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Abstract

In [16], by using an MV -semiring and an MV -algebra,
we introduced the new definition of MV -semimodule and
studied some of their basic properties. In this paper, we
study and present definitions of primary ideals of MV -
semirings, decomposition of ideals in MV -semirings, pri-
mary A-ideals of MV -semimodules, and decomposition
of A-ideals in MV -semimodules. Then we present some
conditions that an A-ideal can have a reduced primary
decomposition.
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1 Introduction
In 1935, Vandiver introduced the concept of semirings. Since then the semirings have been

studied by many authors. Nowadays, the theory of idempotent semirings has many applications
in other fields, such as discrete mathematics, computer science and languages, linguistic problems,
optimization difficulties, discrete event systems, computational difficulties, and so on. We know
the theory arising from the substitution of the fields of real and complex numbers with idempotent
semirings or semifields. It is often referred to as idempotent or topical mathematics.
Chang [3, 4] defined MV -algebras as algebras corresponding to the Łukasiewicz infinite valued
propositional calculus. MV -algebras have equivalent presentation such as CN -algebras, Wajsberg
algebras, bounded commutative BCK-algebras and so on. It is proved that MV -algebras are natu-
rally related to the Murray-von Neumann order of projections in operator algebras on Hilbert spaces
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and that they have an interesting role to play as invariant of approximately finite-dimensional C∗-
algebras. Also Ulam,s searching games with lies is naturally related to MV -algebras. MV -algebras
admit a natural order structure (natural lattice reduction). Chang established this fact that non-
trivial MV -algebras are subdirect products of MV -chains. That is, MV -algebras are totally
ordered and so some essential properties can be derived from this fact. He introduced the notion
of prime ideal in MV -algebras to prove this important result. We know that there is a categorical
equivalence between MV -algebras and lu-groups. It leads some researches to define a product
operation on MV -algebras to obtain structures corresponding to l-rings. A product MV -algebra
(PMV -algebra) is an MV -algebra with an addition operation (an associative binary operation “.”).
PMV -algebras have been widely studied and researched recently. Then, their equivalence with a
certain class of l-rings with strong unit was proved. The introduction of modules over such algebras
seemed natural for generalizing the divisible MV -algebras and the MV -algebras obtained from
Riesz spaces and to prove natural equivalence theorems. Hence, Di Nola [6] introduced the notion
of MV -modules as an action of a PMV -algebra over an MV -algebra. By presentation of defini-
tion of MV -modules, some researches were encouraged for working on MV -modules and related
structures (see, for instance, [2, 15]). Specially, some researches obtained some results on ideals
and decomposition of ideals in MV -algebras and MV -modules (see, for instance, [9, 12, 13, 14]).
In recent years, Di Nola et al. studied the notions of MV -semiring and semimodules and investi-
gated related results [7, 8, 11]. MV -semirings are a special class of idempotent semirings strictly
connected to MV -algebras, the algebraic semantics of ukasiewicz propositional logic. In particular,
in [8], Di Nola and Russo showed that the two aforementioned categories are isomorphic. This fact
allows us to import results and techniques from semiring and ring theory into the study of MV -
algebras. It is well known that an effective way to study rings is to study the way in which a ring
R acts on its modules. There is a connection between an special category of additively idempotent
semirings and MV -algebras. This connection was first observed in [7] and eventually enforced in
[1]. On the other hand, every MV -algebra has two semirings reducts isomorphic to each other.
Also, the category of MV -semirings, defined in [1], is isomorphic to the one of MV -algebras.
Since MV -semirings are a branch of semirings, it seems that MV -modules can be defined over
MV -semirings. There are many researchers who are interested in modules structures. In [16], we
presented a new definition for MV -modules. We used MV -semirings instead of PMV -algebras.
In fact, we defined MV -modules over MV -semirings. During the last years, MV -modules have
been defined over PMV -algebras. Since MV -semirings are a special class of semirings, we hope
that new definition of MV -modules helps us to explain MV -modules better than the last. For
example, in [14], we introduced the concept of primary decomposition of A-ideals in MV -modules
that it was not easy.
In this paper, we study and present definitions of primary ideals of MV -semirings, primary A-
ideals of MV -semimodules, and primary (reduced primary) decomposition of A-ideals in MV -
semimodules. Then we obtain some results about primary decomposition of A-ideals in MV -
semimodules. For example, we present that every proper A-ideals in a Noetherian A-semimodule
has a reduced primary decomposition.

2 Preliminaries
In this section, we review the material that we will use in the next sections.

Definition 2.1. [8, 10] A semiring is an algebraic structure (S,∔, ., 0, 1) of type (2, 2, 0, 0) such
that;
(i) (S,∔, 0) is a commutative monoid,
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(ii) (S, ., 1) is a monoid,
(iii) ”.′′ distributes over ”∔′′ from either side.

A semiring S is called commutative if x.y = y.x, and it is called idempotent if it satisfies the
equation x∔ x = x, for every x, y ∈ S. A left ideal of semiring S is a nonempty subset I of S that
satisfying the following conditions:
(1) if a, b ∈ I, then a∔ b ∈ I,
(2) if a ∈ I and r ∈ S, then r.a ∈ I.
The proper ideal P of A is called a prime ideal of A if a.b ∈ P implies a ∈ P or b ∈ P , for any
a, b ∈ A. The proper ideal I of S is a maximal ideal of S if and only if no proper ideal of S strictly
contains I. For J ⊆ S, the generated ideal of J is ≺ J ≻=

∩
J⊆I

I where I shows any ideal of S.

