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Abstract

In this paper, we introduce nilpotent soft
(sub)polygroups. In addition, nilpotency of inter-
section, extended intersection, restricted union of two
nilpotent soft polygroups are studied. Espesialy, a
necessary and suficient condition between nilpotency
of a polygroup and soft polygroups is obtained. Fi-
nally, we define two new soft polygroups (Sα)A∪{c} and
(Qα)A derived from a soft polygroup αA and study on
nilpotency of these structures. Also, we extend a soft
homomorphism of groups to polygroups. This helps us
to extend some properties of groups to polygroups.
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1 Introduction
Some problems in engineering, medical science and social science are uncertain. One way for
dealing with them is soft set theory. It was proposed by Molodtsov [20]. In addition, it has
applications in Rieman integration, probability theory, game theory and etc (see [20, 21]). After
that time it became an interesting topic for many authors and so they work on soft set theory.
Maji et al [17], introduced several operations on soft sets. Ali et al. [15], redefined compliment of
a soft set. Soft sets were used in lattice theory by Qin et al. [23]. Also, soft set theory was applied
on research in BCI/BCK-algebras [10]. The studying of soft sets in groups began with the work
of Aktas and Cagman in [2], where the notion of soft groups were investigated and then Acar et
al. in [1], extended the notion to rings. Recently, Wang et al. in [24], introduced soft polygroups.

In group theory, nilpotent group is an interesting subject and has been studied by many
scholars. Abelian groups are an example of nilpotent groups. Hassanzadeh [13] introduced the
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concept of nilpotency for pair of groups. Also, Ozkan and et al. in [22], investigated some
applications of Fibonancci sequences in a finite nilpotent group.
An important branch in algebra is hyperstructures. It has applications in geometry, automata,
probabilities, and so on. In 1934, Marty [19] introduced the concept of polygroups as a special
hypergroup. In addition, polygroups have been discussed by Corsini [6], Borzooei [5], Davvaz [8]
and so on. Some results of group theory are translated on polygroups such as nilpotent polygroup
that has been studied in [5, 8]).

Now, in this paper we study on nilpotent soft polygroup and investigate some properties of it.
Espesially, we obtain a neccessary and sufficient condition between soft nilpotent polygroups and
nilpotent polygroups. Finally, we define two new soft sets (SF , A∪ {c}) and (QF , A) derived from
a soft polygroup (F,A). Then, we investigate some properties of them.

2 Preliminary
We begin our discusion with some fundamental definitions and results.

A hyperoperation ◦ is a mapping from H ×H into the family of non-empty subsets of H. A
hypergroupoid (H, ◦) is a non-empty set H with a hyperoperation ◦. If A and B are non-empty
subsets of H, then A◦B =

∪
a∈A,b∈B

a◦ b. Also, we use x◦A instead of {x}◦A and A◦x for A◦{x}.

The structure (H, ◦) is called a hypergroup if a ◦ (b ◦ c) = (a ◦ b) ◦ c and a ◦H = H ◦ a = H for any
a, b, c ∈ H.

Definition 2.1. [8] Let · be a hyperoperation, e ∈ P and −1 be an unitary operation on P . Then
(P, ·, e,−1 ), is called a polygroup if for any x, y, z ∈ P the following conditions hold:
(i) (x · y) · z = x · (y · z),
(ii) e · x = x · e = x,
(iii) x ∈ y · z ⇔ y ∈ x · z−1 ⇔ z ∈ y−1 · x.

Let (P1, ·, e1,−1 ) and (P2, ∗, e2,−1 ) be two polygroups. Then (P1 × P2, ◦), where ◦ is defined
as follows, is a polygroup (see [8]).

(x1, y1) ◦ (x2, y2) = {(x, y) | x ∈ x1 · x2, and y ∈ y1 ∗ y2}.

Note. From now on, let (H, ·) be a hypergroup and (P, ·, e,−1 ) be a polygroup. For x, y ∈ P
we use xy instead of x · y.

