Applications of states to BI-algebras

A. Rezaei ${ }^{1}$ and S. Soleymani ${ }^{2}$
1,2 Department of Mathematics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
rezaei@pnu.ac.ir, soleymani17@yahoo.com

Abstract

This paper aims is to introduce states, Bosbach states and state-morphism operators on BI-algebras. We define state ideals on BI -algebras and give a characterization of the least state ideal of a BI-algebra. It is proved that the kernel of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we introduce the notions of state BI-algebras and state-morphism BIalgebras. The notion of complement pairs of a BI-algebra X is defined, and proves that under suitable conditions, there is a one-to-one correspondence between complement pairs of BI -algebras and state-morphism operators on BI-algebras.

Article Information

Corresponding Author:
A. Rezaei;

Received: May 2022;
Revised: July 2022;
Accepted: August 2022;
Paper type: Original.

Keywords:

BI-algebra, distributive, Bosbach state, state-morphism operator.

1 Introduction

As a generalization of dual implication algebras and implicative BCK-algebras, Borumand Saeid et al. introduced a new notion of logical algebras namely, BI-algebras, and gave basic properties of BI -algebras and investigated ideals and congruence relations on this new algebra. BI-algebras are weaker than some well-known algebras, such as implicative BCK-algebras and Boolean lattices. Indeed, these algebras are BI-algebra, but the converse does not hold (see, [2]). For more details and other comparisons with the other algebras, ideals, normal subalgebras in BI-algebras and the quotient BI -algebras are studied in [1].

It is known that the notion of state was firstly defined on an MV-algebra by Kõpka and Chovane in [32], and then has been studied and applied to other algebraic structures, since they have important roles in studying logical algebras (see, for instance, Borzooei et al. [3, 4, 5], Buşneag [8, 9], Ciungu [13, 14, 15], Ciungu and Dvurečenskii [17], Ciungu et al. [16, 18], Chen and Dudek [10], Cheng et al. [11], Di Nola and Dvurečenskij [21], Di Nola et al. [22], Dvurečenskij and Zahiri

[^0][26], Ghasemi et al. [30], Hua [31], Lee and Kim [33], Mertanen [34], Qing and Long 36], Rezaei et al. [38], Turunen and Mertanen [39], Xin et al. [40], Xin and Davvaz [41] and Xin et al. [42]).

Since states can be thought of in another way, the Bosbach state was defined in [6], [7], [12], and [28]. Georgescu and Mureşan, by replacing the MV-algebra [0,1] with an arbitrary residuated lattice L, defined a new concept of state were named generalized Bosbach state in [29], and extended it to type I and type II states. Then the Bosbach states defined on residuated lattices with values in residuated lattices were investigated by Ciungu et al. in [19] and [20]. Flaminio and Montagna introduced MV-state algebras in [27]. The notion of state-morphism MV-algebra, which is a stronger variation of a state MV-algebra, is introduced by Di Nola and Dvurečenskij in [21] and [22]. The notion of a state operator was extended to the cases of fuzzy structures, bounded (non-) commutative $R \ell$-monoids, and GMV-algebras (pseudo-MV-algebras) by Dvurečenckij and Rachunek in [23] and [24], Dvurečenckij et al. in [25], Rachunek and Salounova in [37].

In this paper, we introduce the notions of states, Bosbach states and state-morphism operators on BI-algebras. Also, we define state ideals on BI-algebras and give a characterization of the least state ideal of a BI-algebra. It is proven that the kernel of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we introduce the notions of state BI-algebras and statemorphism BI-algebras. The notion of complement pairs of a BI-algebra X is defined, and prove that under suitable conditions, there is one-to-one correspondence between complement pairs of BI-algebras and state-morphism operators on BI-algebras.

2 Preliminaries

We recalled some definitions and results which will be used in the sequel. Throughout this paper, we will denote \mathbb{N} for the set of all positive integers and \mathbb{R} for the set of real numbers.

Definition 2.1. [2] An algebra $(X ; *, 0)$ of type $(2,0)$ is called a BI-algebra if satisfying the following axioms: for all $x, y \in X$,
(B) $x * x=0$,
(BI) $x *(y * x)=x$.
From now on, by X, we mean that it is a BI-algebra $(X ; *, 0)$.
We introduce the binary relation " \leq " on X by $x \leq y$ if and only if $x * y=0$. Notice that the relation \leq is not a partial order, since it is only reflexive.

A BI-algebra X is said to be right distributive or self distributive (briefly, distributive) if

$$
(x * y) * z=(x * z) *(y * z)
$$

for all $x, y, z \in X$ (see, [2]).
Proposition 2.2. [2] The following statements hold: for all $x, y, z, u \in X$,
(i) $x * 0=x$,
(ii) $0 * x=0$,
(iii) $x * y=(x * y) * y$,
(iv) if $y * x=x$, then $X=\{0\}$,
(v) if $x *(y * z)=y *(x * z)$, then $X=\{0\}$,
(vi) if $x * y=z$, then $z * y=z$ and $y * z=y$,
(vii) if $(x * y) *(z * u)=(x * z) *(y * u)$, then $X=\{0\}$.

Remark 2.3. Notice that, if $z *(x * y)=(z * x) *(z * y)$, for all $x, y, z \in X$, then $X=\{0\}$. Since if we take $y:=x$, for all $z \in X$, and using Proposition 2.2(i) and (B), we obtain $z=z * 0=$ $z *(x * x)=(z * x) *(z * x)=0$.
Proposition 2.4. [2] Let X be distributive. Then for all $x, y, z \in X$,
(i) $y * x \leq y$,
(ii) $x *(x * y) \leq y$,
(iii) $(x * z) *(y * z) \leq x * y$,
(iv) if $x \leq y$, then $x * z \leq y * z$,
(v) $(x * y) * z \leq x *(y * z)$,
(vi) if $x * y=z * y$, then $(x * z) * y=0$.

A subset I of X is called an ideal of X if (I1) $0 \in I$ and (I2) $y \in I$ and $x * y \in I$ imply $x \in I$, for all $x, y \in X$ (see, [2]).

Denote the set of all ideals on X by $\mathcal{I}(X)$.
Theorem 2.5. [2] Let X be distributive, and $I \in \mathcal{I}(X)$. Then the binary relation " \sim_{I} " where defined by

$$
x \sim_{I} y \text { if and only if } x * y \in I \text { and } y * x \in I
$$

is a right congruence relation on X.
Analytic constructions for BI-algebras are considered in [1].
Let $X:=\{x \in \mathbb{R}: x \geq 0\}$. Define the binary operation " $*$ " on X as follows:

$$
x * y=\max \{0, f(x, y)(x-y)\}=\max \{0, \lambda(x, y) x\},
$$

where $f(x, y)$ and $\lambda(x, y)$ are non-negative real valued functions, with $\lambda(0, y)=0$, for all $y \in X$. If we define

$$
\lambda(x, y)= \begin{cases}1 & \text { if } y=0 \\ 0 & \text { if } y \neq 0,\end{cases}
$$

then

$$
x * y= \begin{cases}x & \text { if } y=0 \\ 0 & \text { if } y \neq 0\end{cases}
$$

Thus $(X ; *, 0)$ is a BI-algebra (see, [1]).

3 State operators on BI-Algebras

In this section, we introduce the notion of states on BI-algebras and investigate their properties.
Definition 3.1. A map $\sigma: X \rightarrow X$ is called state operator on X if it satisfying the following conditions: for all $x, y \in X$,
(SO1) $x \leq y$ implies $\sigma(x) \leq \sigma(y)$,
(SO2) $\sigma(x * y)=\sigma(x) * \sigma(x *(x * y))$,
(SO3) $\sigma(\sigma(x) * \sigma(y))=\sigma(x) * \sigma(y)$.
A state BI-algebra is a pair (X, σ).
Denote ker $\sigma=\{x \in X: \sigma(x)=0\}$, that is the kernel of σ. A state operator σ is faithful if $\operatorname{ker} \sigma=\{0\}$.