An MV -semiring is a commutative and additive idempotent semiring (A,∔, ., 0, 1) such that there
exists a map ′ : A → A that satisfying the following conditions:
(i) a.b = 0 if and only if b ≤ a′ (where ≤ is naturally defined by means of ∔),
(ii) a+ b = (a′.(a′.b)′)′, for every a, b ∈ A.

Definition 2.2. [5] An MV-algebra is an algebraic structure M = (M,⊕,′ , 0) of type (2, 1, 0)
satisfying the following equations
(MV 1) (M,⊕, 0) is an Abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a, for every a, b ∈ M .
If we define the constant 1 = 0′ and operations ⊙ and ⊖ by a ⊙ b = (a′ ⊕ b′)′ and a ⊖ b = a ⊙ b′,
then
(MV 5) a⊕ b = (a′ ⊙ b′)′,
(MV 6) a⊕ 1 = 1,
(MV 7) (a⊖ b)⊕ b = (b⊖ a)⊕ a,
(MV 8) a⊕ a′ = 1,
for every a, b ∈ M . Clearly, (M,⊙, 1) is an Abelian monoid. Now, if we define auxiliary operations
∨ and ∧ on M by a∨ b = (a⊙ b′)⊕ b and a∧ b = a⊙ (a′⊕ b), for every a, b ∈ M , then (M,∨,∧, 0)
is a bounded distributive lattice. Let ∅ ̸= S ⊆ M . We say that S is ∧-closed, if a ∧ b ∈ S, for all
a, b ∈ S. In an MV -algebra M , the following conditions are equivalent:
(i) a′ ⊕ b = 1,
(ii) a⊙ b′ = 0,
(iii) b = a⊕ (b⊖ a),
(iv) ∃c ∈ M such that a⊕ c = b, for every a, b, c ∈ M .
For any two elements a, b of the MV -algebra M , a ≤ b if and only if a, b satisfy the above
equivalent conditions (i) − (iv). An ideal of MV -algebra M is a subset I of M , satisfying the
following conditions:
(I1): 0 ∈ I,
(I2): x ≤ y and y ∈ I imply x ∈ I,
(I3): x⊕ y ∈ I, for every x, y ∈ I.
We denote that I(M) is the set of all ideals of M . A proper ideal I of M is a prime ideal of M
if and only if x ⊖ y ∈ I or y ⊖ x ∈ I (or x ∧ y ∈ I implies x ∈ I or y ∈ I), for every x, y ∈ M .
Let I ∈ I(M). Then the intersection of all prime ideals of M , including I, is called radical of I
and it is denoted by radM (I) or briefly rad(I). If there is not any prime ideal of M including I,
then we let rad(I) = M [16]. A partial addition on MV -algebra M is defined as follows: x + y
is defined if and only if x ≤ y′ and in this case, x + y = x ⊕ y, for every x, y ∈ M . Moreover, if
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x+ z ≤ y + z, then x ≤ y, for every x, y, z ∈ M .
Proposition 2.3. [5] The following equations hold in every MV -algebra:
(i) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z),
(ii) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z),
(iii) if x ≤ y, then y′ ≤ x′ and x⊙ z ≤ y ⊙ z, for every x, y, z ∈ M .
Lemma 2.4. [14] In every MV -algebra M , the following conditions are equivalent:
(i) x = x⊖ (y ⊖ x),
(ii) x⊖ y = (x⊖ y)⊖ y,
(iii) (x⊖ z)⊖ (y ⊖ z) = (x⊖ y)⊖ z,
(iv) x ∧ x′ = 0,
(v) x ∨ x′ = 1,
(vi) x = x⊖ x′(or x = x⊕ x),
(vii) x′ = x′ ⊖ x,
(viii) y′ ∧ x = x⊖ y,
(ix) y ∧ x = x⊖ y′

(x) x ∧ (y ⊖ z) = (x ∧ y)⊖ z, for every x, y, z ∈ M .
Proposition 2.5. [8] (i) Let A = (A,⊕,′ , 0) be an MV -algebra. Then (A,∨,⊙, 0, 1) is a semiring.
(ii) Let A = (A,∔, ., 0, 1) be an MV -semiring. Then (A,⊕,′ , 0) is an MV -algebra, where a⊕ b =
(a′.b′)′, for all a, b ∈ A.
Proposition 2.6. [5] Every proper ideal of an MV -algebra is an intersection of prime ideals.
Lemma 2.7. [14] Let I ∈ I(M), S ⊆ M be ∧-closed and S ∩ I = ∅. Then there exists a maximal
ideal P of M such that P ⊇ I and P ∩ S = ∅. Furthermore, P is a prime ideal of M .
Theorem 2.8. [14] Let M be an MV -algebra and I1, · · · , In be ideals of M . Then

rad(
n∩

k=1

Ik) =
n∩

k=1

rad(Ik).

