Volume 3, Number 2, (2022), pp. 87-97

Nilpotent soft polygroups

F. Mohammadzadeh ${ }^{1}$ and E. Mohammadzadeh ${ }^{2}$
1,2 Department of Mathematics, Faculty of Science, Payame Noor University P.O. Box 19395-3697, Tehran, Iran
mohamadzadef464@gmail.com, mohamadzadeh36@gmail.com.

Abstract

In this paper, we introduce nilpotent soft (sub)polygroups. In addition, nilpotency of intersection, extended intersection, restricted union of two nilpotent soft polygroups are studied. Espesialy, a necessary and suficient condition between nilpotency of a polygroup and soft polygroups is obtained. Finally, we define two new soft polygroups $\left(S_{\alpha}\right)_{A \cup\{c\}}$ and $\left(Q_{\alpha}\right)_{A}$ derived from a soft polygroup α_{A} and study on nilpotency of these structures. Also, we extend a soft homomorphism of groups to polygroups. This helps us to extend some properties of groups to polygroups.

Article Information

Corresponding Author: F. Mohammadzadeh;

Received: May 2022;
Revised: May 2022;
Accepted: May 2022;
Paper type: Original.

Keywords:

Polygroups, nilpotent polygroups, soft polygroups.

1 Introduction

Some problems in engineering, medical science and social science are uncertain. One way for dealing with them is soft set theory. It was proposed by Molodtsov [20]. In addition, it has applications in Rieman integration, probability theory, game theory and etc (see [20, 21]). After that time it became an interesting topic for many authors and so they work on soft set theory. Maji et al [17], introduced several operations on soft sets. Ali et al. [15], redefined compliment of a soft set. Soft sets were used in lattice theory by Qin et al. [23]. Also, soft set theory was applied on research in BCI/BCK-algebras [10]. The studying of soft sets in groups began with the work of Aktas and Cagman in [2], where the notion of soft groups were investigated and then Acar et al. in [1], extended the notion to rings. Recently, Wang et al. in [24], introduced soft polygroups.

In group theory, nilpotent group is an interesting subject and has been studied by many scholars. Abelian groups are an example of nilpotent groups. Hassanzadeh [13] introduced the
concept of nilpotency for pair of groups. Also, Ozkan and et al. in [22], investigated some applications of Fibonancci sequences in a finite nilpotent group.
An important branch in algebra is hyperstructures. It has applications in geometry, automata, probabilities, and so on. In 1934, Marty [19] introduced the concept of polygroups as a special hypergroup. In addition, polygroups have been discussed by Corsini [6], Borzooei [5], Davvaz [8] and so on. Some results of group theory are translated on polygroups such as nilpotent polygroup that has been studied in [5, 8]).

Now, in this paper we study on nilpotent soft polygroup and investigate some properties of it. Espesially, we obtain a neccessary and sufficient condition between soft nilpotent polygroups and nilpotent polygroups. Finally, we define two new soft sets ($S_{F}, A \cup\{c\}$) and (Q_{F}, A) derived from a soft polygroup (F, A). Then, we investigate some properties of them.

2 Preliminary

We begin our discusion with some fundamental definitions and results.
A hyperoperation \circ is a mapping from $H \times H$ into the family of non-empty subsets of H. A hypergroupoid (H, \circ) is a non-empty set H with a hyperoperation o. If A and B are non-empty subsets of H, then $A \circ B=\bigcup_{a \in A, b \in B} a \circ b$. Also, we use $x \circ A$ instead of $\{x\} \circ A$ and $A \circ x$ for $A \circ\{x\}$.
The structure (H, \circ) is called a hypergroup if $a \circ(b \circ c)=(a \circ b) \circ c$ and $a \circ H=H \circ a=H$ for any $a, b, c \in H$.

Definition 2.1. [8] Let • be a hyperoperation, $e \in P$ and ${ }^{-1}$ be an unitary operation on P. Then $\left(P, \cdot, e,^{-1}\right)$, is called a polygroup if for any $x, y, z \in P$ the following conditions hold:
(i) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(ii) $e \cdot x=x \cdot e=x$,
(iii) $x \in y \cdot z \Leftrightarrow y \in x \cdot z^{-1} \Leftrightarrow z \in y^{-1} \cdot x$.

Let $\left(P_{1}, \cdot, e_{1},{ }^{-1}\right)$ and $\left(P_{2},,_{,}, e_{2},{ }^{-1}\right)$ be two polygroups. Then $\left(P_{1} \times P_{2}, \circ\right)$, where \circ is defined as follows, is a polygroup (see [8]).

$$
\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)=\left\{(x, y) \mid x \in x_{1} \cdot x_{2}, \text { and } y \in y_{1} * y_{2}\right\} .
$$

Note. From now on, let (H, \cdot) be a hypergroup and $\left(P, \cdot, e,^{-1}\right)$ be a polygroup. For $x, y \in P$ we use $x y$ instead of $x \cdot y$.

Definition 2.2. [8] Let K be a non-empty subset of P. Then for any $a, b \in K, K$ is called a subpolygroup of P and we denote by $K \preceq P$ if $a b \subseteq K$ and $a^{-1} \in K$. Also, a subpolygroup N of P is called normal and we denote by $N \unlhd P$ if for any $a \in P, a^{-1} N a \subseteq N$.