Example 3.2. (i) Let X be a BI-algebra, and $\sigma: X \rightarrow X$ be a map defined by $\sigma(x)=0$, for all $x \in X$. Then it is easy to see that σ is a state operator on X.
(ii) Let $X=\{0, a, b\}$. Define the binary operation "* ${ }_{1}$ " in Table 1 and define $\sigma: X \rightarrow X$ by

Table 1: BI-algebra $\left(X ; *_{1}, 0\right)$

$*_{1}$	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

$\sigma(0)=0$ and $\sigma(a)=\sigma(b)=b$. Then (X, σ) is a state BI-algebra.
(iii) Let X be a BI-algebra. Define two operators " σ_{1} " and " σ_{2} " on the direct product BI-algebra $X \times X$ as follows:

$$
\sigma_{1}(x, y)=(x, x) \text { and } \sigma_{2}(x, y)=(y, y), \text { for all }(x, y) \in X \times X
$$

Then σ_{1} and σ_{2} are two state operators on $X \times X$.
Denote the set of all state operators on X by $\mathcal{S}(X)$.
Now, we give some properties of state operators on BI-algebras.
Proposition 3.3. Let $\sigma \in \mathcal{S}(X)$. Then the following hold: for all $x \in X$,
(i) $\sigma(0)=0$,
(ii) $\sigma(\sigma(x))=\sigma(x)$,
(iii) img $\sigma=\{x \in X: \sigma(x)=x\}$,
(iv) img σ is a subalgebra of X,
$(v) \operatorname{ker} \sigma \in \mathcal{I}(X)$.

Proof. (i) If we take $x:=y$ in (SO3) and using (B), we get

$$
\sigma(0)=\sigma(\sigma(x) * \sigma(x))=\sigma(x) * \sigma(x)=0 .
$$

(ii) By (i) and Proposition 2.2 (i), we have

$$
\sigma(\sigma(x) * \sigma(0))=\sigma(\sigma(x) * 0)=\sigma(\sigma(x)) .
$$

On the other hand, if we take $y:=0$ in (SO3), then

$$
\sigma(\sigma(x) * \sigma(0))=\sigma(x) * \sigma(0)=\sigma(x) .
$$

Therefore (ii) holds.
(iii) Clearly, $\{x \in X: \sigma(x)=x\} \subseteq i m g \sigma$. Now, suppose $x \in i m g \sigma$. Then there exists $x^{\prime} \in X$ such that $\sigma\left(x^{\prime}\right)=x$. Then by (ii), we have

$$
x=\sigma\left(x^{\prime}\right)=\sigma\left(\sigma\left(x^{\prime}\right)\right)=\sigma(x) .
$$

This shows that $x \in \operatorname{img} \sigma$, and so $\operatorname{img} \sigma \subseteq\{x \in X: \sigma(x)=x\}$. Hence (iii) holds.
(iv) From (i), $0 \in i m g \sigma$. For all $x, y \in X$ by (SO3), we have $\sigma(x) * \sigma(y) \in i m g \sigma$. Thus $i m g \sigma$ is a subalgebra of X.
(v) Suppose $y \in \operatorname{ker} \sigma$ and $x * y \in \operatorname{ker} \sigma$. Then $\sigma(y)=\sigma(x * y)=0$. On the other hand, using (SO2), we get

$$
0=\sigma(x * y)=\sigma(x) * \sigma(x *(x * y))
$$

Now, by Proposition 2.4(ii), since $x *(x * y) \leq y$, using (SO1), we get

$$
\sigma(x *(x * y)) \leq \sigma(y)=0 .
$$

Hence $\sigma(x *(x * y))=0$, and so $\sigma(x)=0$. This means that $x \in \operatorname{ker} \sigma$, and so $\operatorname{ker} \sigma \in \mathcal{I}(X)$.
Proposition 3.4. Let X be distributive and $\sigma \in \mathcal{S}(X)$. Then the following statements hold: for all $x, y \in X$,
(i) if $x \leq y$ and for any $z \in X, z * y \leq z * x$, then $\sigma(y) * \sigma(x) \leq \sigma(y * x)$,
(ii) $\operatorname{ker} \sigma \cap i m g \sigma=\{0\}$.

Proof. (i) Given $x, y \in X$. Using Proposition 2.4(ii), we have $y *(y * x) \leq x$. Hence $\sigma(y *(y * x)) \leq$ $\sigma(x)$. Then $\sigma(y) * \sigma(x) \leq \sigma(y) * \sigma(y *(y * x))=\sigma(y * x)$, by hypothesis and (SO2).
(ii) Suppose $x \in \operatorname{ker} \sigma \cap i m g \sigma$. It follows that $\sigma(x)=0$. Moreover, $x \in i m g \sigma$, so there exists $x^{\prime} \in X$ such that $\sigma\left(x^{\prime}\right)=x$. Then by Proposition 3.3(ii), $0=\sigma(x)=\sigma\left(\sigma\left(x^{\prime}\right)\right)=\sigma\left(x^{\prime}\right)=x$. Thus $x=0$, and so (ii) holds.

The following example shows that in Proposition 3.4 (i), the distributive law and condition $z * y \leq z * x$, for any $z \in X$, are necessary.

Example 3.5. Let $X=\{0, a, b, c\}$. Define the binary operation " $*_{2}$ " in Table 2. Then $\left(X ; *_{2}, 0\right)$ is a BI-algebra (see, [2]), but is not distributive, since

$$
\left(a *_{2} b\right) *_{2} c=a *_{2} c=b \neq\left(a *_{2} c\right) *_{2}\left(b *_{2} c\right)=b *_{2} b=0 .
$$

Define $\sigma: X \rightarrow X$ by $\sigma(0)=\sigma(b)=\sigma(c)=0$ and $\sigma(a)=a$. Then (X, σ) is a state BIalgebra, but not satisfies in Proposition 3.4(i), since $0 \leq c$, but $a *_{2} c=b \not \leq a *_{2} 0=a$. Further, $\sigma(a) *_{2} \sigma(c)=a *_{2} 0=a \not \leq \sigma\left(a *_{2} c\right)=\sigma(b)=0$.

Table 2: BI-algebra $\left(X ; *_{2}, 0\right)$

$*_{2}$	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
c	c	b	c	0

Proposition 3.6. Let X be commutative (i.e., $x *(x * y)=y *(y * x)$ for all $x, y \in X), \sigma \in \mathcal{S}(X)$ and $y \leq x$. Then $\sigma(x * y)=\sigma(x) * \sigma(y)$.
Proof. Given $x, y \in X$ with $y \leq x$. Using the commutative law and Proposition 2.2(i), we have

$$
\begin{aligned}
\sigma(x * y) & =\sigma(x) * \sigma(x *(x * y))=\sigma(x) * \sigma(y *(y * x)) \\
& =\sigma(x) * \sigma(y * 0)=\sigma(x) * \sigma(y)
\end{aligned}
$$

This completes the proof.
The following example shows that the commutative law in Proposition 3.6 is necessary.
Example 3.7. Consider Example 3.5. It is not commutative, since

$$
a *_{2}\left(a *_{2} c\right)=a *_{2} b=a \neq c *_{2}\left(c *_{2} a\right)=c *_{2} b=c .
$$

Define $\sigma: X \rightarrow X$ by $\sigma(a)=\sigma(a)=\sigma(b)=0$ and $\sigma(c)=c$. Then (X, σ) is a state BI-algebra and we can see that

$$
\sigma\left(c *_{2} a\right)=\sigma(b)=0 \neq \sigma(c) *_{2} \sigma(a)=c *_{2} 0=c .
$$