Definition 2.9. [14] Let Q be a proper ideal of MV -algebra M . Then Q is called a primary ideal
of M if a ∧ b ∈ Q, then there exists c ∈ M \ P such that c ∧ b ∈ Q or a ∧ c ∈ Q, for every prime
ideal P of M that contains Q and a, b ∈ M . In an MV -algebra, every prime ideal is primary ideal.
Definition 2.10. [16] Let A = (A,∔, ., 0, 1) be an MV -semiring, M = (M,⊕,′ , 0) be an MV -
algebra, and the operation ϕ : A × M −→ M be defined by ϕ(a,m) = am, which satisfies the
following axioms, for every a, b ∈ A and x, y ∈ M :
(SMV 1) if x+ y is defined in M , then ax+ ay is defined in M and a(x+ y) = ax+ ay;
(SMV 2) (a∔ b)x = ax⊕ bx;
(SMV 3) (a.b)x = a(bx). Then M is called a (left) MV -semimodule over A or briefly an A-
semimodule. We say that M is a unitary A-semimodule if A has a unity 1A for the product, that
is
(SMV 4) 1Ax = x, for every x ∈ M .
Theorem 2.11. [16] Let A = (A,∔, ., 0, 1) be an MV -semiring such that x.x = x, for every x ∈ A,
and P be an ideal of A. Then
(i) P is an ideal of A as an MV -algebra;
(ii) If x.y′, y ∈ P , then x ∈ P , for any x, y ∈ A;
(iii) If P is a prime ideal of A as an MV -semiring, then P is a prime ideal of A as an MV -algebra;
(iv) P is a prime ideal of A if and only if x.y′ ∈ P or y.x′ ∈ P , for every x, y ∈ A.
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3 Primary decomposition of A-ideals in MV -semimodules
In this section, we define the notions of primary and P -primary ideals (A-ideals) of an MV -
semiring (MV -semimodule). Then we present definition of primary (reduced primary) decompo-
sition of A-ideals in MV -semimodules and obtain some results on them. As a fundamental result,
we introduce an MV -semimodule that all its proper A-ideals have reduced primary decomposition.

Note. From now on, in this paper, we let A be an MV -semiring and M be an MV -algebra.
We set that PI(X) is the set of all prime ideals of X, and PIJ(X) is the set of all prime ideals of
X that contain J ∈ I(X), where X = M or X = A.

Proposition 3.1. Let M be an A-semimodule and N be an A-ideal of M . Then

QN = {x ∈ A : xM ⊆ N},

is an ideal of A.

Proof. Let x, y ∈ QN . Then xm, ym ∈ N and so xm⊕ ym ∈ N , for every m ∈ M . By (SMV 2),
(x ∔ y)m = xm ⊕ ym ∈ N , for every m ∈ M . Hence, x ∔ y ∈ QN . Now, let a ∈ A and x ∈ QN .
Then xm ∈ N and so by (SMV 3), (a.x)m = a(xm) ∈ N , for every m ∈ M . It means that
a.x ∈ QN and so QN is an ideal of A.

Definition 3.2. (i) The proper ideal Q of A is called a primary ideal of A if a.b ∈ Q implies
c.b ∈ Q or c.a ∈ Q, where c ∈ A \ P , for every P ∈ PIQ(M).
(ii) Let M be an A-semimodule. Then an ideal N of M is called an A-ideal of M if
(I4): ax ∈ N , for every a ∈ A and x ∈ N .
A proper A-ideal N of M is called a prime A-ideal of M , if am ∈ N implies m ∈ N or
a ∈ QN = {x ∈ A : xM ⊆ N}, for any a ∈ A and m ∈ M . A proper A-ideal N of M is
called a primary A-ideal of M , if for any x ∈ A and m ∈ M , xm ∈ N implies m ∈ N or
∃c ∈ A \ P such that (c.x)M ⊆ N , for every P ∈ PIQN

(A).

Example 3.3. (i) Let A = {0, 1, 2, 3} and the operations “∔ ” and “.” on A be defined as follows:

∔ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

. 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

Consider the map ′ : A −→ A such that 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0. Then it is easy to show
that (A,∔, ., 0, 3) is an MV -semiring and (A,⊕,′ , 0) is an MV -algebra, where ⊕ = ∔. Now, let
the operation ϕ : A × A −→ A be defined by ϕ(a, b) = a.b = ab, for every a, b ∈ A. Then A is an
A-semimodule. It is easy to show that I = {0, 1} and J = {0, 2} are primary ideals of A, and {0}
is not a primary ideal of A. Also, I, J are primary A-ideals of M . Note that {0} is not a primary
A-ideal of M .
(ii) Let A = {0, 1}, a∔b = min{1, a+b}, and the map ′ : A −→ A be defined by a′ = 1−a, for every
a, b ∈ A, where +,−, . are ordinary operations in R. Then it is routine to show that (A,∔, ., 0, 1)
is an MV -semiring. Also, let M = {0, 13 ,

2
3 , 1} and operations ” ∔ ” and ”′” be defined on M
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similar to A. Then it is routine to show that (M,∔,′ , 0) is an MV -algebra. Now, let operation
ϕ : A×M −→ M be defined by ϕ(a, b) = a.b = ab, for every a ∈ A and b ∈ M . Then it is easy to
show that M is an MV -semimodule over A. Obviously, I = {0} is a primary ideal of A and I is
a primary A-ideal of M .

Proposition 3.4. Let M be a unitary A-semimodule and N be a prime A-ideal of M . Then N is
a primary A-ideal of M .

Proof. Let xm ∈ N and m /∈ N , for x ∈ A and m ∈ M . Then we consider c = 1 ∈ A \ P and so
(c.x)M = xM ⊆ N , for every P ∈ PIQN

(A). Hence N is a primary A-ideal of M .

Theorem 3.5. Let M be a unitary A-semimodule and N be a primary A-ideal of M . Then QN

is a primary ideal of A.

Proof. If QN = A, then 1 ∈ QN and so M = N , which is a contradiction. Let a.b ∈ QN and
a /∈ QN , for a, b ∈ A. Then we have (a.b)M ⊆ N and so b(am) = (b.a)m = (a.b)m ∈ N , for every
m ∈ M . Since a /∈ QN , there exists m′ ∈ M such that am′ /∈ N . Moreover, since b(am′) ∈ N and
am′ /∈ N , there exists c ∈ A \ P such that (c.b)M ⊆ N , for every P ∈ PIQN

(A). It means that
c.b ∈ QN . Therefore, QN is a primary ideal of A.