For $K \preceq P$ and $x \in P$, let $x K(K x)$ be the left (right) coset of K and P / K be the set of all left (right) cosets of K in P. We recall that for $N \unlhd P, x, y \in P$ and every $z \in x y$ we have $N x=x N$ and $N x y=N z$. Also, $\left(P / N, \odot, N,{ }^{-1}\right)$ is a polygroup, where

$$
(N x) \odot(N y)=\{N z \mid z \in x y\} \text { and }(N x)^{-1}=N x^{-1}
$$

A polygroup is called commutative if for any $x, y \in P, x y=y x$. For two polygroups (P, \bullet) and $(P, *)$, a map $f:(P, \bullet) \rightarrow(P, *)$ is called a homomorphism if for any $a, b \in P, f(a \bullet b) \subseteq f(a) * f(b)$.

Also, f is a good homomorphism if the equality holds. For an equvalence relation $\rho \subseteq P \times P$ and two non-empty subsets X, Y of P we have

$$
X \overline{\bar{\rho}} Y \Leftrightarrow x \rho y, \quad \forall x \in X, \forall y \in Y
$$

The relation ρ is called strongly regular if for any $x, y, a \in P$ we have

$$
x \overline{\bar{\rho}} y \Leftrightarrow a \cdot x \overline{\bar{\rho}} a \cdot y \text { and } x \cdot a \overline{\bar{\rho}} y \cdot a .
$$

We use $\mathrm{SR}(\mathrm{H})$ for the set of all strongly regular relations on H.
In [16], Koskas defined the relation $\beta=\bigcup_{n \geq 1} \beta_{n}$, where β_{1} is the diagonal relation and

$$
a \beta_{n} b \Leftrightarrow \exists\left(x_{1}, \ldots, x_{n}\right) \in H^{n},\{a, b\} \subseteq \prod_{i=1}^{n} x_{i} .
$$

In addition $\beta^{*} \in S R(H)$, where β^{*} is the transitive closure of β. In 11], Freni showed that if H is a hypergroup, then $\beta=\beta^{*}$. The kernel of the canonical map $\pi: H \longrightarrow \frac{H}{\beta^{*}}$, denote by ω_{P} or ω, is called the core of P.

Theorem 2.3. [8] Let A be a non-empty subset of P. The intersection of any subpolygroups of P containing A, denoted by $\langle A\rangle$ is equall to $\cup\left\{x_{1}^{\epsilon_{1}} \ldots x_{k}^{\epsilon_{k}} \mid x_{i} \in A, k \in \mathbb{N}, \epsilon_{i} \in\{1,-1\}\right\}$.
Definition 2.4. 8] The lower central series of P is the sequence $\cdots \subseteq \gamma_{1}(P) \subseteq \gamma_{0}(P)$, where $\gamma_{0}(P)=P$ and for $k>0$,

$$
\gamma_{k+1}(P)=<\left\{h \in P \mid x y \cap h y x \neq \emptyset \text { such that } x \in \gamma_{k}(P), y \in P\right\}>
$$

Also, P is called a nilpotent polygroup(we write NP) if for some $n \in \mathbb{N}, \gamma_{n}(P) \subseteq \omega$. The smallest such n is called class of P.

In [4] it is proved that for any $x, y \in P$ we have

$$
\{h \in P \mid x y \cap h y x \neq \emptyset\}=\{h \in P \mid h \in[x, y]\},
$$

where $[x, y]=\left\{t \mid t \in x y x^{-1} y^{-1}\right\}$ is the commutator of x, y.
Theorem 2.5. [8] Let P be an $N P, N \unlhd P$ and $K \preceq P$. Then K and P / N are $N P$.
Definition 2.6. 17] A pair $(\alpha, A)=\alpha_{A}$ is called a soft set over U, where U refers to an initial universe set, E is a set of parameters, $A \subseteq E$ and α is a map from A to the power set $P(U)$.

We use $S(U)$ to show the set of all soft sets over U.
Definition 2.7. 10] For $\alpha_{A}, \gamma_{B} \in S(U)$ we have the following statments:
(i) $\alpha_{A} \subseteq \gamma_{B}$, if $A \subseteq B$ and for any $a \in A, \alpha(a) \subseteq \gamma(a)$.
(ii) $\alpha_{A}=\gamma_{B}$, if $\alpha_{A} \subseteq \gamma_{B}$ and $\gamma_{B} \subseteq \alpha_{A}$.
(iii) If for any $a \in A, \alpha(a)=\emptyset$, then α_{A} is said a null soft set.

Theorem 2.8. 17 Let $\alpha_{A} \in S(U)$ and $\operatorname{Supp}\left(\alpha_{A}\right)=\{x \in A \mid \alpha(x) \neq \emptyset\}$. Then α_{A} is non-null if $\operatorname{Supp}\left(\alpha_{A}\right) \neq \emptyset$.