Remark 3.8. Notice that, if $\sigma(x * y)=\sigma(y)$ or $\sigma(x * y)=\sigma(x)$, for any $x, y \in X$, then σ is zero map. By contrary, if there is $x \in X$ such that $\sigma(x) \neq 0$, then we have $\sigma(0)=\sigma(x * 0)=\sigma(x)$. By Proposition 3.3 $(i), \sigma(0)=0$, this implies $\sigma(x)=0$, a contradiction. Then σ is zero map. Further, $\sigma(0)=\sigma(x * x)=\sigma(x)$, using Proposition 3.3(i), we get $\sigma(x)=0$, for all $x \in X$.
Proposition 3.9. Let $X=\{x \in \mathbb{R}: x \geq 0\}$. Then there exists non-zero non-negative real valued function $\lambda(x, y)$ such that $\left(X ; *_{\lambda}, 0\right)$ becomes a BI-algebra, where

$$
x *_{\lambda} y=\max \{0, \lambda(x, y) x\}
$$

and for every state operator σ on X, we have $\sigma\left(x *_{\lambda} y\right)=0$, for all $0 \neq x, y \in X$.
Proof. Assume $X=\{x \in \mathbb{R}: x \geq 0\}$. Define $\lambda: X \times X \rightarrow X$ by

$$
\lambda(x, y)= \begin{cases}1 & \text { if } y=0 \\ 0 & \text { if } y \neq 0,\end{cases}
$$

for all $(x, y) \in X \times X$. Then $\left(X ; *_{\lambda}, 0\right)$ is a BI-algebra (see, $\left.[1]\right)$. Let $x, y \in X$, since X is linearly ordered, we have $x \leq y$ or $y<x$. If $x \leq y$, then $x *_{\lambda} y=0$. Thus the proof completes. Now, suppose $y<x$. Then

$$
\begin{aligned}
x *_{\lambda}\left(x *_{\lambda} y\right) & =x *_{\lambda}(\max \{0, \lambda(x, y) x\})=x *_{\lambda}\left(\max \left\{0,\left\{\begin{array}{ll}
x & \text { if } y=0 ; \\
0 & \text { if } y \neq 0 .
\end{array}\right\}\right)\right. \\
& =x *_{\lambda}\left(\left\{\begin{array}{ll}
x & \text { if } y=0 ; \\
0 & \text { if } y \neq 0 .
\end{array}\right)=\left\{\begin{array}{ll}
x *_{\lambda} x & \text { if } y=0 ; \\
x *_{\lambda} 0 & \text { if } y \neq 0 .
\end{array}= \begin{cases}0 & \text { if } y=0 ; \\
x & \text { if } y \neq 0\end{cases} \right.\right.
\end{aligned}
$$

If $y=0$, then $\sigma\left(x *_{\lambda} 0\right)=\sigma(x)$, and if $y \neq 0$, then

$$
\sigma\left(x *_{\lambda} y\right)=\sigma(x) *_{\lambda} \sigma\left(x *_{\lambda}\left(x *_{\lambda} y\right)\right)=\sigma(x) *_{\lambda} \sigma(x)=0 .
$$

This completes the proof.
Definition 3.10. Let $\sigma \in \mathcal{S}(X)$. An ideal I of X is called a state ideal if $\sigma(I) \subseteq I$.
We denote the set of all state ideals on X by $\mathcal{S I}(X)$.
Example 3.11. Consider Example 3.2(ii) and take $I:=\{0, b\}$ and $J:=\{0, a\}$. Then $I \in \mathcal{S I}(X)$, but $J \notin \mathcal{S I}(X)$, since $\sigma(a)=b \notin J$.
Proposition 3.12. Let $\sigma \in \mathcal{S}(X)$ and $\left\{I_{i}\right\}_{i \in \Lambda}$ be a family of states ideals of X, then $\bigcap_{i \in \Lambda} I_{i}$, is too.
Proof. Assume $\sigma \in \mathcal{S}(X)$ and $\left\{I_{i}\right\}_{i \in \Lambda}$ is a family of states ideals of X. Since $I_{i} \in \mathcal{I}(X)$, we get $\bigcap_{i \in \Lambda} I_{i} \in \mathcal{I}(X)$. Now, let $x \in \bigcap_{i \in \Lambda} I_{i}$. Then $x \in I_{i}$, for all $i \in \Lambda$, and so $\sigma(x) \in \sigma\left(I_{i}\right) \subseteq I_{i}$, since I_{i} is a state ideal of X. Hence $\sigma(x) \in \bigcap_{i \in \Lambda} I_{i}$. It follows that $\sigma\left(\bigcap_{i \in \Lambda} I_{i}\right) \subseteq \bigcap_{i \in \Lambda} I_{i}$. Thus $\bigcap_{i \in \Lambda} I_{i} \in \mathcal{S I}(X)$.

Since the set $\mathcal{S I}(X)$ is closed under arbitrary intersections, we have the following theorem.
Theorem 3.13. $(\mathcal{S I}(X) ; \subseteq)$ is a complete lattice.
The following example shows that the union of two state ideals may not be a state ideal, in genaral.

Example 3.14. Let $X=\{0, a, b, c\}$. Define the binary operation " $*_{3}$ " in Table 3. Then $\left(X ; *_{3}, 0\right)$

Table 3: BI-algebra $\left(X ; *_{3}, 0\right)$

$*_{3}$	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	a
c	c	c	a	0

is a BI-algebra. Define $\sigma: X \rightarrow X$ by $\sigma(0)=\sigma(a)=0$ and $\sigma(b)=\sigma(c)=c$. Then $\sigma \in \mathcal{S}(X)$ and (X, σ) is a state BI-algebra. If we take $I_{1}:=\{0, a\}$ and $I_{2}:=\{0, c\}$, then $I_{1}, I_{2} \in \mathcal{S I}(X)$, but $I_{1} \cup I_{2}=\{0, a, c\}$ is not an ideal of X, since $c, b *_{3} c \in I_{1} \cup I_{2}$, but $b \notin I_{1} \cup I_{2}$. Thus $I_{1} \cup I_{2} \notin \mathcal{S I}(X)$.

Definition 3.15. Let $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{I}(X)$. For any $x, y \in X$, define

$$
I_{\sigma}(x, y):=\{t \in X:(t * x) * \sigma(y) \in I\} .
$$

Notice that, by Proposition 2.2 (ii), since $0 * x=0$, for all $x \in X$, we get $0 \in I_{\sigma}(x, y)$, for all $x, y \in X$. Hence $I_{\sigma}(x, y) \neq \emptyset$. Also, for all $x \in X, I_{\sigma}(0, x):=\{t \in X: t * \sigma(x) \in I\}$ and $I_{\sigma}(x, 0):=\{t \in X: t * x \in I\}$, since $\sigma(0)=0$.

The following example shows that for $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{I}(X), I_{\sigma}(x, y) \neq I_{\sigma}(y, x)$, and may $I_{\sigma}(x, y) \notin \mathcal{S I}(X)$, in general.

Example 3.16. (i) Consider Example 3.5. If we take $I:=\{0, a, c\}$, then $I \in \mathcal{I}(X)$. One can easily see that $I_{\sigma}(c, a)=\{0, c\} \neq I_{\sigma}(a, c)=I$ and $I_{\sigma}(b, c)=X$.
(ii) In Example 3.14, take $I:=\{0, c\}$. Then $I \in \mathcal{S I}(X)$ and $I_{\sigma}(a, b)=\{0, a, c\} \notin \mathcal{S I}(X)$, since $c, b *_{3} c=a \in I_{\sigma}(a, b)$, but $b \notin I_{\sigma}(a, b)$.

Proposition 3.17. Let X be distributive, $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{I}(X)$. Then $I_{\sigma}(x, y) \in \mathcal{I}(X)$.
Proof. Assume $I \in \mathcal{I}(X)$ and $x, y \in X$. Using Proposition 2.2(ii) and (I1), we get

$$
(0 * x) * \sigma(y)=0 * \sigma(y)=0 \in I
$$

Hence $0 \in I_{\sigma}(x, y)$, and so $I_{\sigma}(x, y) \neq \emptyset$.
Let $b, a * b \in I_{\sigma}(x, y)$. Then $(b * x) * \sigma(y) \in I$ and $((a * b) * x) * \sigma(y) \in I$. Using distributive law, we obtain

$$
((a * x) * \sigma(y)) *((b * x) * \sigma(y))=((a * x) *(b * x)) * \sigma(y)=((a * b) * x) * \sigma(y) \in I
$$

Since $I \in \mathcal{I}(X)$ and $(b * x) * \sigma(y) \in I$, we get $(a * x) * \sigma(y) \in I$. It follows that $a \in I_{\sigma}(x, y)$. Thus $I_{\sigma}(x, y) \in \mathcal{I}(X)$.

The following example shows that the distributive law in Proposition 3.17 is necessary.
Example 3.18. Consider Example 3.5. If we take $I:=\{0, a, c\}$, then $I \in \mathcal{I}(X)$. We can see that $I_{\sigma}(b, a)=\{0, b, a\}$, where $I_{\sigma}(b, a) \notin \mathcal{I}(X)$, since $a, c *_{2} a=b \in I_{\sigma}(b, a)$, but $c \notin I_{\sigma}(b, a)$.