Definition 2.2. [8] Let K be a non-empty subset of P . Then for any a, b ∈ K, K is called a
subpolygroup of P and we denote by K ⪯ P if ab ⊆ K and a−1 ∈ K. Also, a subpolygroup N of
P is called normal and we denote by N ⊴ P if for any a ∈ P , a−1Na ⊆ N .

For K ⪯ P and x ∈ P , let xK (Kx) be the left (right) coset of K and P/K be the set of all left
(right) cosets of K in P . We recall that for N ⊴ P , x, y ∈ P and every z ∈ xy we have Nx = xN
and Nxy = Nz. Also, (P/N,⊙, N,−1 ) is a polygroup, where

(Nx)⊙ (Ny) = {Nz | z ∈ xy} and (Nx)−1 = Nx−1.

A polygroup is called commutative if for any x, y ∈ P , xy = yx. For two polygroups (P, •) and
(P, ∗), a map f : (P, •) → (P, ∗) is called a homomorphism if for any a, b ∈ P , f(a•b) ⊆ f(a)∗f(b).
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Also, f is a good homomorphism if the equality holds. For an equvalence relation ρ ⊆ P × P and
two non-empty subsets X,Y of P we have

XρY ⇔ xρy, ∀x ∈ X, ∀y ∈ Y.

The relation ρ is called strongly regular if for any x, y, a ∈ P we have

xρy ⇔ a · xρa · y and x · aρy · a.

We use SR(H) for the set of all strongly regular relations on H.
In [16], Koskas defined the relation β =

∪
n≥1

βn, where β1 is the diagonal relation and

aβnb ⇔ ∃(x1, ..., xn) ∈ Hn, {a, b} ⊆
n∏

i=1

xi.

In addition β∗ ∈ SR(H), where β∗ is the transitive closure of β. In [11], Freni showed that if H is
a hypergroup, then β = β∗. The kernel of the canonical map π : H −→ H

β∗ , denote by ωP or ω, is
called the core of P .

Theorem 2.3. [8] Let A be a non-empty subset of P . The intersection of any subpolygroups of P
containing A, denoted by ⟨A⟩ is equall to ∪{xϵ11 ...xϵkk |xi ∈ A, k ∈ N, ϵi ∈ {1,−1}}.

Definition 2.4. [8] The lower central series of P is the sequence · · · ⊆ γ1(P ) ⊆ γ0(P ), where
γ0(P ) = P and for k > 0,

γk+1(P ) =< {h ∈ P |xy ∩ hyx ̸= ∅ such that x ∈ γk(P ), y ∈ P} > .

Also, P is called a nilpotent polygroup(we write NP) if for some n ∈ N, γn(P ) ⊆ ω. The smallest
such n is called class of P .

In [4] it is proved that for any x, y ∈ P we have

{h ∈ P |xy ∩ hyx ̸= ∅} = {h ∈ P |h ∈ [x, y]},

where [x, y] = {t|t ∈ xyx−1y−1} is the commutator of x, y.

Theorem 2.5. [8] Let P be an NP, N ⊴ P and K ⪯ P . Then K and P/N are NP.

Definition 2.6. [17] A pair (α,A) = αA is called a soft set over U , where U refers to an initial
universe set, E is a set of parameters, A ⊆ E and α is a map from A to the power set P (U).

We use S(U) to show the set of all soft sets over U .

Definition 2.7. [10] For αA, γB ∈ S(U) we have the following statments:

(i) αA ⊆ γB, if A ⊆ B and for any a ∈ A, α(a) ⊆ γ(a).

(ii) αA = γB, if αA ⊆ γB and γB ⊆ αA.

(iii) If for any a ∈ A, α(a) = ∅, then αA is said a null soft set.

Theorem 2.8. [17] Let αA ∈ S(U) and Supp(αA) = {x ∈ A | α(x) ̸= ∅}. Then αA is non-null if
Supp(αA) ̸= ∅.
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Definition 2.9. [17] Let αA, γB ∈ S(U). Then for any x ∈ A ∩B and (x, y) ∈ A×B we have

(i) the soft intersection (αA∩̃γB, (A ∩B)) is defined by (αA∩̃γB)(x) = α(x) ∩ γ(x).