Definition 2.9. 17 Let $\alpha_{A}, \gamma_{B} \in S(U)$. Then for any $x \in A \cap B$ and $(x, y) \in A \times B$ we have
(i) the soft intersection $\left(\alpha_{A} \tilde{\cap} \gamma_{B},(A \cap B)\right)$ is defined by $\left(\alpha_{A} \tilde{\cap} \gamma_{B}\right)(x)=\alpha(x) \cap \gamma(x)$.
(ii) the soft $\tilde{\wedge}$-product $\left(\alpha_{A} \tilde{\wedge} \gamma_{B},(A \times B)\right)$ is defined by $\left(\alpha_{A} \tilde{\wedge} \gamma_{B}\right)(x, y)=\alpha(x) \cap \gamma(y)$.
(iii) the soft $\tilde{\times}$-product $\left(\alpha_{A} \tilde{\times} \gamma_{B}, A \times B\right)$ is defined by $\left(\alpha_{A} \tilde{\times} \gamma_{B}\right)(x, y)=\alpha(x) \times \gamma(y)$.

Definition 2.10. [24] Let α_{A} be a non-null soft set over P. Then α_{A} is called a soft polygroup over P if $\alpha(x) \preceq P$ for any $x \in \operatorname{Supp}\left(\alpha_{A}\right)$

Note. From now on, assume A is a non-empty subset of P and $\alpha_{A} \in S P(P)$, where $\operatorname{SP}(\mathrm{P})$ is the set of all soft polygroups over P. In addition, we use $K \preceq^{n} P$ when K is a nilpotent subpolygroup of P.

3 Nilpotent soft polygroups

In this section first we define a nilpotent soft polyroup (we write NSP). Then, some examples are added to clarify the notion. Basically, for two soft polygroups α_{A} and γ_{B} we study the nilpotency of derived soft sets such as $\alpha_{A} \cap_{g} \gamma_{B}$ and $\alpha_{A} \cap_{R} \gamma_{B}$ and so on. Finally, a relation between a nilpotent polygroup and its soft polygroups is obtained.

Definition 3.1. The soft polygroup α_{A} is called a nilpotent soft polygroup over P, we write NSP, if there is $n \in \mathbb{N}$ such that for any $a \in \operatorname{Supp}\left(\alpha_{A}\right), \alpha(a) \preceq^{n} P$.

We use $\operatorname{NSP}(\mathrm{P})$ for the set of all nilpotent soft polygroups over P.
Example 3.2. Let $P=\{a, b, c, e\}$. Then (P, \diamond) is an $N P$ (see [$[8]$).

\diamond	a	b	c	e
a	$\{e, a\}$	c	$\{b, c\}$	a
b	c	e	a	b
c	$\{b, c\}$	a	$\{e, a\}$	c
e	a	b	c	e

Assume $A=P$ and define the soft set $\alpha_{A} \in S(P)$ by $\alpha(a)=\alpha(e)=P$ and $\alpha(b)=\alpha(e)=\{a, e\}$. Since $\alpha(a), \alpha(e), \alpha(b), \alpha(c) \preceq^{n} P$ we conclude that $\alpha \in \operatorname{NSP}(P)$.

In what follows we have a soft polygroup that is not an NSP.
Example 3.3. Assume $P=\{a, b, c, d, f, g, e\}$ is a polygroup with the hyperoperation \bullet such that

\bullet	e	a	b	c	d	f	g
a	a	e	b	c	d	f	g
b	b	b	$\{e, a\}$	g	f	d	c
c	c	c	f	$\{e, a\}$	g	b	d
d	d	d	g	f	$\{e, a\}$	c	b
f	f	f	c	d	b	g	$\{e, a\}$
g	g	g	d	b	c	$\{e, a\}$	f
e	e	a	b	c	d	f	g

Assume $A=P$ and define the soft set $\alpha_{A} \in S(P)$ by $\alpha(e)=\alpha(a)=\alpha(b)=\{e, a, b\}$ and $\alpha(c)=$ $\alpha(d)=\alpha(f)=\alpha(g)=P$. Then P is not an NP. Because $\omega_{P}=\{e, a\}$ and $\gamma_{n}(P)=\{e, a, f, g\}$ and so $\gamma_{n}(P) \nsubseteq \omega_{P}$. Therefore, $\alpha_{A} \notin N S P(P)$.

Theorem 3.4. Assume $\alpha_{A} \in N S P(P)$ and $B \subseteq A$. If $\left(\left.\alpha\right|_{B}\right)_{B}$ is non-null, then it is an NSP.
Proof. For $b \in B$ since $B \subseteq A$, we have $\left.\alpha\right|_{B}(b)=\alpha(b)$ and so by hypotheses $\left(\left.\alpha\right|_{B}\right)_{B} \in$ $N S P(P)$.

By the following example, we define a subset $B \subseteq A$ such that α_{A} is not an NSP but $\left.\alpha\right|_{B}$ is an NSP.