Proposition 3.19. Let $I \in \mathcal{S I}(X)$ and $\sigma \in \mathcal{S}(X)$. Then $I=\bigcup_{x \in I} I_{\sigma}(0, x)$.
Proof. Assume $I \in \mathcal{S I}(X), \sigma \in \mathcal{S}(X)$ and $t \in I$. Let $x \in I$. Hence $\sigma(x) \in \sigma(I) \subseteq I$. Then $t * \sigma(x) \in I$, and so $t \in I_{\sigma}(0, x) \subseteq \bigcup_{x \in I} I_{\sigma}(0, x)$ It follows that $t \in \bigcup_{x \in I} I_{\sigma}(0, x)$. Thus $I \subseteq \bigcup_{x \in I} I_{\sigma}(0, x)$. On the other hand, let $t \in \bigcup_{x \in I} I_{\sigma}(0, x)$. Then there exists $x \in I$ such that $t \in I_{\sigma}(0, x)$. Hence $t * \sigma(x) \in I$. Since $I \in \mathcal{S I}(X)$ and $x \in I$, we have $\sigma(x) \in \sigma(I) \subseteq I$, and so $\sigma(x) \in I$. Thus $t \in I$. It shows that $\bigcup_{x \in I} I_{\sigma}(0, x) \subseteq I$.

Corollary 3.20. Let X be distributive, $I \in \mathcal{I}(X), \sigma \in \mathcal{S}(X)$ and $a \in X$. If we take $M_{a}:=\{t \in X:(t * a) * \sigma(a) \in I\}$, then $M_{a} \in \mathcal{I}(X)$.
Proof. Similar to the proof Proposition 3.17, if we take $M_{a}:=I_{\sigma}(a, a)$.
The following example shows that there is $I \in \mathcal{S I}(X)$ and $a \in X$, where $M_{a} \notin \mathcal{S I}(X)$.
Example 3.21. Consider the state ideal $I_{2}=\{0, c\}$ in Example 3.14. One can easily see that $M_{a}=\{0, a, c\} \notin \mathcal{S I}(X)$, since $c, b *_{3} c=a \in M_{a}$, but $b \notin M_{a}$.

Open problem. Consider status Proposition 3.17 or Corollary 3.20, if $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{S I}(X)$, then $I_{\sigma}(x, y) \in \mathcal{S I}(X)$ or $M_{a} \in \mathcal{S I}(X)$? Under what condition/conditions is/are it possible?

Theorem 3.22. Let X be distributive, $I \in \mathcal{I}(X)$ and $\sigma \in \mathcal{S}(X)$. Then \sim_{I}, where defined in Theorem 2.5, is a congruence relation on X, and $[0]_{I} \in \mathcal{S I}(X)$.

Proof. By [2, Lemma 5.6], $[0]_{I} \in \mathcal{I}(X)$. Let $x \in[0]_{I}$. Then $x \sim_{I} 0$. This implies that $\sigma(x) \sim_{I} \sigma(0)$. By Proposition 3.3(i), $\sigma(x) \sim_{I} 0$. It shows that $\sigma(x) \in[0]_{I}$. Thus $[0]_{I} \in \mathcal{S I}(X)$.

Definition 3.23. Let $\sigma \in \mathcal{S}(X)$ and $\emptyset \neq I \subseteq X$. Define the state ideal generated by I as follows:

$$
\langle I\rangle_{S}:=\bigcap_{I \subseteq I_{i}} I_{i},
$$

where $\sigma \in \mathcal{S}(X)$ and $I \subseteq I_{i} \in \mathcal{S I}(X)$, for $i \in \Lambda$.
Notice that, in Definition 3.23, $\bigcap_{I \subseteq I_{i}} I_{i} \in \mathcal{S I}(X)$, by Proposition 3.12. Also, if $I \in \mathcal{S I}(X)$, then $\langle I\rangle_{S}=I$.

Borumand Saeid et al. defined the set $A(x, y):=\{t \in X:(t * x) * y=0\}$, and it was shown that if X is distributive, then $A(x, y) \in \mathcal{I}(X)$, where $x, y \in X$.
Also, we can see that $A(x, 0)=A(0, x)$, for all $x \in X$. Further, it is shown that if $I \in \mathcal{I}(X)$, then (see for details, Proposition 4.10 and Theorem 4.11 (see, [2]))

$$
I=\bigcup_{x \in I} A(0, x)=\bigcup_{x, y \in I} A(x, y)
$$

The following example shows that if X is distributive and $\emptyset \neq I \subseteq X$, then

$$
\langle I\rangle_{S} \neq \bigcap_{x, y \in I} A(x, y)
$$

Example 3.24. Consider Example 3.2(ii). Then (X, σ) is a state BI-algebra. If we take $I=\{b\}$, then $I \notin \mathcal{I}(X)$ and $<I>_{S}=\{0, b\}$.
Also, we can see that $A(0,0)=\{0\}$ and $A(0, b)=A(b, 0)=A(b, b)=\{0, b\}$, where

$$
\langle I\rangle_{S}=\{0, b\} \neq \bigcap_{x, y \in I \cup\{0\}} A(x, y)=\{0\} .
$$

Also, If we take $I:=\{0, a\}$, then we can see that $I \in \mathcal{I}(X)$ and

$$
\langle I\rangle_{S}=I=\{0, a\} \neq \bigcap_{x, y \in I \cup\{0\}} A(x, y)=\{0\} .
$$

The following theorem show that a representation of $\langle I\rangle_{S}$.
Theorem 3.25. Let $\emptyset \neq I \subseteq X$. Then $\langle I\rangle_{S}=\bigcap_{I \subseteq I_{i}} \bigcup_{x \in I_{i}} I_{i \sigma}(0, x)$, where $\sigma \in \mathcal{S}(X)$ and $I_{i} \in \mathcal{S I}(X)$, for all $i \in \Lambda$.
Proof. By Definition 3.23 and Proposition 3.19, the proof is obvious.

4 Bosbach states on BI-algebras

In this section, we introduce the notion of Bosbach states and show that there exists a Bosbach state via $\frac{X}{\sim_{I}}$ where \sim_{I} is a congruence relation induced by an ideal I of distributive BI-algebra X.

Definition 4.1. Let $\sigma: X \rightarrow[0,1]$ be a map. We say that σ is a Bosbach state on X, if the following conditions hold: for all $x, y \in X$
(BS1) $\sigma(0)=0$,
(BS2) $\sigma(x)+\sigma(y * x)=\sigma(y)+\sigma(x * y)$.
Example 4.2. (i) Consider Example 3.5. Define $\sigma: X \rightarrow[0,1]$ as follows:

$$
\sigma(0)=0 \text { and } \sigma(a)=\sigma(b)=\sigma(c)=\frac{1}{2} .
$$

Then σ is a Bosbach state on X.
(ii) Let $X=\{0, a, b\}$. Define the binary operation " $*_{4}$ " in Table 4. Then $\left(X ; *_{4}, 0\right)$ is a BI-algebra

Table 4: BI-algebra $\left(X ; *_{4}, 0\right)$

$*_{4}$	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

(see, [2]). Define $\sigma: X \rightarrow[0,1]$ by $\sigma(0)=0, \sigma(a)=\frac{1}{2}$ and $\sigma(b)=1$. Then σ is a Bosbach state on X.

Denote the set of all Bosbach states on X by $\mathcal{B S}(X)$.
Proposition 4.3. Let $\sigma \in \mathcal{B S}(X)$. Then
(i) $x \leq y$ implies $\sigma(x) \leq \sigma(y)$ and $\sigma(y * x) \leq \sigma(y)$,
(ii) $\operatorname{ker} \sigma \in \mathcal{I}(X)$.

Proof. (i) Given $x, y \in X$, if $x \leq y$, then $x * y=0$. Hence

$$
\sigma(x)+\sigma(y * x)=\sigma(y)+\sigma(x * y)=\sigma(y)+\sigma(0)=\sigma(y)+0=\sigma(y)
$$

Since $\sigma(t) \geq 0$, for all $t \in X$, and $\sigma(x)+\sigma(y * x)=\sigma(y)$, we get $\sigma(x) \leq \sigma(y)$ and $\sigma(y * x) \leq \sigma(y)$. (ii) Clearly, $0 \in \operatorname{ker} \sigma$. If $y, x * y \in \operatorname{ker} \sigma$, then $\sigma(y)=\sigma(x * y)=0$. Since $\sigma \in \mathcal{B} \mathcal{S}(X)$, we have

$$
0=0+0=\sigma(y)+\sigma(x * y)=\sigma(x)+\sigma(y * x) .
$$

Since $\sigma(x), \sigma(y * x) \in[0,1]$ and $\sigma(x)+\sigma(y * x)=0$, we get $\sigma(x)=0$ and $\sigma(y * x)=0$. Thus $x \in \operatorname{ker} \sigma$.