(ii) the soft ∧̃-product (αA∧̃γB, (A×B)) is defined by (αA∧̃γB)(x, y) = α(x) ∩ γ(y).

(iii) the soft ×̃-product (αA×̃γB, A×B) is defined by (αA×̃γB)(x, y) = α(x)× γ(y).

Definition 2.10. [24] Let αA be a non-null soft set over P . Then αA is called a soft polygroup
over P if α(x) ⪯ P for any x ∈ Supp(αA)

Note. From now on, assume A is a non-empty subset of P and αA ∈ SP (P ), where SP(P)
is the set of all soft polygroups over P . In addition, we use K ⪯n P when K is a nilpotent
subpolygroup of P .

3 Nilpotent soft polygroups
In this section first we define a nilpotent soft polyroup (we write NSP). Then, some examples are
added to clarify the notion. Basically, for two soft polygroups αA and γB we study the nilpotency
of derived soft sets such as αA ∩g γB and αA ∩R γB and so on. Finally, a relation between a
nilpotent polygroup and its soft polygroups is obtained.

Definition 3.1. The soft polygroup αA is called a nilpotent soft polygroup over P , we write NSP,
if there is n ∈ N such that for any a ∈ Supp(αA), α(a) ⪯n P .

We use NSP(P) for the set of all nilpotent soft polygroups over P .

Example 3.2. Let P = {a, b, c, e}. Then (P, ⋄) is an NP (see [8]).

⋄ a b c e

a {e, a} c {b, c} a
b c e a b
c {b, c} a {e, a} c
e a b c e

Assume A = P and define the soft set αA ∈ S(P ) by α(a) = α(e) = P and α(b) = α(e) = {a, e}.
Since α(a), α(e), α(b), α(c) ⪯n P we conclude that α ∈ NSP (P ).

In what follows we have a soft polygroup that is not an NSP.

Example 3.3. Assume P = {a, b, c, d, f, g, e} is a polygroup with the hyperoperation • such that

• e a b c d f g

a a e b c d f g
b b b {e, a} g f d c
c c c f {e, a} g b d
d d d g f {e, a} c b
f f f c d b g {e, a}
g g g d b c {e, a} f
e e a b c d f g

Assume A = P and define the soft set αA ∈ S(P ) by α(e) = α(a) = α(b) = {e, a, b} and α(c) =
α(d) = α(f) = α(g) = P . Then P is not an NP. Because ωP = {e, a} and γn(P ) = {e, a, f, g} and
so γn(P ) ⊈ ωP . Therefore, αA /∈ NSP (P ).
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Theorem 3.4. Assume αA ∈ NSP (P ) and B ⊆ A. If (α |B)B is non-null, then it is an NSP.

Proof. For b ∈ B since B ⊆ A, we have α |B (b) = α(b) and so by hypotheses (α |B)B ∈
NSP (P ).

By the following example, we define a subset B ⊆ A such that αA is not an NSP but α |B is
an NSP.

Example 3.5. Assume A and P are as Example 3.2, and B = {e, a}. Define the soft set αA ∈ S(P )
by

α(e) = α(a) = {e, a}, α(b) = α(c) = {b, c}.

{b, c} ⪯̸ P implies that αA ̸∈ SP (P ). But {e, a} ⪯n P . It implies that α |B∈ NSP (P ).

Example 3.6. Consider P , A and αA are as Example 3.3 and B = {e, a, b}. Since α(c) = P and
P is not nilpotent we have αA /∈ NSP (P ) but every proper polygroup of order less than 7 is an
NP (see [8]), thus (α |B)B ∈ NSP (P ).

Definition 3.7. [24] For αA, γB ∈ SP (U) and x ∈ A ∪B,
(i) the soft extended intersection αA ∩g γB is defined to be the soft set (D,A ∪B), where

D(x) =


α(x) if x ∈ A−B,

γ(x) if x ∈ B −A,

α(x) ∩ γ(x) if x ∈ A ∩B.