Example 3.5. Assume A and P are as Example 3.2, and $B=\{e, a\}$. Define the soft set $\alpha_{A} \in S(P)$ by

$$
\alpha(e)=\alpha(a)=\{e, a\}, \alpha(b)=\alpha(c)=\{b, c\} .
$$

$\{b, c\} \npreceq P$ implies that $\alpha_{A} \notin S P(P)$. But $\{e, a\} \preceq^{n} P$. It implies that $\left.\alpha\right|_{B} \in N S P(P)$.
Example 3.6. Consider P, A and α_{A} are as Example 3.3 and $B=\{e, a, b\}$. Since $\alpha(c)=P$ and P is not nilpotent we have $\alpha_{A} \notin N S P(P)$ but every proper polygroup of order less than 7 is an $N P\left(\right.$ see [8]), thus $\left(\left.\alpha\right|_{B}\right)_{B} \in \operatorname{NSP}(P)$.
Definition 3.7. 24] For $\alpha_{A}, \gamma_{B} \in S P(U)$ and $x \in A \cup B$,
(i) the soft extended intersection $\alpha_{A} \cap_{g} \gamma_{B}$ is defined to be the soft set ($D, A \cup B$), where

$$
D(x)= \begin{cases}\alpha(x) & \text { if } x \in A-B \\ \gamma(x) & \text { if } x \in B-A \\ \alpha(x) \cap \gamma(x) & \text { if } x \in A \cap B\end{cases}
$$

Replacing $\alpha(x) \cap \gamma(x)$ with $\alpha(x) \cup \gamma(x)$ in $D(x)$ we have the soft set $\alpha_{A} \cup^{\sim} \gamma_{B}=(D, A \cup B)$.
(ii) the restricted intersection $\alpha_{A} \cap_{R} \gamma_{B}$ is the soft set (E, C) where $A \cap B \neq \phi$ and $C=A \cap B$ and for any $x \in C, E(x)=\alpha(x) \cap \gamma(x)$.
Theorem 3.8. Let $\alpha_{A}, \gamma_{B} \in N S P(P)$. Then
(i) $\alpha_{A} \bigcap_{g} \gamma_{B} \in \operatorname{NSP}(P)$ if it is non-null.
(ii) $\alpha_{A} \bigcap_{R} \gamma_{B} \in N S P(P)$ if it is non-null and $A \cap B \neq \emptyset$.
(iii) $\alpha_{A} \tilde{\cup} \gamma_{B} \in \operatorname{NSP}(P)$ if $A \cap B=\emptyset$.
(iv) $\alpha_{A} \tilde{\wedge} \gamma_{B} \in \operatorname{NSP}(P)$.

Proof.
(i) Consider $\alpha_{A} \bigcap_{g} \gamma_{B}=(D, C)$ and $x \in \operatorname{Supp}(D, C)$ and $x \in A-B$. By Definition 3.7, since $\alpha_{A} \in N S P(P)$ we obtain $D(x)=\alpha(x) \prec^{n} P$. For the case $x \in B-A$ by $\gamma_{B} \in N S P(P)$ we have $D(x)=\gamma(x) \prec^{n} P$. Finally, for $x \in A \cap B$ by Theorem 2.5, we have $D(x)=$ $\alpha(x) \cap \gamma(x) \prec^{n} P$. Hence $(D, C) \in N S P(P)$.
(ii) By Definition 3.7, and the same manipulation of part (i), we have $\alpha_{A} \cap_{R} \gamma_{B} \in N S P(P)$.
(iii) By Definition 3.7 and $A \cap B=\emptyset$, we have

$$
\operatorname{Supp}(D, C)=\operatorname{Supp}\left(\alpha_{A}\right) \cup \operatorname{Supp}\left(\gamma_{B}\right) \neq \emptyset
$$

Then (D, C) is non-null. For $x \in A-B$ we have $D(x)=\alpha(x)$ and $\alpha_{A} \in N S P(P)$ implies that $D(x) \prec^{n} P$. Also, for the case $x \in B-A$ we have $D(x)=\gamma(x) \prec^{n} P$. Therefore, $(D, C) \in \operatorname{NSP}(P)$.
(iv) Put $(H, A \times B)$ be the soft set $\alpha_{A} \tilde{\wedge} \gamma_{B}$. By Definition 2.9 and Theorem 2.8, since α_{A} and γ_{B} are non-null we have

$$
\operatorname{Supp}(H, A \times B)=\operatorname{Supp}\left(\alpha_{A}\right) \times \operatorname{Supp}\left(\gamma_{B}\right) \neq \emptyset
$$

Also, since $\alpha_{A}, \gamma_{B} \in N S P(P)$ we conclude that for any $(x, y) \in A \times B, \alpha(x) \cap \gamma(y) \preceq^{n} P$. Therefore, $(H, A \times B) \in N S P(P)$.

Assume I is an index set and $\left(\alpha_{i}\right)_{A_{i i \in I}} \in N S P(P)$. Then by extending Theorem 3.8, we have the following corollary.

Corollary 3.9. The soft set $\left(\bigcap_{g}\right)_{i \in I}\left(\alpha_{i}\right)_{A_{i}} \in \operatorname{NSP}(P)$ if it is non-null. Also, if $\bigcap_{i \in I} A_{i} \neq \emptyset$, then $\left(\bigcap_{R}\right)_{i \in I}\left(\alpha_{i}\right)_{A_{i}} \in \operatorname{NSP}(P)$, whenever it is non-null.