Definition 4.4. Let $(X ; *, 0)$ and $(Y ; \diamond, 0)$ be two BI-algebras. A map $\theta: X \rightarrow Y$ is called a homomorphism if $\theta(x * y)=\theta(x) \diamond \theta(y)$, for all $x, y \in X$.

Notice that, if we take $y:=x$, than by (B), $\theta(0)=\theta(x * x)=\theta(x) \diamond \theta(x)=0$.
Example 4.5. (i) The identity map from any BI-algebra is a homomorphism.
(ii) Consider BI-algebra X in Example 4.2 (ii) and Y is the BI-algebra in Example 3.5. Define $\theta: X \rightarrow Y$ by $\theta(0)=0, \theta(a)=b$ and $\theta(b)=c$. Then θ is a homomorphism.
(iii) Every map $\theta: X \rightarrow Y$ between BI-algebras defined by $\theta(x)=0$, for all $x \in X$ is a homomorphism.

Lemma 4.6. Let $(X ; *, 0)$ and $(Y ; \diamond, 0)$ be two BI-algebras and $\theta: X \rightarrow Y$ be a homomorphism. Then
(i) $\theta(0)=0$,
(ii) $x \leq y$ implies $\theta(x) \leq \theta(y)$,
(iii) $\operatorname{ker} \theta \in \mathcal{I}(X)$.

Proof. (i) From (BS1), we have $\theta(0)=\theta(0 * 0)=\theta(0) \diamond \theta(0)=0$.
(ii) If $x \leq y$, then $x * y=0$. Using (i), we have $0=\theta(0)=\theta(x * y)=\theta(x) \diamond \theta(y)$. This means that $\theta(x) \leq \theta(y)$.
(iii) Clearly, $0 \in \operatorname{ker} \theta$. Now, let $y, x * y \in \operatorname{ker} \theta$. Then $\theta(x * y)=0$ and $\theta(y)=0$. Using Proposition 2.2(ii), we obtain $0=\theta(x * y)=\theta(x) \diamond \theta(y)=\theta(x) \diamond 0=\theta(x)$. This means that $x \in \operatorname{ker} \theta$, and so $\operatorname{ker} \theta \in \mathcal{I}(X)$.

Theorem 4.7. Let $(X ; *, 0)$ and $(Y ; \diamond, 0)$ be two BI-algebras, $\theta: X \rightarrow Y$ be a homomorphism and $\sigma_{Y} \in \mathcal{B S}(Y)$. Then there is a unique $\sigma_{X} \in \mathcal{B S}(X)$ such that the following diagram is commutative (i.e., $\sigma_{X}=\sigma_{Y} \circ \theta$).

Proof. Define $\sigma_{X}: X \rightarrow[0,1]$ by $\sigma_{X}(x)=\sigma_{Y} \circ \theta(x)$. Since σ_{Y} and θ are well-defined, σ_{X} is well-defined. By Lemma 4.6(i) and (BS1), we get $\sigma_{X}(0)=\sigma_{Y}(\theta(0))=\sigma_{Y}(0)=0$. Moreover, since $\sigma_{Y} \in \mathcal{B S}(Y)$, for all $x, y \in X$, we have

$$
\begin{aligned}
\sigma_{X}(x)+\sigma_{X}(y * x) & =\sigma_{Y} \circ \theta(x)+\sigma_{Y} \circ \theta(y * x)=\sigma_{Y}(\theta(x))+\sigma_{Y}(\theta(y) \diamond \theta(x)) \\
& =\sigma_{Y}(\theta(y))+\sigma_{Y}(\theta(x) \diamond \theta(y))=\sigma_{Y} \circ \theta(y)+\sigma_{Y} \circ \theta(x * y) \\
& =\sigma_{X}(y)+\sigma_{X}(x * y) .
\end{aligned}
$$

Thus $\sigma_{X} \in \mathcal{B S}(X)$. Now, let $\sigma^{\prime} \in \mathcal{B S}(X)$ such that $\sigma^{\prime}=\sigma_{Y} \circ \theta$. Then $\sigma^{\prime}(x)=\left(\sigma_{Y} \circ \theta\right)(x)=\sigma_{X}(x)$, for all $x \in X$. This means that $\sigma^{\prime}=\sigma_{X}$. Hence σ_{X} is a unique Bosbach state on X.

Let $(X ; *, 0)$ and $(Y ; \diamond, 0)$ be two BI-algebras, and $\theta: X \rightarrow Y$ be a homomorphism. Then we say that θ is injective, if $\operatorname{ker} \theta=\{0\}$. The homomorphisms defined in Example 4.5(i)-(ii) are injective and the homomorphism defined in Example 4.5 (iii) is not injective. As usual, a homomorphism is called bijective, if it is injective and surjective.

Theorem 4.8. Let $(X ; *, 0)$ and $(Y ; \diamond, 0)$ be two BI-algebras, $\theta: X \rightarrow Y$ be a bijective homomorphism and $\sigma_{X} \in \mathcal{B S}(X)$. Then there is a unique $\sigma_{Y} \in \mathcal{B S}(Y)$ such that the following diagram is commutative (i.e., $\sigma_{X}=\sigma_{Y} \circ \theta$).

Proof. Assume $y \in Y$ is an arbitrary element. Then from surjectivity of θ, there exists $x \in X$ such that $\theta(x)=y$. Thus for any $y \in Y$ there exists $x \in X$ such that x is depend on y. If we take $\sigma_{Y}(y):=\sigma(x)$, where x is depend on y, then $\sigma(x)=\sigma_{Y}(y)=\sigma_{Y}(\theta(x))=\sigma_{Y} \circ \theta(x)$ and since θ is injective, we have $\sigma(x)=\sigma_{Y} \circ \theta(x)$, for all $x \in X$. Now, we show that $\sigma_{Y} \in \mathcal{B} S(Y)$.
(BS1) From Lemma 4.6(i), injectivity of θ and (BS1) property on σ_{X}, we have

$$
\sigma_{Y}(0)=\sigma_{Y}(\theta(0))=\sigma_{X}(0)=0 .
$$

(BS2) Given $y, y^{\prime} \in Y$, then there exist $x, x^{\prime} \in X$ such that $\theta(x)=y$ and $\theta\left(x^{\prime}\right)=y^{\prime}$. Thus

$$
\begin{aligned}
\sigma_{Y}(y)+\sigma_{Y}\left(y^{\prime} \diamond y\right) & =\sigma_{Y}(\theta(x))+\sigma_{Y}\left(\theta\left(x^{\prime}\right) \diamond \theta(x)\right) \\
& =\sigma_{Y}(\theta(x))+\sigma_{Y}\left(\theta\left(x^{\prime} * x\right)\right) \\
& =\sigma_{Y} \circ \theta(x)+\sigma_{Y} \circ \theta\left(x^{\prime} * x\right) \\
& =\sigma_{X}(x)+\sigma_{X}\left(x^{\prime} * x\right) \\
& =\sigma_{X}\left(x^{\prime}\right)+\sigma_{X}\left(x * x^{\prime}\right) \\
& =\sigma_{Y} \circ \theta\left(x^{\prime}\right)+\sigma_{Y} \circ \theta\left(x * x^{\prime}\right) \\
& =\sigma_{Y}\left(y^{\prime}\right)+\sigma_{Y}\left(y \diamond y^{\prime}\right) .
\end{aligned}
$$

Then $\sigma_{Y} \in \mathcal{B S}(Y)$. Suppose $\sigma^{\prime} \in \mathcal{B S}(Y)$ such that $\sigma_{X}(x)=\sigma^{\prime} \circ \theta(x)$, for all $x \in X$. Let $y \in Y$. Then there exists $x \in X$ such that $\theta(x)=y$, and so $\sigma^{\prime}(y)=\sigma^{\prime}(\theta(x))=\sigma^{\prime} \circ \theta(x)=\sigma_{X}(x)$. On the other hand, according to the definition of σ_{Y}, we have $\sigma_{Y}(y)=\sigma_{X}$. Hence $\sigma^{\prime}(y)=\sigma_{X}(x)=\sigma_{Y}(y)$, for all $y \in Y$. It follows that $\sigma^{\prime}=\sigma_{Y}$. Thus σ_{Y} is unique and this completes the proof.