Proposition 3.6. Let I ∈ I(A), S ⊆ A be ·-closed and S ∩ I = ∅. Then there exists a maximal
ideal P of A such that P ⊇ I and P ∩ S = ∅. Furthermore, P is a prime ideal of A.

Proof. By Zorn′s Lemma, there exists an ideal P of A such that P ⊇ I and P∩S = ∅. Let x.y ∈ P ,
x /∈ P and y /∈ P , for x, y ∈ A. Then we have P ⊊≺ P ∪ {x} ≻= P1 and P ⊊≺ P ∪ {y} ≻= P2.
Hence by maximality of P , P1 ∩ S ̸= ∅ and P2 ∩ S ̸= ∅. Consider si ∈ Pi ∩ S, for i = 1, 2.
Since s1.s2 ≤ si ∈ Pi, we have s1.s2 ∈ P1 ∩ P2 = P . On the other hand, s1.s2 ∈ S, which is a
contradiction. Therefore, P is a prime ideal of A.

Lemma 3.7. Let a.a = a, for every a ∈ A and Q ∈ I(A). Then

rad(Q) = {a ∈ A | ∀P ∈ PIQ(A), ∃c ∈ A \ P such that c.a ∈ Q}.

Proof. Let
T = {a ∈ A | ∀P ∈ PIQ(A), ∃c ∈ A \ P such that c.a ∈ Q}.

If a ∈ T , then for every P ∈ PIQ(A), there is c ∈ A \ P such that c.a ∈ Q and so c.a ∈ P . Since
c /∈ P , we have a ∈ P , for all P ∈ PIQ(A) and so a ∈ rad(Q). Hence T ⊆ rad(Q).
Let a ∈ rad(Q). If a /∈ T , then there exists P1 ∈ PIQ(A) such that c.a /∈ Q, for every c ∈ A \ P1.
Consider

S = {c.a+ x | x ∈ Q and c ∈ A \ P1}.
First, we show that S is · -closed. Let c1.a+x1, c2.a+x2 ∈ S, where c1, c2 ∈ A\P1 and x1, x2 ∈ Q.
We have

(c1.a+ x1).(c2.a+ x2) = (c1.c2).a.a+ (c1.a).x2 ++x1.(c2.a) + x1.x2

= (c1.c2).a+ (c1.a).x2 ++x1.(c2.a) + x1.x2 ∈ S.

Since c1.c2 ∈ A \P1 and (c1.a).x2+x1.(c2.a)+x1.x2 ∈ Q. Hence S is ·-closed. Now, we prove that
S ∩Q = ∅. Let S ∩Q ̸= ∅. Then there is α ∈ S ∩Q such that α = c′.a+ x, where c′ ∈ A \ P1 and
x ∈ Q. It results that c′.a ∈ Q which is a contradiction. So by Proposition 3.6, there exists a prime
ideal P of A such that P ⊇ Q and P ∩ S = ∅. On the other hand, we have a = 1.a + 0 ∈ P ∩ S
and so P ∩ S ̸= ∅ which is a contradiction. It means that a ∈ T and so rad(Q) ⊆ T . Therefore,
rad(Q) = T .
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Theorem 3.8. Let Q be an ideal of A, where a.a = a, for every a ∈ A. Then Q is a primary
ideal of A if and only if a.b ∈ Q implies a ∈ rad(Q) or b ∈ rad(Q), for any a, b ∈ A.

Proof. (⇒) Let Q be a primary ideal of A and a.b ∈ Q, for a, b ∈ A. If a ∈ Q, then a ∈ rad(Q).
Let a /∈ Q. Then there exists c ∈ A \ P such that c.b ∈ Q or a.c ∈ Q, for every P ∈ PIQ(A). If
c.b ∈ Q, then c.b ∈ P , for every P ∈ PIQ(A). Since c /∈ P , we have b ∈ P , for every P ∈ PIQ(A).
It results that b ∈

∩
Q⊆P P = rad(Q). Similarly, if a.c ∈ Q, then a ∈ rad(Q).

(⇐) Suppose a.b ∈ Q. Then a ∈ rad(Q) or b ∈ rad(Q), for a, b ∈ A and so by Lemma 3.7, there
exists c ∈ A\P such that c.b ∈ Q or a.c ∈ Q, for every P ∈ PIQ(A). It means that Q is a primary
ideal of A.

Lemma 3.9. Let M be additive idempotent and I ∈ I(M). Then

rad(I) = {x ∈ M | ∀P ∈ PII(M), ∃c ∈ M \ P such that c ∧ x ∈ I}.

Proof. Let
T = {x ∈ M | ∀P ∈ PII(M), ∃c ∈ M \ P such that c ∧ x ∈ I},

and x ∈ rad(I). Then x ∈ P , for every P ∈ PII(M). If x ∈ I, then by considering c = 1, we have
x ∈ T . Now, let x /∈ I. If x /∈ T , then there exists P1 ∈ PII(M) such that c ∧ x /∈ I, for every
c ∈ M \ P1. Let

S = {(c ∧ x)⊖ y | y ∈ I and c ∈ M \ P1}.