Replacing α(x) ∩ γ(x) with α(x) ∪ γ(x) in D(x) we have the soft set αA ∪∼ γB = (D,A ∪B).
(ii) the restricted intersection αA ∩R γB is the soft set (E,C) where A ∩ B ̸= ϕ and C = A ∩ B
and for any x ∈ C, E(x) = α(x) ∩ γ(x).

Theorem 3.8. Let αA, γB ∈ NSP (P ). Then

(i) αA
∩

g γB ∈ NSP (P ) if it is non-null.

(ii) αA
∩

R γB ∈ NSP (P ) if it is non-null and A ∩B ̸= ∅.

(iii) αA∪̃γB ∈ NSP (P ) if A ∩B = ∅.

(iv) αA∧̃γB ∈ NSP (P ).

Proof.

(i) Consider αA
∩

g γB = (D,C) and x ∈ Supp(D,C) and x ∈ A − B. By Definition 3.7, since
αA ∈ NSP (P ) we obtain D(x) = α(x) ≺n P . For the case x ∈ B − A by γB ∈ NSP (P )
we have D(x) = γ(x) ≺n P . Finally, for x ∈ A ∩ B by Theorem 2.5, we have D(x) =
α(x) ∩ γ(x) ≺n P . Hence (D,C) ∈ NSP (P ).

(ii) By Definition 3.7, and the same manipulation of part (i), we have αA ∩R γB ∈ NSP (P ).

(iii) By Definition 3.7 and A ∩B = ∅, we have

Supp(D,C) = Supp(αA) ∪ Supp(γB) ̸= ∅.

Then (D,C) is non-null. For x ∈ A − B we have D(x) = α(x) and αA ∈ NSP (P ) implies
that D(x) ≺n P . Also, for the case x ∈ B − A we have D(x) = γ(x) ≺n P . Therefore,
(D,C) ∈ NSP (P ).
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(iv) Put (H,A×B) be the soft set αA∧̃γB .By Definition 2.9 and Theorem 2.8, since αA and γB
are non-null we have

Supp(H,A×B) = Supp(αA)× Supp(γB) ̸= ∅.

Also, since αA, γB ∈ NSP (P ) we conclude that for any (x, y) ∈ A × B, α(x) ∩ γ(y) ⪯n P .
Therefore, (H,A×B) ∈ NSP (P ).

Assume I is an index set and (αi)Ai i∈I ∈ NSP (P ). Then by extending Theorem 3.8, we have
the following corollary.

Corollary 3.9. The soft set (
∩

g)i∈I(αi)Ai ∈ NSP (P ) if it is non-null. Also, if
∩

i∈I Ai ̸= ∅, then
(
∩

R)i∈I(αi)Ai ∈ NSP (P ), whenever it is non-null.

Corollary 3.10. Let (αi)Ai i∈I ∈ NSP (P ) such that for any i, j ∈ I, Ai ∩ Aj = ∅. Then∪̃
i∈B

(αi)Ai ∈ NSP (P ). Also,
∧̃

i∈I
(αi)Ai ∈ NSP (P ).

Proof. The proof is clear by Theorem 3.8.

In what follows we show that A ∩B = ∅ is a vital condition in Theorem 3.8(iii).

Example 3.11. Let P and A be as Example 3.2, and B = {a}. Define two soft sets αA,
γB ∈ SP (P ) by α(e) = P, α(a) = α(b) = α(c) = {e, a} and γ(a) = {e, b}, respectively. Then
γB ∈ NSP (P ). But D(a) = α(a) ∪ γ(a) = {b, a, e} ⪯̸ P and so (D,C) /∈ NSP (P ).

Theorem 3.12. [8] Let f : P1 → P2 be a one to one and good homomorphism of polygroups P1

and P2. If A ⪯n P1, then α(a) ⪯n P2.

Theorem 3.13. Let f : P1 → P2 be a good homomorphism, αA ∈ SP (P1). Then the soft set
fαA ∈ SP (P2), where fαA(x) = f(α(x)) for any x ∈ A.