Let X be a distributive BI-algebra and $I \in \mathcal{I}(X)$. Consider relation " \sim_{I} " in Theorem 2.5, we denote by C_{x} the congruence class of x and let $\frac{X}{\sim_{I}}=\left\{C_{x}: x \in X\right\}$. Also, we define $\varrho: X \rightarrow \frac{X}{\sim_{I}}$ by $\varrho(x)=C_{x}$. Then $\left(\frac{X}{\sim} ; \star, C_{0}\right)$ is a BI-algebra, where $C_{x} \star C_{y}=C_{x * y}$. Notice that, if $x \in I$, then $C_{x}=C_{0}$.

Corollary 4.9. Let X be distributive BI-algebra, $I \in \mathcal{I}(X)$ and $\sigma \in \mathcal{B S}(X)$. Then there exists a unique Bosbach state $t: \frac{X}{\sim_{I}} \rightarrow[0,1]$ such that the following diagram is commutative (i.e., $\sigma=s \circ \varrho$), in fact, \sim_{I} is a congruence relation induced by ideal I.

Proof. Using Theorem 4.8, if we take $Y:=\frac{X}{\sim_{I}}$, then the proof is complete.

Corollary 4.10. Let X be distributive BI-algebra and $\sigma \in \mathcal{B S}(X)$. Then there exists a unique Bosbach state $t: \frac{X}{\sim_{\operatorname{ker} \sigma}} \rightarrow[0,1]$ such that the following diagram is commutative (i.e., $\sigma=s \circ \varrho$), in fact, \sim_{I} is a congruence relation induced by $\operatorname{ker} \sigma$.

Proof. Using Proposition 4.3(ii) and Corollary 4.9, if we take $I:=\operatorname{ker} \sigma$, then the proof is complete.

5 State-morphism operators on BI-algebras

In this section, we introduce the notion of state-morphism operators on BI-algebras. By this new notion, we introduce the notion of state-morphism BI-algebras.

Definition 5.1. A homomorphism $\sigma: X \rightarrow X$ is called a state-morphism operator if $\sigma \circ \sigma=\sigma$, and the pair $(X ; \sigma)$ is called a state-morphism BI-algebra.

Example 5.2. (i) Let $I d_{X}$ be the identity map on X. Then, clearly $I d_{X}$ is a state-morphism operator. Notice that, $I d X$ is not a state operator on X.
(ii) Consider Example 3.2(ii), for any $x, y \in X$, we have $x *_{1} y=\left(x *_{1} y\right) *_{1} y$. Define $f_{b}: X \rightarrow X$ by $f_{b}(x)=x *_{1} b$, for all $x \in X$. Then by easy calculations, one can show that f_{b} is a homomorphism. Moreover,

$$
\left(f_{b} \circ f_{b}\right)(x)=f_{b}\left(x *_{1} b\right)=\left(x *_{1} b\right) *_{1} b=x *_{1} b=f_{b}(x),
$$

for all $x \in X$. Thus f_{b} is a state-morphism operator on X and (X, f_{b}) becomes a state-morphism BI-algebra.

From Example 5.2(i), we can see that any state-morphism operator may not be a state operator. Moreover, the converse may not be true, i.e., any state operator may not be a state-morphism operator. For example, consider the state σ in Example 3.2(ii). Then σ is not a state-morphism operator, since

$$
b=\sigma(a)=\sigma\left(a *_{1} b\right) \neq \sigma(a) *_{1} \sigma(b)=b *_{1} b=0 .
$$

We denote the set of all state-morphism operators on X by $\mathcal{S M O}(X)$.
Proposition 5.3. Let X be distributive. Then $\mathcal{S M O}(X) \neq \emptyset$.
Proof. Assume X is distributive and $x, y \in X$. Define $\sigma_{y}: X \rightarrow X$ by $\sigma_{y}(x)=x * y$. Then for any $z \in X$,

$$
\sigma_{z}(x * y)=(x * y) * z=(x * z) *(y * z)=\sigma_{z}(x) * \sigma_{z}(y)
$$

Hence σ_{z} is a homomorphism. We show that $\sigma_{z} \circ \sigma_{z}=\sigma_{z}$. Using the distributive law, we get

$$
\left(\sigma_{z} \circ \sigma_{z}\right)(x)=\sigma_{z}\left(\sigma_{z}(x)\right)=\sigma_{z}(x * z)=(x * z) * z=x * z=\sigma_{z}(x) .
$$

Thus $\sigma_{z} \in \mathcal{S M O}(X)$, and so $\mathcal{S M O}(X) \neq \emptyset$.

It was shown that if $x \leq y$ and X satisfies the following condition:

$$
(z * x) *(z * y)=y * x
$$

Then $z * y \leq z * x$ (see, [2, Prop. 3.13]).
Proposition 5.4. Let X be distributive and satisfies (\star). Then $(x * y) * z \leq(x * z) * y$, for all $x, y, z \in X$.

Proof. Using the distributive law, (\star) and Proposition 2.2(ii), we get

$$
\begin{aligned}
((x * y) * z) *((x * z) * y) & =((x * y) * z) *((x * y) *(z * y)) \\
& =(z * y) * z=(z * z) *(y * z) \\
& =0 *(y * z)=0 .
\end{aligned}
$$

Thus $(x * y) * z \leq(x * z) * y$.
The following example shows that the distributive law in Proposition 5.4 is necessary.
Example 5.5. Let $X=\{0, a, b, c, d\}$. Define the binary operation " $*_{6}$ " in Table 6. Then $\left(X ; *_{6}, 0\right)$

Table 5: BI-algebra $\left(X ; *_{6}, 0\right)$

$*_{6}$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	d	d	c
b	b	0	0	b	b
c	c	0	c	0	c
d	d	0	d	d	0

is a BI-algebra and satisfies (\star), but not distributive, since

$$
\left(a *_{6} d\right) *_{6} b=c *_{6} b=c \neq 0=d *_{6} d=\left(a *_{6} b\right) *_{6}\left(d *_{6} b\right) .
$$

Also, $\left(\left(a *_{6} d\right) *_{6} b\right) *_{6}\left(\left(a *_{6} b\right) *_{6} d\right)=\left(c *_{6} b\right) *_{6}\left(d *_{6} d\right)=c *_{6} 0=c \neq 0$.
Proposition 5.6. Let X be distributive and $\sigma \in \mathcal{S M O}(X)$, where satisfies (\star), and $I \in \mathcal{I}(X)$. Then

$$
\langle I\rangle_{S}=\left\{x \in X:\left(\left(\left(x * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right) \in I, \exists n \in \mathbb{N}, \exists x_{1}, \ldots, x_{n} \in X\right\}
$$

Proof. We denote the right hand by M. Clearly, $I \subseteq M$. We show that $M \in \mathcal{I}(X)$. Assume $x, y * x \in M$. Then there exist $m, n \in \mathbb{N}$, and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$ such that

$$
\left(\left(\left(x * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right) \in I \text { and }\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right) \in I
$$

Then by Proposition 2.4 (iii)-(iv) and Proposition 5.4,

$$
\begin{aligned}
& \left(\left(\left(\left(\left(\left(y * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) * \sigma\left(x_{1}\right)\right) * \cdots * \sigma\left(x_{n}\right)\right) \\
& \left.*\left(\left(\left(\left(x * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right)\right) *\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) \\
& \leq\left(\left(\left(\left(\left(\left(y * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) * \sigma\left(x_{1}\right)\right) * \cdots * \sigma\left(x_{n-1}\right)\right) \\
& \left.*\left(\left(\left(x * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n-1}\right) *\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) \\
& \vdots \\
& \leq\left(\left(\left(\left(\left(y * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right) * x\right) *\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) \\
& \left.\leq\left(\left(\left(\left(\left(y * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * x\right) * \sigma\left(y_{m}\right)\right) *\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) \\
& \vdots \\
& \leq\left(\left(\left(\left(\left(y * \sigma\left(y_{1}\right)\right) * x\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) *\left(\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) \\
& \leq\left(\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) *\left(\left(\left(\left((y * x) * \sigma\left(y_{1}\right)\right) * \sigma\left(y_{2}\right)\right) * \cdots\right) * \sigma\left(y_{m}\right)\right) \\
& =0 \in I .
\end{aligned}
$$