First, we show that S is ∧-closed. Let (c1 ∧ x)⊖ y1, (c2 ∧ x)⊖ y2 ∈ S, where c1, c2 ∈ M \ P1 and
y1, y2 ∈ I. By Lemma 2.4(ix) and (x),

((c1 ∧ x)⊖ y1) ∧ ((c2 ∧ x)⊖ y2) = ((c1 ∧ x)⊖ y1) ∧ (c2 ∧ x))⊖ y2

= ((c2 ∧ x) ∧ ((c1 ∧ x)⊖ y1))⊖ y2

= (((c2 ∧ x) ∧ (c1 ∧ x))⊖ y1)⊖ y2

= y′2 ∧ (((c1 ∧ c2) ∧ x)⊖ y1)

= (y′2 ∧ ((c1 ∧ c2) ∧ x))⊖ y1

= ((y′2 ∧ c1 ∧ c2) ∧ x)⊖ y1.

Now, we show that y′2 ∧ c1 ∧ c2 ∈ M \P1. Let y′2 ∧ c1 ∧ c2 ∈ P1. Since c1 ∧ c2 /∈ P1, we have y′2 ∈ P1

and so 1 ∈ P1. We get x ∈ P1 and so P1 = M , which is a contradiction. Hence

y′2 ∧ c1 ∧ c2 ∈ M \ P1 =⇒ ((y′2 ∧ c1 ∧ c2) ∧ x)⊖ y1 ∈ S

=⇒ ((c1 ∧ x)⊖ y1) ∧ ((c2 ∧ x)⊖ y2) ∈ S,

and so S is ∧-closed. Now, we prove that S ∩ I = ∅. If S ∩ I ̸= ∅, then there exist c3 ∈ M \P1 and
y′ ∈ I such that (c3 ∧ x) ⊖ y′ ∈ I. It results that c3 ∧ x ∈ I. But, by definition of S, c3 ∧ x /∈ I,
for every c ∈ M \ P1, which is a contradiction. Then S ∩ I = ∅ and so by Lemma 2.7, there
exists P2 ∈ PII(M) such that P2 ∩ S = ∅. Since (c ∧ x) ⊖ x = 0 ∈ P and x ∈ P , we have
c ∧ x ∈ P , for every c ∈ M \ P and for every P ∈ PII(M). Then c ∧ x ∈ P2. On the other hand,
c ∧ x = (c ∧ x) ⊖ 0 ∈ S. Hence, c ∧ x ∈ P2 ∩ S, which is a contradiction. It implies that x ∈ T .
Therefore, rad(I) ⊆ T .
Now, let x ∈ T . Hence, for every P ∈ PII(M) there exists c ∈ M \ P such that c ∧ x ∈ I ⊆ P .
Since c /∈ P , we get x ∈ P , for every P ∈ PII(M). It means that x ∈ rad(I) and so T ⊆ rad(I).
Therefore, T = rad(I).
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Theorem 3.10. (i) The radical of every primary ideal of A is a prime ideal of A, where a.a = a,
for every a ∈ A.
(ii) If M is additive idempotent, then the radical of every primary ideal of M is a prime ideal of
M .

Proof. (i) Let Q be a primary ideal of A. If rad(Q) = A, then 1 ∈ rad(Q) and so for every
P ∈ PIQ(A) there exists c ∈ A \ Q such that c.1 ∈ Q ⊆ P . Hence c ∈ P that is a contradiction.
Now, let a.b ∈ rad(Q). Then by Lemma 3.7, for every P ∈ PIQ(A), there is c′ ∈ A \ P such that
(c′.a).b = c′.(a.b) ∈ Q. If a /∈ rad(Q), then there is P1 ∈ PIQ(A) such that for every c ∈ A\P1, we
have c.a /∈ Q and so c′.a /∈ Q. Consider c′1 ∈ A \ P1 such that c′1.(a.b) ∈ Q. Since ((c′1.a).b) ∈ Q,
c′1.a /∈ Q and Q is a primary ideal of A, there exists c′′ ∈ A \ P such that c′′.b ∈ Q, for every
P ∈ PIQ(A). It results that b ∈ rad(Q) and so rad(Q) is a prime ideal of A.
(ii) Let Q be a primary ideal of M . If rad(Q) = M , then 1 ∈ rad(Q). Hence, by Lemma 3.9, for
every P ∈ PIQ(M), there exists c ∈ M \ P such that c ∧ 1 = c ∈ Q ⊆ P and so c ∈ P , which is
a contradiction. Now, let a ∧ b ∈ rad(Q), for a, b ∈ M . Then there exists c1 ∈ M \ P such that
(c1 ∧ a) ∧ b = c1 ∧ (a ∧ b) ∈ Q, for every P ∈ PIQ(M). If a /∈ rad(Q), then by Lemma 3.9, there
is P ∈ PIQ(M) such that c1 ∧ a /∈ Q, for every c1 ∈ M \ P . Since Q is a primary ideal of M
and (c1 ∧ a) ∧ b ∈ Q, there is c2 ∈ M \ P such that c2 ∧ b ∈ Q, for every P ∈ PIQ(M) and so
b ∈ rad(Q). Therefore, rad(Q) is a prime ideal of M .

Note. If M is a unitary A-semimodule, and N is a primary A-ideal of M , where a.a = a, for
every a ∈ A, then by Theorems 3.5 and 3.10(i), rad(QN ) is a prime ideal of A and by Lemma 3.7,

rad(QN ) = {x ∈ A | ∀P ∈ PIQN
(A), ∃c ∈ A \ P such that (c.x)M ⊆ N}.

Lemma 3.11. Let A = (A,∔, ., 0, 1) be an MV -semiring. Then
(i) a ≤ c if and only if there is b ∈ A such that a∔ b = c;
(ii) a ≤ b implies a.c ≤ b.c;
(iii) ac′ ≤ (ac)′, where a, b, c ∈ A.