Corollary 3.10. Let $\left(\alpha_{i}\right)_{A_{i i \in I}} \in \operatorname{NSP}(P)$ such that for any $i, j \in I, A_{i} \cap A_{j}=\emptyset$. Then $\tilde{\bigcup}_{i \in B}\left(\alpha_{i}\right)_{A_{i}} \in N S P(P)$. Also, $\tilde{\bigwedge}_{i \in I}\left(\alpha_{i}\right)_{A_{i}} \in N S P(P)$.
Proof. The proof is clear by Theorem 3.8.
In what follows we show that $A \cap B=\emptyset$ is a vital condition in Theorem 3.8(iii).
Example 3.11. Let P and A be as Example 3.2, and $B=\{a\}$. Define two soft sets α_{A}, $\gamma_{B} \in S P(P)$ by $\alpha(e)=P, \alpha(a)=\alpha(b)=\alpha(c)=\{e, a\}$ and $\gamma(a)=\{e, b\}$, respectively. Then $\gamma_{B} \in \operatorname{NSP}(P)$. But $D(a)=\alpha(a) \cup \gamma(a)=\{b, a, e\} \npreceq P$ and so $(D, C) \notin N S P(P)$.

Theorem 3.12. 8] Let $f: P_{1} \rightarrow P_{2}$ be a one to one and good homomorphism of polygroups P_{1} and P_{2}. If $A \preceq^{n} P_{1}$, then $\alpha(a) \preceq^{n} P_{2}$.

Theorem 3.13. Let $f: P_{1} \rightarrow P_{2}$ be a good homomorphism, $\alpha_{A} \in S P\left(P_{1}\right)$. Then the soft set $f \alpha_{A} \in S P\left(P_{2}\right)$, where $f \alpha_{A}(x)=f(\alpha(x))$ for any $x \in A$.

Proof. Let $x \in A$ and $y_{1}, y_{2} \in f \alpha_{A}(x)$. Then there exist $x_{1}, x_{2} \in \alpha_{A}(x)$ such that $y_{1}=f\left(x_{1}\right), y_{2}=$ $f\left(x_{2}\right)$. Since f is a good homomorphism we get that $y_{1} y_{2} \subseteq f \alpha_{A}(x)$ and $y_{1}{ }^{-1} \in f \alpha_{A}(x)$. This complete the proof.

Theorem 3.14. Assume $f: P_{1} \rightarrow P_{2}$ is a one to one and good homomorphism. If $\alpha_{A} \in \operatorname{NSP}\left(P_{1}\right)$, then $f \alpha_{A} \in \operatorname{NSP}\left(P_{2}\right)$.

Proof. By Theorem 3.13, $f \alpha_{A} \in S P\left(P_{2}\right)$ and

$$
\begin{aligned}
\operatorname{Supp}\left(f \alpha_{A}\right) & =\left\{x \in A \mid\left(f \alpha_{A}\right)(x) \neq \emptyset\right\} \\
& =\{x \mid f(\alpha(x)) \neq \emptyset\} \\
& =\{x \mid \alpha(x) \neq \emptyset\}=\operatorname{Supp}\left(\alpha_{A}\right)
\end{aligned}
$$

Since $\alpha_{A} \in \operatorname{NSP}\left(P_{1}\right)$ we conclude that for any $x \in \operatorname{Supp}\left(\alpha_{A}\right), \alpha(x) \preceq^{n} P_{1}$. It follows by Theorem 3.12 and $\left(f \alpha_{A}\right)(x)=f(\alpha(x))$ that for any $x \in \operatorname{Supp}\left(f \alpha_{A}\right),\left(f \alpha_{A}\right)(x) \preceq^{n} P_{2}$. Therefore, $f \alpha_{A} \in$ $N S P\left(P_{2}\right)$.

Definition 3.15. Assume $\alpha_{A}, \gamma_{B} \in S P(P)$. Then γ_{B} is called a nilpotent soft subpolygroup of α_{A}, denote by $\gamma_{B} \boldsymbol{⿶}^{n s} \alpha_{A}$, if $B \subseteq A$ and for any $x \in \operatorname{Supp}\left(\gamma_{B}\right), \gamma(x) \preceq^{n} \alpha(x)$ for some $n \in \mathbb{N}$.

Example 3．16．Assume A, P are as Example 3．2．Define $\alpha_{A} \in S P(P)$ by $\alpha(e)=\alpha(b)=P$ and $\alpha(c)=\alpha(a)=\{b, e\}$ ．Let $B=\{a, b, e\}$ and define $\gamma_{B} \in S P(P)$ by $\gamma(e)=\{b, e\}=\gamma(b)$ and $\gamma(a)=\{e\}$ ．Since $B \subseteq A$ and

$$
\gamma(e)=\gamma(b)=\{b, e\} \preceq^{n} P=\alpha(e)=\alpha(b), \quad \gamma(a)=\{e\} \preceq^{n} \alpha(a)=\{e, b\},
$$