This means that $y \in M$, and so $M \in \mathcal{I}(X)$. Now, let $x \in M$. Then there exist $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $y=\left(\left(\left(x * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right) \in I$. Then

$$
\sigma(y)=\left(\left(\left(\sigma(x) * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right) .
$$

Hence

$$
\left(\left(\left(\left(\sigma(x) * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right)\right) * \sigma(y)=\sigma(0)=0 \in I .
$$

Thus there exist $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n}, x_{n+1} \in X$, where $x_{n+1}=y$, such that

$$
\left(\left(\left(\sigma(x) * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right) \in I .
$$

This means that $\sigma(x) \in M$, and hence M is a state ideal of X. Now, let K be a state ideal of X containing I and $x \in M$. Then according to definition of M, we conclude that $x \in K$. Hence $M \subseteq K$. Thus M is the least ideal of X containing I. This means that $M=\langle I\rangle_{S}$.

Proposition 5.7. Let X be distributive and $\sigma \in \mathcal{S} \mathcal{M O}(X)$. Then the following statments hold:
(i) $\operatorname{ker} \sigma=\{x * \sigma(x): x \in X\}=\{\sigma(x) * x: x \in X\}$,
(ii) $X=\langle\operatorname{ker} \sigma \cup \operatorname{img} \sigma\rangle_{S}$.

Proof. (i) Clearly, $\{x * \sigma(x): x \in X\} \subseteq \operatorname{ker} \sigma$. Let $x \in \operatorname{ker} \sigma$. Then

$$
x=x * 0=x * \sigma(x) \in\{x * \sigma(x): x \in X\} .
$$

Thus ker $\sigma \subseteq\{x * \sigma(x): x \in X\}$, and so $\operatorname{ker} \sigma=\{x * \sigma(x): x \in X\}$. By a similar argument, we have $\operatorname{ker} \sigma=\{\sigma(x) * x: x \in X\}$.
(ii) Clearly, $\langle\operatorname{ker} \sigma \cup \operatorname{img} \sigma\rangle_{S} \subseteq X$. Let $x \in X$, we show that $x \in\langle\operatorname{ker} \sigma \cup \operatorname{img} \sigma\rangle_{S}$. By (i), $x * \sigma(x) \in \operatorname{ker} \sigma$, for any $x \in X$. Moreover, $\sigma(x) \in \operatorname{img} \sigma$, for any $x \in X$. Then $x \in\langle\operatorname{ker} \sigma \cup \operatorname{img} \sigma\rangle_{S}$. Thus $X \subseteq\langle\operatorname{ker} \sigma \cup \operatorname{img} \sigma\rangle_{S}$. This shows that (ii) holds.

Definition 5.8. Let $I \in \mathcal{I}(X)$, and T be a subalgebra of X. We say T and I are complement sets of X if,
(C1) $T \cap I=\{0\}$,
$(\mathrm{C} 2)\langle T \cup I\rangle_{S}=X$,
(C3) for any $x \in X$, there exists $a_{x} \in T$ such that $x \sim_{I} a_{x}$.
Example 5.9. Consider Example 3.5. Define $\sigma: X \rightarrow X$ by $\sigma(0)=\sigma(b)=\sigma(c)=0$ and $\sigma(a)=a$. Then (X, σ) is a state BI-algebra. If we take $I:=\{0, c\}$ and $T:=\{0, a, b\}$, then we can see that $I \in \mathcal{I}(X)$ and (C1)-(C3) hold.

If T and I are complement pair sets of X, then we denote these by (T, I) and we call it complement pair of X. We denote the set of all complement pairs of X by $\mathcal{C}(X)$.
Proposition 5.10. Let $(T, I) \in \mathcal{C}(X)$. Then a_{x} is a unique element of T, for any $x \in X$.
Proof. Let $x \in X$ and $a, b \in T$ such that $x \sim_{I} a$ and $x \sim_{I} b$. Since \sim_{I} is an equivalence relation on X, we have $a \sim_{I} b$. This means that $a * b, b * a \in I$. On the other hand, $a * b, b * a \in T$, since T is a subalgebra of X. Hence $a * b, b * a \in I \cap T$. But from (C1), we have $I \cap T=\{0\}$. This implies that $a=b$. Thus a_{x} is a unique element of T, for any $x \in X$.

Theorem 5.11. Let X be distributive such that for any ideal I, \sim_{I} is a right congruence relation. Then there is a one-to-one correspondence between complement pairs of X and state-morphism operators on X.
Proof. Assume $\sigma \in \mathcal{S M O}(X)$. Set $I=\operatorname{ker} \sigma$ and $T=\operatorname{img} \sigma$. Then $I \in \mathcal{I}(X)$ and T is a subalgebra of X. Now, we show that $(T, I) \in \mathcal{C}(X)$. Clearly, (C1) holds and by Proposition 5.7(ii), (C2) holds. Let $x \in X$. Then $\sigma(x) \in \operatorname{img} \sigma=T$. Moreover, by Proposition 5.7(i), $x * \sigma(x), \sigma(x) * x \in \operatorname{ker} \sigma=I$. Thus $x \sim_{I} \sigma(x)$. Therefore, for any $x \in X$, there exists $\sigma(x) \in T$ such that $x \sim_{I} \sigma(x)$. This shows that $(T, I) \in \mathcal{C}(X)$.

Conversely, we show that for any complement pair of X, one can define a state-morphism. Let $(T, I) \in \mathcal{C}(X)$. Define $\sigma_{T, I}: X \rightarrow X$ by $\sigma_{T, I}(x)=a_{x}$, for all $x \in X$. Proposition 5.10 follows that $\sigma_{T, I}$ well defined. Let $x, y \in X$. Then $\sigma(x)=a_{x}$ and $\sigma_{T, I}(y)=a_{y}$. Thus $x \sim_{I} a_{x}$ and $y \sim_{I} a_{y}$. Since \sim_{I} is a congruence relation, we have $x * y \sim_{I} a_{x} * a_{y}$. Moreover, $a_{x} * a_{y} \in T$, since T is a subalgebra of X, then by Proposition 5.10, $\sigma_{T, I}(x * y)=a_{x * y}$. Since $x * y \sim_{I} a_{x} * a_{y}$, again by Proposition 5.10, $a_{x} * a_{y}$ is unique, and so $a_{x * y}=a_{x} * a_{y}$. This implies that

$$
\sigma_{T, I}(x * y)=a_{x * y}=a_{x} * a_{y}=\sigma_{T, I}(x) * \sigma_{T, I}(y)
$$

Hence $\sigma_{T, I}$ is a homomorphism on X. Moreover, for any $a \in T, a * a=0 \in I$, so by Proposition 5.10, $\sigma_{T, I}(a)=a_{a}=a$. This follows that $\sigma_{T, I}\left(\sigma_{T, I}(x)\right)=\sigma_{T, I}(x)$, for all $x \in X$. Thus $\sigma_{T, I} \in \mathcal{S M O}(X)$. Now, define $\alpha: \mathcal{C}(X) \rightarrow \mathcal{S M O}(X)$, by $\alpha(T, I)=\sigma_{T, I}$, and $\beta: \mathcal{S M O}(X) \rightarrow \mathcal{C}(X)$ by $\beta(\sigma)=(\operatorname{img} \sigma, \operatorname{ker} \sigma)$. Also, we have

$$
\begin{aligned}
\operatorname{ker} \sigma_{T, I} & =\left\{x \in X: \sigma_{T, I}(x)=0\right\} \\
& =\left\{x \in X: a_{x}=0\right\} .
\end{aligned}
$$

It is obvious that $I \subseteq \operatorname{ker} \sigma_{T, I}$. On the other hand, assume $x \in \operatorname{ker} \sigma_{T, I}$. Hence $a_{x}=0$. Since $x * a_{x} \in I$ and $a_{x}=0 \in I$, we obtain $x \in I$, and so $\operatorname{ker} \sigma_{T, I} \subseteq I$. Thus $\operatorname{ker} \sigma_{T, I}=I$. Moreover, it is easy to cheek that $\sigma_{T, I}(x)=\operatorname{img} \sigma_{T, I}=T$. Then

$$
(\alpha \circ \beta)\left(\sigma_{T, I}\right)=\alpha\left(\operatorname{img} \sigma_{T, I}, \operatorname{ker} \sigma_{T, I}\right)=\alpha(T, I)=\sigma_{T, I}
$$

and

$$
(\beta \circ \alpha)(T, I)=\beta\left(\sigma_{T, I}\right)=\left(\operatorname{img} \sigma_{T, I}, \operatorname{ker} \sigma_{T, I}\right)=(T, I) .
$$

These complete the proof.