Proof. (i) Let a, c ∈ A and there is b ∈ A such that a∔ b = c. Then we have (a′.(a′.b)′)′ = c and
so a′.(a′.b)′ = c′. Hence c′.a = a′.(a′.b)′.a = a.a′.(a′.b)′ = 0 and so a ≤ c. The conversely is proved,
similarly.
(ii) Let a ≤ b. Then by (i), there exists t ∈ A such that a∔ t = b and so (a∔ t).c = a.c∔ t.c = b.c.
It results that a.c ≤ b.c.
(iii) Since a ≤ 1, by (i), we have a.c′ ≤ c′. Also, since (a.c).c′ = 0, we have a.c ≤ c and so
c′ ≤ (a.c)′. Hence a.c′ ≤ (a.c)′.

Proposition 3.12. Let A = (A,∔, ., 0, 1) be an MV -semiring, M = (M,⊕,′ , 0) be an MV -algebra,
and M be an A-semimodule. Then
(i) a ≤ b implies ax ≤ bx,
(ii) ax ∨ bx ≤ (a∔ b)x,
(iii) x ≤ y implies ax ≤ ay,
(iv) ax′ ≤ (ax)′,
(v) (ax)⊙ (ay)′ ≤ a(x⊙ y′), for every x, y ∈ M and every a, b, c ∈ A.

Proof. (i) Let a, b ∈ A, x ∈ M and a ≤ b. Then by Lemma 3.11(i), there exists c ∈ A such that
a∔ c = b and so ax⊕ cx = (a∔ c)x = bx. It results that ax ≤ bx.
(ii) By Proposition 2.5(ii), (A,⊕,′ , 0) is an MV -algebra, where a ⊕ b = (a′.b′)′, for all a, b ∈ A.
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Then we have a∨b = a⊕(b′⊕a)′. Hence a ≤ a⊕(b′⊕a)′ and b ≤ a⊕(b′⊕a)′. So, ax ≤ (a⊕(b′⊕a)′)x
and bx ≤ (a⊕ (b′ ⊕ a)′)x. It results that ax ∨ bx ≤ (a ∨ b)x. Now, we have

a ∨ b = a⊕ (b′ ⊕ a)′ = (a′.(b.a′)′)′ = a∔ b,

and so ax ∨ bx ≤ (a∔ b)x.
(iii) Since x ≤ y, there exists c ∈ M such that x ⊕ c = y and so by (SAM1), ax ⊕ ac = ay. It
means that ax ≤ ay.
(iv) Since x+ x and ax+ ax are defined, we have

ax′ + ax = a(x+ x′) = a1 ≤ 1 = (ax)′ + ax

and so ax ≤ (ax)′.
(v) By (iii), we have ax ∨ ay ≤ a(x ∨ y). Then

((ax)⊙ (ay)′)⊕ ay = ax ∨ ay ≤ a(x ∨ y) = a((x⊙ y′)⊕ y).

Now, since x⊙ y′ ≤ y′, by (iii) and (iv), we have a(x⊙ y′) ≤ ay′ ≤ (ay)′. Then a(x⊙ y′) + ay is
defined and so

a(x⊙ y′ ⊕ y) = a(x⊙ y′ + y) = a(x⊙ y′) + ay.

It results that

((ax)⊙ (ay)′) + ay ≤ a(x⊙ y′) + ay and so (ax)⊙ (ay)′ ≤ a(x⊙ y′).

Definition 3.13. Let M be an A-semimodule and N be a proper A-ideal of M . Then N is called
a P-primary A-ideal of M , if N is a primary A-ideal of M and rad(QN ) = P .

Example 3.14. Consider A is the MV -semiring as Example 3.3(i). We have

QI = {x ∈ A : xA ⊆ A} = {0, 1} = P,

and rad(QI) = P . Then I is a P -primary A-ideal of A.

Lemma 3.15. Let M be an A-semimodule and N1, · · · , Nk be P ′-primary A-ideal of M . Then∩k
i=1Ni is a P ′-primary A-ideal of M .

Proof. It is clear that
∩k

i=1Ni ̸= M . Let xm ∈
∩k

i=1Ni and m /∈
∩k

i=1Ni, for x ∈ A and m ∈ M .
Then xm ∈ Ni, for every 1 ≤ i ≤ k and there exists 1 ≤ j ≤ k such that m /∈ Nj . Since xm ∈ Nj

and m /∈ Nj , there exists cj ∈ A \ P such that (cj .x)M ⊆ Nj , for every P ∈ PIQNj
(A). It results

that x ∈ rad(QNj ). Since Ni and Nj are P ′-primary, we have x ∈ rad(QNj ) = P ′ = rad(QNi), for
every 1 ≤ i ≤ k. Hence, there exists ci ∈ A \ P such that (ci.x)M ⊆ Ni, for every P ∈ PIQNi

(A).
Let c = c1.c2 · · · .ck. Since c.c′i = 0, we have c ≤ ci, for every 1 ≤ i ≤ k. By Lemma 3.11(ii), we
have c.x ≤ ci.x and by Proposition 3.12(i), we get (c.x)m ≤ (ci.x)m ∈ Ni. Then (c.x)m ∈ Ni, for
every 1 ≤ i ≤ k. It results that (c.x)m ∈

∩k
i=1Ni, for every m ∈ M . Hence

∩k
i=1Ni is a primary

A-ideal of M . Now, we show that rad(Q∩k
i=1 Ni

) = P ′. For every 1 ≤ i ≤ k,

x ∈ Q∩k
i=1 Ni

⇔ xM ⊆
k∩

i=1

Ni ⇔ xM ⊆ Ni ⇔ x ∈ QNi ⇔ x ∈
k∩

i=1

QNi .
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Then Q∩k
i=1 Ni

=
∩k

i=1QNi and so by Theorem 2.8,

rad(Q∩k
i=1 Ni

) = rad(
k∩

i=1

QNi) =
k∩

i=1

rad(QNi) =
k∩

i=1

P ′ = P ′.

