem 4.19.

Now, we give a characterization of n-fold 2-nilpotent BCK-algebras. In addition, we obtain a relation between n-fold 2-nilpotency of a BCK-algebra and all ideals of it.

Theorem 5.15. Let $X \in BCK^{2*}$. Then $X \in nF2NBCK(X \in nF2SBCK)$ if and only if all ideals of X are n-fold 2-nilpotent(solvable).

Theorem 5.16. Let $X \in BCK^{2*}$ and $I \blacktriangleleft_{nf} X(I \bigtriangleup_{nf} X)$. Then $X/I \in nF2NBCK(X/I \in nF2SBCK)$.

6 Conclusions

First the notion of k-nilpotent BCK-algebra was introduced. Also, an equivalent condition to k-nilpotency of a BCK-algebra was obtained. Then k-nilpotent ideal of a BCK-algebra as a generalization of commutative ideals was defined and investigated. In addition, most of the theorems on commutative ideals were obtained on k-nilpotent ideals. Finally, n-fold 2-nilpotent ideals were studied. Continuing this method, we can define k-Engels and solvable ideals of BCI-algebras, too. This reduce or exchange some problems of BCI-algebras.

References

- W. A. Dudek, *Finite BCK-algebras are solvable*, Communications of the Korean Mathematical Society, 31(2) (2016), 261–262.
- [2] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy, 42 (1966), 19–22.
- [3] K. Iseki, An algebras related with a propositional calculus, Mathematica Japonica, 42 (1966), 26–29.
- [4] K. Iseki, *BCK-algebras*, Mathematics Seminar Notes, 4 (1976), 77–86.
- [5] K. Iseki, S. Tanaka, A. Rosenfeld, An introduction to theory of BCK-algebras, Mathematica Japonica, 23 (1978), 1–26.
- Y.B. Jun, X.L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Scientiae Mathematicae Japonicae, 53(2) (2001), 353–360.
- [7] Y.B. Jun, M.M. Zahedi, X.L. Xin, R.A. Borzoei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 8 (2000), 127–136.
- [8] E. Mohammadzadeh, R.A. Borzooei, Engel, nilpotent and solvable BCI-algebra, Analele stiintifice ale Universitatii Ovidius Constanta, 27(1) (2019), 169–192.
- [9] A. Najafi, A. Borumand Saeid, E. Elami, Commutators in BCI-algebras, Journal of Intelligent and Fuzzy Systems, 31 (2016), 357–366.
- [10] H. Yisheng, *BCI-algebra*, Science Pess, China, 2003.