n-fold 2-nilpotent(solvable) ideal of a BCK-algebra

Document Type : Original Article


Department of Mathematics, Faculty of Science, Payame Noor University, 19395-3697, Tehran, Iran


In this paper,  first  we introduce the notions of k-nilpotent (solvable) ideals  and k-nilpotent BCK-algebras. Specially, we show  that every commutative ideal is 1-nilpotent (solvable). Second, we state  an equivalent condition to k-nilpotency (solvablity) ideals and  BCK-algebra. Finally,  we study n-fold 2-nilpotent (solvable) ideals and BCK-algebras as a generalization of n-fold commutative ideals and BCK-algebras, and we study the relation between these two concepts. Basically, we compare 2-nilpotent and solvable ideals (BCK-algebras).


[1] W. A. Dudek, Finite BCK-algebras are solvable, Communications of the Korean Mathematical
Society, 31(2) (2016), 261–262.
[2] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proceedings of the Japan
Academy, 42 (1966), 19–22.
[3] K. Iseki, An algebras related with a propositional calculus, Mathematica Japonica, 42 (1966),
[4] K. Iseki, BCK-algebras, Mathematics Seminar Notes, 4 (1976), 77–86.
[5] K. Iseki, S. Tanaka, A. Rosenfeld, An introduction to theory of BCK-algebras, Mathematica
Japonica, 23 (1978), 1–26.
[6] Y.B. Jun, X.L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Scientiae Mathematicae
Japonicae, 53(2) (2001), 353–360.
[7] Y.B. Jun, M.M. Zahedi, X.L. Xin, R.A. Borzoei, On hyper BCK-algebras, Italian Journal of
Pure and Applied Mathematics, 8 (2000), 127–136.
[8] E. Mohammadzadeh, R.A. Borzooei, Engel, nilpotent and solvable BCI-algebra, Analele stiintifice
ale Universitatii Ovidius Constanta, 27(1) (2019), 169–192.
[9] A. Najafi, A. Borumand Saeid, E. Elami, Commutators in BCI-algebras, Journal of Intelligent
and Fuzzy Systems, 31 (2016), 357–366.
[10] H. Yisheng, BCI-algebra, Science Pess, China, 2003.