Proof. Let x ∈ A and y1, y2 ∈ fαA(x). Then there exist x1, x2 ∈ αA(x) such that y1 = f(x1), y2 =
f(x2). Since f is a good homomorphism we get that y1y2 ⊆ fαA(x) and y1

−1 ∈ fαA(x). This
complete the proof.

Theorem 3.14. Assume f : P1 → P2 is a one to one and good homomorphism. If αA ∈ NSP (P1),
then fαA ∈ NSP (P2).

Proof. By Theorem 3.13, fαA ∈ SP (P2) and

Supp(fαA) = {x ∈ A | (fαA)(x) ̸= ∅}
= {x | f(α(x)) ̸= ∅}
= {x | α(x) ̸= ∅} = Supp(αA).

Since αA ∈ NSP (P1) we conclude that for any x ∈ Supp(αA), α(x) ⪯n P1. It follows by Theorem
3.12 and (fαA)(x) = f(α(x)) that for any x ∈ Supp(fαA), (fαA)(x) ⪯n P2. Therefore, fαA ∈
NSP (P2).

Definition 3.15. Assume αA, γB ∈ SP (P ). Then γB is called a nilpotent soft subpolygroup of
αA, denote by γB ◀ns αA, if B ⊆ A and for any x ∈ Supp(γB), γ(x) ⪯n α(x) for some n ∈ N.
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Example 3.16. Assume A,P are as Example 3.2. Define αA ∈ SP (P ) by α(e) = α(b) = P and
α(c) = α(a) = {b, e}. Let B = {a, b, e} and define γB ∈ SP (P ) by γ(e) = {b, e} = γ(b) and
γ(a) = {e}. Since B ⊆ A and

γ(e) = γ(b) = {b, e} ⪯n P = α(e) = α(b), γ(a) = {e} ⪯n α(a) = {e, b},

we conclude that γB ◀ns αA.

Theorem 3.17. Assume αA, γB ∈ NSP (P ). If B ⊆ A and for any x ∈ Supp(γB), γ(x) ⊆ α(x),
then γB ◀ns αA.

Proof. It is straight forward.

Theorem 3.18. Assume αA ∈ NSP (P ) and (γi)Bi i∈I ◀ns αA. Then

(i)
∩

i∈I(γi)Bi ◀ns αA.

(ii) If
∩

i∈I Bi ̸= ∅, then (
∩

R)i∈I(γi)Bi ◀ns αA when it is non-null.

(iii) If for any i, j ∈ I, Bi ∩Bj = ∅, then
∪̃

i∈I(γi)Bi ◀ns αA.

(iv)
∧̃

i∈I(γi)Bi ◀ns
∧̃

i∈IαA.

Proof. By Theorems 3.8 and 3.17, we get (ii). Other parts are proved similarly.

Definition 3.19. The soft set αA is called a whole soft polygroup over P if for any x ∈ A,
α(x) = P .

Theorem 3.20. P is an NP if and only if every soft polygroup of P is nilpotent.

Proof. (⇒) By Theorem 2.5, we get the result.
(⇐) Consider every soft polygroup of P is nilpotent. Put αA be the whole soft polygroup. Then
for any x ∈ Supp(αA), P = α(x) and so P is an NP.

4 Soft homomorphism
In this section first we clarify the notion of soft homomorphism by an example. Also, we define
two new soft sets (Sα)A∪{c} and (Qα)A derived from a soft polygroup αA. Then, we investigate
some properties of them.

Definition 4.1. [24] Suppose αA ∈ SP (P1) and γB ∈ SP (P2). Then
(i) (f, g) is called a soft homomorphism between αA and γB if f : P1 → P2 is a good epimorphism,
g : A → B is a surjective map and for any x ∈ A, f(α(x)) = γ(g(x)).
(ii) we write αA ∼ γB if there is a soft homomorphism.
(iii) we write αA ≃ γB if αA ∼ γB such that f is a good isomorphism and g is a bijective map.