we conclude that $\gamma_{B} \boldsymbol{⿶}^{n s} \alpha_{A}$ ．
Theorem 3．17．Assume $\alpha_{A}, \gamma_{B} \in \operatorname{NSP}(P)$ ．If $B \subseteq A$ and for any $x \in \operatorname{Supp}\left(\gamma_{B}\right), \gamma(x) \subseteq \alpha(x)$ ， then $\gamma_{B} \boldsymbol{⿶}^{n s} \alpha_{A}$ ．
Proof．It is straight forward．
Theorem 3．18．Assume $\alpha_{A} \in \operatorname{NSP}(P)$ and $\left(\gamma_{i}\right)_{B_{i} \in I} \mathbb{4}^{n s} \alpha_{A}$ ．Then
（i）$\bigcap_{i \in I}\left(\gamma_{i}\right)_{B_{i}} \boldsymbol{\iota}^{n s} \alpha_{A}$ ．
（ii）If $\bigcap_{i \in I} B_{i} \neq \emptyset$ ，then $\left(\bigcap_{R}\right)_{i \in I}\left(\gamma_{i}\right)_{B_{i}} \boldsymbol{4}^{n s} \alpha_{A}$ when it is non－null．
（iii）If for any $i, j \in I, B_{i} \cap B_{j}=\emptyset$ ，then $\tilde{U}_{i \in I}\left(\gamma_{i}\right)_{B_{i}} \boldsymbol{u}^{n s} \alpha_{A}$ ．
（iv）$\tilde{\Lambda}_{i \in I}\left(\gamma_{i}\right)_{B_{i}} ⿶^{n s} \tilde{\Lambda}_{i \in I} \alpha_{A}$.
Proof．By Theorems 3.8 and 3．17，we get（ii）．Other parts are proved similarly．
Definition 3．19．The soft set α_{A} is called a whole soft polygroup over P if for any $x \in A$ ， $\alpha(x)=P$ ．
Theorem 3．20．P is an NP if and only if every soft polygroup of P is nilpotent．
Proof．(\Rightarrow) By Theorem 2．5，we get the result．
(\Leftarrow) Consider every soft polygroup of P is nilpotent．Put α_{A} be the whole soft polygroup．Then for any $x \in \operatorname{Supp}\left(\alpha_{A}\right), P=\alpha(x)$ and so P is an NP．

4 Soft homomorphism

In this section first we clarify the notion of soft homomorphism by an example．Also，we define two new soft sets $\left(S_{\alpha}\right)_{A \cup\{c\}}$ and $\left(Q_{\alpha}\right)_{A}$ derived from a soft polygroup α_{A} ．Then，we investigate some properties of them．
Definition 4．1．24 Suppose $\alpha_{A} \in S P\left(P_{1}\right)$ and $\gamma_{B} \in S P\left(P_{2}\right)$ ．Then
（i）(f, g) is called a soft homomorphism between α_{A} and γ_{B} if $f: P_{1} \rightarrow P_{2}$ is a good epimorphism， $g: A \rightarrow B$ is a surjective map and for any $x \in A, f(\alpha(x))=\gamma(g(x))$ ．
（ii）we write $\alpha_{A} \sim \gamma_{B}$ if there is a soft homomorphism．
（iii）we write $\alpha_{A} \simeq \gamma_{B}$ if $\alpha_{A} \sim \gamma_{B}$ such that f is a good isomorphism and g is a bijective map．
Theorem 4．2．［8］Let $(G,$.$) be a group．Then \left(P_{G}, \circ, e,^{-1}\right)$ is a polygroup，where $P_{G}=G \cup\{a\}$ ， $a \notin G$ and \circ is defined as follows：
（1）$a \circ a=e$ ，
（2）$e \circ x=x \circ e=x, \forall x \in P_{G}$ ，
（3）$a \circ x=x \circ a=x, \forall x \in P_{G}-\{e, a\}$ ，
（4）$x \circ y=x . y, \forall(x, y) \in G^{2} ; y \neq x^{-1}$ ，
（5）$x \circ x^{-1}=x^{-1} \circ x=\{e, a\}, \forall x \in P_{G}-\{e, a\}$ ．
In addition，P_{G} is an NP if and only if G is a nilpotent group．

Example 4.3. Assume G is the quaternion group $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$. Since G is nilpotent by Theorem 4.2, we conclude that $\left(P_{G}, 0, e,^{-1}\right)$ is an NP.

Example 4.4. Consider $P=\mathbb{Z} \cup\{a\}, P^{\prime}=(\{0\} \otimes \mathbb{Z}) \cup\{(0, r)\}$ be two polygroups as Definition 4.2. Take $A=2 \mathbb{Z} \cup\{a\}, B=(\{0\} \otimes 6 \mathbb{Z}) \cup\{(0, r)\}$ and define $\delta_{A} \in S P(P)$ and $\eta_{B} \in S P\left(P^{\prime}\right)$ by

$$
\delta(x)=\left\{\begin{array}{ll}
x * 18 \mathbb{Z} & x \in 2 \mathbb{Z} \\
\{0, a\} & x=a,
\end{array} \text { and } \eta(0, y)= \begin{cases}\{0\} \otimes 6 y \mathbb{Z} & y \in 6 \mathbb{Z} \\
\{(0, r),(0,0)\} & y=r\end{cases}\right.
$$