6 Conclusions and future works

In this paper, we have studied various versions of maps that we called Bosbach states and statemorphism operators in a BI-algebra. Essential properties of the above mentioned mappings and examples for clarifying these new notions are given. Besides, we defined state ideals on BI-algebras and gave a characterization of the least state ideal of a BI-algebra. It is proved that, the kernel of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we have introduced the notions of complement pairs of a BI-algebra. It is proved that under suitable conditions, there is a one-to-one correspondence between complement pairs of a BI-algebra and state-morphism operators in a BI-algebra. In our next research, we will consider the notions of measures, generalized states, Riečan states, modal operators, and internal states on BI-algebras. Hyper BI-algebras were defined by Niazian in [35]. As another direction of research, we will extend and investigate these results to hyper BI-algebras.

Acknowledgment

The authors would like to thank anonymous reviewers for their valuable suggestions.

References

[1] S.S. Ahn, J.M. Ko, A. Borumand Saeid, On ideals of BI-algebras, Journal of the Indonesian Mathematical Society, 25(1) (2019), 24-34.
[2] A. Borumand Saeid, H.S. Kim, A. Rezaei, On BI-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta, 25(1) (2017), 177-194.
[3] R.A. Borzooei, A. Borumand Saeid, A. Rezaei, R. Ameri, States on BE-algebras, Kochi Journal of Mathematics, 9 (2014), 27-42.
[4] R.A. Borzooei, A. Dvurečenskij, O. Zahiri, State BCK-algebras and state-morphism BCKalgebras, Fuzzy Sets and Systems, 244 (2014), 86-105.
[5] R.A. Borzooei, B. Ganji Saffar, States on EQ-algebras, Journal of Intelligent and Fuzzy Systems, 29 (2015), 209-221.
[6] B. Bosbach, K. Halbgruppen, Axiomatik und arithmetik, Fundamenta Mathematicae, 64 (1969), 257-287.
[7] B. Bosbach, K. Halbgruppen, Kongruenzen and quotiente, Fundamenta Mathematicae, 69 (1970), 1-14.
[8] C. Buşneag, States on Hilbert algebras, Studia Logica, 94(2) (2010), 177-188.
[9] C. Buşneag, State-morphisms on Hilbert algebras, Annals of the University of Craiova - Mathematics and Computer Science, 37(4) (2010), 58-64.
[10] W. Chen, W.A. Dudek, States, state operators and quasi-pseudo-MV algebras, Soft Computing, 22(24) (2018), 8025-8040.
[11] X.Y. Cheng, X.L. Xin, P.F. He, Generalized state maps and states on pseudo equality algebras, Open Mathematics, 16 (2018), 133-148.
[12] L.C. Ciungu, Bosbach and Riečan states on residuated lattices, Journal of Applied Functional Analysis, 2 (2008), 175-188.
[13] L.C. Ciungu, States on pseudo BCK-algebras, Mathematical Reports, 10 (2008), 17-36.
[14] L.C. Ciungu, Non-commutative multiple-valued logic algebras, Springer, 2014.
[15] L.C. Ciungu, Internal states on equality algebras, Soft Computing, 19 (2015), 939-953.
[16] L.C. Ciungu, A. Borumand Saeid, A. Rezaei, Modal operators on pseudo-BE algebras, Iranian Journal of Fuzzy Systems, 17(6) (2020), 175-191.
[17] L.C. Ciungu, A. Dvurečenckij, Measures, states and de finetti maps on pseudo BCK-algebras, Fuzzy Sets and Systems, 161 (2010), 2870-2896.
[18] L.C. Ciungu, A. Dvurečenskij, M. Hyčko, State BL-algebras, Soft Computing, 15 (2011), 619-634.
[19] L.C. Ciungu, G. Georgescu, C. Mureşan, Generalized Bosbach states: Part I, Archive for Mathematical Logic, 52 (2013), 335-376.
[20] L.C. Ciungu, G. Georgescu, C. Mureşan, Generalized Bosbach states: Part II, Archive for Mathematical Logic, 52 (2013), 707-732.
[21] A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Annals of Pure and Applied Logic, 161 (2009), 161-173.
[22] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum to "State-morphism MV-algebras", [Annals of Pure and Applied Logic, 161 (2009), 161-173], Annals of Pure and Applied Logic, 161 (2010), 1605-1607.
[23] A. Dvurečenckij, J. Rachunek, Probabilistic averaging in bounded commutative Rौ-monoids, Discrete Mathematics, 306 (2006), 1317-1326.
[24] A. Dvurečenckij, J. Rachunek, On Riečan and Bosbach states for bounded non-commutative $R \ell$-monoids, Mathematica Slovaca, 56 (2006), 487-500.
[25] A. Dvurečenskij, J. Rachunek, D. Šalounová, State operators on generalizations of fuzzy structures, Fuzzy Sets and Systems, 187 (2012), 58-76.
[26] A. Dvurečenskij, O. Zahiri, States on EMV-algebras, arXiv: 1708.06091v1 [math.LO] 21 Aug, 2017.
[27] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, 50 (2009), 138-152.
[28] G. Georgescu, Bosbach states on fuzzy structures, Soft Computing, 8 (2004), 217-230.
[29] G. Georgescu, C. Mureşan, Generalized Bosbach states, arXiv: 1007.2575v1 [math.LO] 15 Jul, 2010.
[30] S.M. Ghasemi Nejad, R.A. Borzooei, M. Bakhshi, States on implication basic algebras, Iranian Journal of Fuzzy Systems, 17(6) (2020), 139-156.
[31] X. Hua, State L-algebras and derivations of L-algebras, Soft Computing, 25 (2021), 4201-4212.
[32] F. Kõpka, F. Chovanec, D-posets, Mathematica Slovaca, 44 (1994), 21-34.
[33] S.M. Lee, K.H. Kim, States on subtraction algebras, International Mathematical Forum, 8(24) (2013), 1155-1162.
[34] J. Mertanen, E. Turunen, States on semi-divisible generalized residuated Lattices reduce to states on MV-algebras, Fuzzy Sets and Systems, 159(22) (2008), 3051-3064.
[35] S. Niazian, On hyper BI-algebras, Journal of Algebraic Hyper Structures and Logical Algebras, $2(1)(2021), 47-67$.
[36] G. Qing, X.X. Long, State operators on pseudo EQ-algebras, Journal of Intelligent and Fuzzy Systems Preprint, 2022, 1-14. DOI: 10.3233/JIFS-212723.
[37] J. Rachunek, D. Salounova, State operators on GMV-algebras, Soft Computing, 15 (2011), 327-334.
[38] A. Rezaei, L.C. Ciungu, A. Borumand Saeid, States on pseudo BE-algebras, Journal of Multiple-Valued Logic and Soft Computing, 28 (2017), 591-618.
[39] E. Turunen, J. Mertanen, States on semi-divisible residuated lattices, Soft Computing, 12(4) (2008), 353-357.
[40] X. Xin, X. Cheng, X. Zhang, Generalized state operators on BCI-algebras, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 2591-2602.
[41] X.L. Xin, B. Davvaz, States and measures on hyper BCK-algebras, Journal of Intelligent and Fuzzy Systems, 29 (2015), 1869-1880.
[42] X.L. Xin, Y.C. Ma, Y.L. Fu, The existence of states on EQ-algebras, Mathematica Slovaca, $70(3)(2020), 527-546$.

[^0]: https://doi.org/10.52547/HATEF.JAHLA.3.3.4