Theorem 4.2. [8] Let (G, .) be a group. Then (PG, ◦, e,−1 ) is a polygroup, where PG = G ∪ {a},
a ̸∈ G and ◦ is defined as follows:
(1) a ◦ a = e ,
(2) e ◦ x = x ◦ e = x, ∀x ∈ PG,
(3) a ◦ x = x ◦ a = x, ∀x ∈ PG − {e, a},
(4) x ◦ y = x.y, ∀(x, y) ∈ G2; y ̸= x−1,
(5) x ◦ x−1 = x−1 ◦ x = {e, a}, ∀x ∈ PG − {e, a}.
In addition, PG is an NP if and only if G is a nilpotent group.
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Example 4.3. Assume G is the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k}. Since G is
nilpotent by Theorem 4.2, we conclude that (PG, ◦, e,−1 ) is an NP.

Example 4.4. Consider P = Z ∪ {a}, P ′ = ({0} ⊗ Z) ∪ {(0, r)} be two polygroups as Definition
4.2. Take A = 2Z ∪ {a}, B = ({0} ⊗ 6Z) ∪ {(0, r)} and define δA ∈ SP (P ) and ηB ∈ SP (P ′) by

δ(x) =

{
x ∗ 18Z x ∈ 2Z
{0, a} x = a,

and η(0, y) =

{
{0} ⊗ 6yZ y ∈ 6Z
{(0, r), (0, 0)} y = r

Then the functions
f : P → P ′, g : A → B

f(x) =

{
(0, x) x ∈ Z
(0, r) x = a

, g(y) =

{
(0, 3y) y ∈ 2Z
(0, r) y = a

are isomorphism and bijective map, respectively. Also, for any x ∈ A, f(δ(x)) = η(g(x)). Conse-
quently, δA ≃ ηB.

Definition 4.5. Assume αA is a soft group over the group G with identity element e and a /∈ G.
We define the soft set (Sα)A∪{a} ∈ S(PG) by

Sα(x) =

{
α(x) x ∈ A

{e, a} x = a.

In what follows we extend a soft group to an NSP.

Theorem 4.6. Consider αA is a soft group over a nilpotent group G. Then (Sα)A∪{a} ∈ NSP (PG).

Proof. Since α(x), {e, a} ⪯ PG we conclude that (Sα)A∪{a} ∈ SP (PG). Also, by the nilpotency of
G and Theorems 4.2 and 2.5, we get α(x), {a, e} ⪯n PG. Consequently, (Sα)A∪{a} ∈ NSP (PG).

Theorem 4.7. Consider αA and γB are two soft polygroups over P1 and P2, respectively. If
αA ≃ γB and αA ∈ NSP (P1), then γB ∈ NSP (P2).

Proof. Since αA ∈ NSP (P1) we have for any x ∈ Supp(αA), α(x) ⪯n P1 and so by Theorem
3.12, f(α(x)) ⪯n P2. On the other hand, for any y ∈ Supp(γB), there exists x ∈ Supp(αA)
with γ(x) = y. Thus, αA ≃ γB implies that γ(y) = γ(g(x)) = f(α(x)) ⪯n P2. Therefore,
γB ∈ NSP (P2).

Definition 4.8. Let αA ∈ SP (P ) and N ⊴ P such that for any x ∈ A, N ⊆ α(x). Then the soft
set Qα : A → P (

P

N
) defined by Qα(x) =

α(x)

N
is called the quotient soft polygroup of αA.

Example 4.9. Assume P and A are an Example 3.2, N = {e, a} and αA is the whole soft polygroup
of P . Then Qα(x) =

P

N
is the whole soft polygroup of αA.

Theorem 4.10. Assume αA ∈ NSP (P ). Then (Qα)A ∈ NSP (
P

N
).