Then the functions

$$
\begin{gathered}
f: P \rightarrow P^{\prime}, \\
f(x)=\left\{\begin{array}{ll}
(0, x) & x \in \mathbb{Z} \\
(0, r) & x=a
\end{array}, \quad g(y)= \begin{cases}(0,3 y) & y \in 2 \mathbb{Z} \\
(0, r) & y=a\end{cases} \right.
\end{gathered}
$$

are isomorphism and bijective map, respectively. Also, for any $x \in A, f(\delta(x))=\eta(g(x))$. Consequently, $\delta_{A} \simeq \eta_{B}$.
Definition 4.5. Assume α_{A} is a soft group over the group G with identity element e and $a \notin G$. We define the soft set $\left(S_{\alpha}\right)_{A \cup\{a\}} \in S\left(P_{G}\right)$ by

$$
S_{\alpha}(x)= \begin{cases}\alpha(x) & x \in A \\ \{e, a\} & x=a\end{cases}
$$

In what follows we extend a soft group to an NSP.
Theorem 4.6. Consider α_{A} is a soft group over a nilpotent group G. Then $\left(S_{\alpha}\right)_{A \cup\{a\}} \in \operatorname{NSP}\left(P_{G}\right)$. Proof. Since $\alpha(x) .\{e, a\} \prec P_{G}$ we conclude that $\left(S_{\alpha}\right)_{A \cup\{a\}} \in S P\left(P_{G}\right)$. Also, by the nilpotency of G and Theorems 4.2 and 2.5, we get $\alpha(x),\{a, e\} \preceq^{n} P_{G}$. Consequently, $\left(S_{\alpha}\right)_{A \cup\{a\}} \in \operatorname{NSP}\left(P_{G}\right)$.
Theorem 4.7. Consider α_{A} and γ_{B} are two soft polygroups over P_{1} and P_{2}, respectively. If $\alpha_{A} \simeq \gamma_{B}$ and $\alpha_{A} \in \operatorname{NSP}\left(P_{1}\right)$, then $\gamma_{B} \in \operatorname{NSP}\left(P_{2}\right)$.
Proof. Since $\alpha_{A} \in \operatorname{NSP}\left(P_{1}\right)$ we have for any $x \in \operatorname{Supp}\left(\alpha_{A}\right), \alpha(x) \preceq^{n} P_{1}$ and so by Theorem 3.12, $f(\alpha(x)) \preceq^{n} P_{2}$. On the other hand, for any $y \in \operatorname{Supp}\left(\gamma_{B}\right)$, there exists $x \in \operatorname{Supp}\left(\alpha_{A}\right)$ with $\gamma(x)=y$. Thus, $\alpha_{A} \simeq \gamma_{B}$ implies that $\gamma(y)=\gamma(g(x))=f(\alpha(x)) \preceq^{n} P_{2}$. Therefore, $\gamma_{B} \in \operatorname{NSP}\left(P_{2}\right)$.
Definition 4.8. Let $\alpha_{A} \in S P(P)$ and $N \unlhd P$ such that for any $x \in A, N \subseteq \alpha(x)$. Then the soft set $Q_{\alpha}: A \rightarrow P\left(\frac{P}{N}\right)$ defined by $Q_{\alpha}(x)=\frac{\alpha(x)}{N}$ is called the quotient soft polygroup of α_{A}.
Example 4.9. Assume P and A are an Example 3.2, $N=\{e, a\}$ and α_{A} is the whole soft polygroup of P. Then $Q_{\alpha}(x)=\frac{P}{N}$ is the whole soft polygroup of α_{A}.
Theorem 4.10. Assume $\alpha_{A} \in \operatorname{NSP}(P)$. Then $\left(Q_{\alpha}\right)_{A} \in \operatorname{NSP}\left(\frac{P}{N}\right)$.
Proof. By $\alpha_{A} \in N S P(P)$, for any $x \in \operatorname{Supp}\left(\alpha_{A}\right)$, we have $\alpha(x) \preceq^{n} P$ of class say n. Since

$$
\emptyset \neq \operatorname{supp}\left(Q_{\alpha}\right)=\left\{x \in A \mid Q_{\alpha}(x) \neq \emptyset\right\}=\left\{x \in A \left\lvert\, \frac{\alpha(x)}{N} \neq \emptyset\right.\right\}
$$

we conclude that $F(x) \neq \emptyset$, i.e $x \in \operatorname{Supp}\left(\alpha_{A}\right)$. Then by Definition 4.8 and Theorem 3.4, for any $x \in \operatorname{Supp}\left(Q_{\alpha}\right), Q_{\alpha}(x)=\frac{\alpha(x)}{N} \preceq^{n} \frac{P}{N}$ and so $\left(Q_{\alpha}\right)_{A} \in \operatorname{NSP}\left(\frac{P}{N}\right)$.