Therefore,
∩k

i=1Ni is a P ′-primary A-ideal of M .

Remark 3.16. Let M = (M,⊕,′ , 0) be an MV -algebra. If a, b are two idempotent elements of
M , then a ⊕ b and a ⊙ b as well; moreover, we have a ⊕ b = a ∨ b, a ⊙ b = a ∧ b, a ∨ a′ = 1 and
a ∧ a′ = 0 (see [8]).

Theorem 3.17. Every MV -semiring A is a unitary MV -semimodule on itself, where x.x = x,
for every x ∈ A.

Proof. Let A = (A,∔, ., 0, 1) be an MV -semiring. Then by Proposition 2.5(ii), (A,⊕,′ , 0) is an
MV -algebra, where a ⊕ b = (a′.b′)′, for every a, b ∈ A. It is routine to see that a ∔ b = a ∨ b
and a.b = a ∧ b, for every a, b ∈ A. Now, if the operation ϕ : A × A −→ A is defined by
ϕ(a, b) = ab = a⊙ b, for every a, b ∈ A, then A is an A-semimodule:
(SMV 1) If b+ c is defined in A, then b ≤ c′ and so by Lemma 3.11(ii) and (iii), ab ≤ ac′ ≤ (ac)′.
It means that ab + ac is defined in A. Now, by Remark 3.16 and Proposition 2.3(i), for every
a, b ∈ A, we have

a(b+ c) = a(b⊕ c) = a⊙ (b ∨ c) = (a⊙ b) ∨ (a⊙ c) = (a⊙ b)⊕ (a⊙ c) = ab⊕ ac.

(SMV 2) For every a, b, c ∈ A,

(a∔ b)⊙ c = (a∔ b).c = a.c∔ b.c = a.c ∨ b.c = (a⊙ c)⊕ (b⊙ c) = ac⊕ bc.

(SMV 3) and (SMV 4) are clear.

Definition 3.18. Let M be an A-semimodule, N be a proper A-ideal of M and there exist proper
A-ideals A1, A2, · · · , An of M such that Ai is a Pi-primary of M , for every 1 ≤ i ≤ n and
N = A1 ∩A2 ∩ · · · ∩An. Then we say A1 ∩A2 ∩ · · · ∩An is a primary decomposition of N and so
N has a primary decomposition. Furthermore, this decomposition is reduced if
(i) Ai ⊉

∩
i ̸=j Aj ,

(ii) rad(QAi) ̸= rad(QAj ), for every 1 ≤ i, j ≤ n.

Example 3.19. In Example 3.3(i), {0, 2} ∩ {0, 1} is a primary decomposition of {0}. This
decomposition is reduced, too.

Remark 3.20. Let x.x = x, for every x ∈ A. By Theorem 3.17, we consider A as A-semimodule,
where xy = x.y, for every x, y ∈ A. In this case, every prime ideal of A is a prime A-ideal of A.
Then by Theorem 2.11(iii), every prime ideal of A as MV -semiring is a prime A-ideal of A as
MV -algebra. Hence, by Proposition 2.6, every proper A-ideal of A has a primary decomposition.

Theorem 3.21. Let M be an A-semimodule and N be an A-ideal of M that has a primary
decomposition. Then N has a reduced primary decomposition.
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Proof. Let N = A1 ∩ · · · ∩ An, where Ai is a primary ideal of M , for every 1 ≤ i ≤ n. If
Aj ⊇

∩n
i=1Ai, where i ̸= j, then we set N = A1 ∩ · · · ∩Aj−1 ∩Aj+1 ∩ · · · ∩An, for every 1 ≤ j ≤ n

and so by renumbering,

N =
k∩

i=1

A′
i, where k ≤ n and A′

j ⊉
k∩

i=1

A′
i, for every 1 ≤ j ≤ k.

Set rad(QA′
i
) = Pi, for some 1 ≤ i ≤ k, and let T = {P1, · · · , Pm}, where Pi ̸= Pj and m ≤ k, for

every 1 ≤ i, j ≤ m. Now, we resume

N = (A′
i1 ∩ · · · ∩ A′

it) ∩ (A′
j1 ∩ · · · ∩ A′

jl
) ∩ · · · ∩ (A′

s1 ∩ · · · ∩ A′
sw).

On the other hand, by Lemma 3.15, we have

rad(Q∩t
h=1 A

′
ih

) =
t∩

h=1

rad(QA′
ih
) =

t∩
h=1

p1 = p1,

·

·

·

rad(Q∩w
h=1 A

′
sh
) =

w∩
h=1

rad(QA′
sh
) =

w∩
h=1

pm = pm.

Therefore, I has a reduced primary decomposition.

Definition 3.22. Let M be an A-semimodule. Then
(i) M is called Noetherian if M satisfies the ascending chain condition (ACC): that is any chain
N1 ⊆ N2 ⊆ · · · of A-ideals of M is stationary.
(ii) We say M satisfies the maximum condition, if every non-empty family of A-ideals of M has
a maximum element.

Theorem 3.23. Let M be an A-semimodule. Then M is Noetherian if and only if M has maximum
condition.

Proof. The proof is routine.

Theorem 3.24. Let M be a Noetherian A-semimodule. Then every proper A-ideal of M has a
reduced primary decomposition.

Proof. Let

T = {N ⊊ M | N is an A-ideal of M such that N has no any reduced primary decomposition}.