Proof. By αA ∈ NSP (P ), for any x ∈ Supp(αA), we have α(x) ⪯n P of class say n. Since

∅ ̸= supp(Qα) = {x ∈ A | Qα(x) ̸= ∅} = {x ∈ A | α(x)
N

̸= ∅},

we conclude that F (x) ̸= ∅, i.e x ∈ Supp(αA). Then by Definition 4.8 and Theorem 3.4, for any
x ∈ Supp(Qα), Qα(x) =

α(x)

N
⪯n P

N
and so (Qα)A ∈ NSP (

P

N
).
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Theorem 4.11. [8] Consider αA ∈ SP (P1), γB ∈ SP (P2) and αA ∼ γB with a soft homomorphism
(f, g). If N ⊴ P1, N ⊆ α(x) for any x ∈ Supp(αA) and g is a bijective map, then (Qα)A ≃ γB,
where Qα(x) =

α(x)

N
.

Corollary 4.12. Assume αA and γB, N and (Qα)A are as Theorem 4.11. If γB ∈ NSP (P2), then
(Qα)A ∈ NSP (

P1

N
).

Proof. By Theorem 4.11, (Qα)A ≃ γB. Since γB ∈ NSP (P2) by Theorems 4.7 and 4.10, we
conclude that (Qα)A ∈ NSP (

P1

N
).

By the following theorem we extend a soft homomorphism of groups to polygroups.

Theorem 4.13. If αA1, γA2 are two soft groups of G1, G2, ci /∈ Gi (i=1,2) and αA1 ∼ γA2, then

(Sα)A1∪{c1} ∼ (Sγ)A2∪{c2}.

Proof. The proof of Theorem 4.6, implies that (Sα)A1∪{c1} ∈ SP (PG1), (Sγ)A2∪{c2} ∈ SP (PG2).
Since αA1 ∼ γA2 by Definition 4.1, f : G1 → G2 is a homomorphism of groups, g : A1 → A2

is a surjective map and for any x ∈ A1, f(αA1)(x) = (γA2)(g(x)). Define g1 : A1 ∪ {c1} →
A2 ∪ {c2} and f1 : PG1 → PG2 , by

g1(x) =

{
γ(x) x ∈ A1,

c2 x = c1,
and f1(x) =

{
α(x) x ∈ G1,

c2 x = c1.

Now, it is easy to see that f1 is a good epimorphism of polygroups and g1 is a surjective map. In
addition, (f1(Sα)A1∪{c1})(c1) = (Sγ)A2∪{c2}(g1(c1)) and so for any x ∈ B1,

(f1(Sα)A1∪{c1})(x) = (Sγ)A2∪{c2}(g1(x)).

Therefore, (f1, g1) is a soft homomorphism between (Sα)A1∪{c1} and (Sγ)A2∪{c2}. Consequently,
(Sα)A1∪{c1} ∼ (Sγ)A2∪{c2}.

Corollary 4.14. Consider αA1 and γA2 are as Theorem 4.13. If G1 is a nilpotent group and
(Sα)A1 ≃ (Sγ)A2, then (Sγ)A2∪{c2} ∈ NSP (PG2).

Proof. By the same manipulation of Theorem 4.13, we have if (αA1) ≃ (γ)A2 , then (Sα)A1∪{c1} ≃
(Sγ)A2∪{c2}. Also, by Theorem 4.2, PG1 is an NP and so Theorem 3.20, implies that (Sα)A1∪{c1} ∈
NSP (PG1). Therefore, by Theorem 4.7, we have (Sγ)A2∪{c2} ∈ NSP (PG2).

5 Conclusion
In this paper, for a polygroup P and a soft set αA the notion of nilpotent soft (sub)polygroups
were defined. Some examples have been used to clarify the concept of nilpotent soft polygroup.
In addition, a connection between nilpotentcy of soft polygroup and polygroup was obtained.
Espesially, the quotient of a soft polygroup was defined and a relation between nilpotency of a soft
polygroup and its quotient was obtained. Also, by the notion of soft homomorphism we extend
a soft homorphic of groups to get a soft homomorphic of polygroups. Then, some new nilpotent
soft polygroups were atained. This work can be used on Engel and solvabel soft polygroups, too.
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