We show that T = ∅. Let T ̸= ∅. Since M is Noetherian, by Theorem 3.23, T has a maximum
element G. It is clear that G is not a primary A-ideal of M . So there exists x ∈ A and m ∈ M
such that xm ∈ G, m /∈ G and for every c ∈ A \ P , (c.x)M ⊈ G, where P ∈ PIQG

(A). We give
an index i ≥ 1 to every c ∈ A \ P . Let

Bi = {m ∈ M | (c1.c2 · · · .ci.x)m ∈ G},
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for every i ≥ 1 and m ∈ Bi. Then

(c1.c2. · · · .ci.ci+1.x)m ≤ (c1. · · · .ci.x)m ∈ G

=⇒ (c1.c2. · · · .ci.ci+1.x)m ∈ G.

Hence, m ∈ Bi+1 and so Bi ⊆ Bi+1, for every i ≥ 1. Since M is Noetherian, there exists k ∈ N
such that Bk = Bn, for every n ≥ k. We show that Bk is an A-ideal of M . Let m1,m2 ∈ Bk. Then

(c1. · · · .ck.x)m1 ∈ G and (c1. · · · .ck.x)m2 ∈ G.

Since G is an ideal of M , we have

(c1. · · · .ck.x).(m1 ⊕m2) = (c1. · · · .ck.x)m1 ⊕ (c1. · · · .ck.x)m2 ∈ G

=⇒ m1 ⊕m2 ∈ BK .

Now, let m1 ≤ m2 ∈ Bk. Since

(c1. · · · .ck.x)m1 ≤ (c1. · · · .ck.x)m2 ∈ G,

we have (c1. · · · .ck.x)m1 ∈ G and so m1 ∈ Bk. On the other hand,

(c1. · · · .ck.x)(am) = ((c1. · · · .ck.x).a)m ≤ (c1. · · · .ck.x)m ∈ G

=⇒ (c1. · · · .ck.x)(am) ∈ BK =⇒ am ∈ Bk,

for every a ∈ A and m ∈ Bk. Hence, Bk is an A-ideal of M . Let

D = {(c1. · · · .ck.x)m′ ⊕ g | m′ ∈ M and g ∈ G}.

We show that D is an A-ideal of M . Let d1, d2 ∈ D. It is easy to show that d1 ⊕ d2 ∈ D. Let
d ∈ D and a ∈ A. So there exist m′ ∈ M and g ∈ G such that

ad = a((c1. · · · .ck.x)m′ ⊕ g) = a((c1. · · · .ck.x)m′)⊕ ag

= (a.(c1. · · · .ck.x))m′ ⊕ ag = (a.c1. · · · .ck.x)m′ ⊕ ag

≤ (c1. · · · .ck.x)m′ ⊕ ag ∈ D.

Hence, ad ∈ D and so D is an A-ideal of M . Now, we prove that G = D∩Bk, G ⊊ D and G ⊊ Bk.
Let g ∈ G. Then g = (c1. · · · .ck.x)0 ⊕ g ∈ D. On the other hand, (c1. · · · .ck.x)g ∈ G. Then
g ∈ Bk and so G ⊆ D ∩ Bk. Let m ∈ D ∩ Bk. Since m ∈ Bk, we have (c1. · · · .ck.x)m ∈ G and
since m ∈ D, there exist m′ ∈ M and g ∈ G such that m = (c1. · · · .ck.x)m′ ⊕ g. Since

((c1. · · · .ck.x).(c1. · · · .ck.x))m′ ⊕ (c1. · · · .ck.x)g = (c1. · · · .ck.x)((c1. · · · .ck.x)m′)⊕ (c1. · · · .ck.x)g
= (c1. · · · .ck.x)((c1. · · · .ck.x)m′ ⊕ g)

= (c1. · · · .ck.x)m ∈ G,

We have
(c1. · · · .ck.x).((c1. · · · .ck.x))m′ ⊕ (c1. · · · .ck.x).g ∈ G.

Now, since (c1. · · · .ck.x)g ∈ G, we have

(c1. · · · .ck.x)((c1. · · · .ck.x)m′) ∈ G =⇒ m′ ∈ B2K = BK .
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Hence
(c1. · · · .ck.x)m′ ∈ G =⇒ m = (c1. · · · .ck.x)m′ ⊕ g ∈ G.

Hence, D ∩ Bk ⊆ G. It is enough to show that G ⊊ D and G ⊊ Bk. We have (c.x)M ⊈ G, for
every c ∈ A \ P , where P ∈ PIQG

(A). Then there exists t ∈ M such that (c.x)t /∈ G. But if
c = c1. · · · .ck, then (c.x)t = (c.x)t+ 0 ∈ D and so G ⊊ D. On the other hand, there exist m ∈ M
and x ∈ A such that xm ∈ G and m /∈ G, but

(c1. · · · .ck.x)m = ((c1. · · · .ck).x)m = (c1. · · · .ck)(xm) ∈ G.

It means that m ∈ Bk and so G ⊊ Bk. By the maximality of G, each of sets D and Bk has a
primary decomposition. It results that G has a primary decomposition, which is a contradiction.
Therefore, T = ∅.

4 Conclusion
In this paper, definitions of primary ideals of MV -semirings, primary A-ideals of MV -semimodules,
and primary (reduced primary) decomposition of A-ideals in MV -semimodules were presented, and
some results about primary decomposition of A-ideals were obtained. We intend to study MV -
semimodules in specific cases, too. For examples, free MV -semimodules, projective(injective)
MV -semimodules, and so on. We hope that we have taken an effective step in this regard.
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