Theorem 4.11. [8] Consider $\alpha_{A} \in S P\left(P_{1}\right), \gamma_{B} \in S P\left(P_{2}\right)$ and $\alpha_{A} \sim \gamma_{B}$ with a soft homomorphism (f, g). If $N \unlhd P_{1}, N \subseteq \alpha(x)$ for any $x \in \operatorname{Supp}\left(\alpha_{A}\right)$ and g is a bijective map, then $\left(Q_{\alpha}\right)_{A} \simeq \gamma_{B}$, where $Q_{\alpha}(x)=\frac{\alpha(x)}{N}$.
Corollary 4.12. Assume α_{A} and γ_{B}, N and $\left(Q_{\alpha}\right)_{A}$ are as Theorem 4.11. If $\gamma_{B} \in \operatorname{NSP}\left(P_{2}\right)$, then $\left(Q_{\alpha}\right)_{A} \in \operatorname{NSP}\left(\frac{P_{1}}{N}\right)$.
Proof. By Theorem 4.11, $\left(Q_{\alpha}\right)_{A} \simeq \gamma_{B}$. Since $\gamma_{B} \in N S P\left(P_{2}\right)$ by Theorems 4.7 and 4.10, we conclude that $\left(Q_{\alpha}\right)_{A} \in N S P\left(\frac{P_{1}}{N}\right)$.

By the following theorem we extend a soft homomorphism of groups to polygroups.
Theorem 4.13. If $\alpha_{A_{1}}, \gamma_{A_{2}}$ are two soft groups of $G_{1}, G_{2}, c_{i} \notin G_{i}(i=1,2)$ and $\alpha_{A_{1}} \sim \gamma_{A_{2}}$, then

$$
\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}} \sim\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}} .
$$

Proof. The proof of Theorem 4.6. implies that $\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}} \in S P\left(P_{G_{1}}\right),\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}} \in S P\left(P_{G_{2}}\right)$. Since $\alpha_{A_{1}} \sim \gamma_{A_{2}}$ by Definition 4.1, $f: G_{1} \rightarrow G_{2}$ is a homomorphism of groups, $g: A_{1} \rightarrow A_{2}$ is a surjective map and for any $x \in A_{1}, f\left(\alpha_{A_{1}}\right)(x)=\left(\gamma_{A_{2}}\right)(g(x))$. Define $g_{1}: A_{1} \cup\left\{c_{1}\right\} \rightarrow$ $A_{2} \cup\left\{c_{2}\right\}$ and $f_{1}: P_{G_{1}} \rightarrow P_{G_{2}}$, by

$$
g_{1}(x)=\left\{\begin{array}{ll}
\gamma(x) & x \in A_{1}, \\
c_{2} & x=c_{1},
\end{array} \text { and } f_{1}(x)= \begin{cases}\alpha(x) & x \in G_{1}, \\
c_{2} & x=c_{1}\end{cases}\right.
$$

Now, it is easy to see that f_{1} is a good epimorphism of polygroups and g_{1} is a surjective map. In addition, $\left(f_{1}\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}}\right)\left(c_{1}\right)=\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}}\left(g_{1}\left(c_{1}\right)\right)$ and so for any $x \in B_{1}$,

$$
\left(f_{1}\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}}\right)(x)=\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}}\left(g_{1}(x)\right) .
$$

Therefore, $\left(f_{1}, g_{1}\right)$ is a soft homomorphism between $\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}}$ and $\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}}$. Consequently, $\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}} \sim\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}}$.
Corollary 4.14. Consider $\alpha_{A_{1}}$ and $\gamma_{A_{2}}$ are as Theorem 4.13. If G_{1} is a nilpotent group and $\left(S_{\alpha}\right)_{A_{1}} \simeq\left(S_{\gamma}\right)_{A_{2}}$, then $\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}} \in \operatorname{NSP}\left(P_{G_{2}}\right)$.

Proof. By the same manipulation of Theorem 4.13, we have if $\left(\alpha_{A_{1}}\right) \simeq(\gamma)_{A_{2}}$, then $\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}} \simeq$ $\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}}$. Also, by Theorem 4.2, $P_{G_{1}}$ is an NP and so Theorem 3.20, implies that $\left(S_{\alpha}\right)_{A_{1} \cup\left\{c_{1}\right\}} \in$ $N S P\left(P_{G_{1}}\right)$. Therefore, by Theorem 4.7, we have $\left(S_{\gamma}\right)_{A_{2} \cup\left\{c_{2}\right\}} \in N S P\left(P_{G_{2}}\right)$.

5 Conclusion

In this paper, for a polygroup P and a soft set α_{A} the notion of nilpotent soft (sub)polygroups were defined. Some examples have been used to clarify the concept of nilpotent soft polygroup. In addition, a connection between nilpotentcy of soft polygroup and polygroup was obtained. Espesially, the quotient of a soft polygroup was defined and a relation between nilpotency of a soft polygroup and its quotient was obtained. Also, by the notion of soft homomorphism we extend a soft homorphic of groups to get a soft homomorphic of polygroups. Then, some new nilpotent soft polygroups were atained. This work can be used on Engel and solvabel soft polygroups, too.

References

[1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59 (2010), 3458-3463.
[2] H. Aktacs, N. Cavgman, Soft sets and soft groups, Information Sciences, 177 (2007), 27262735.
[3] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabira, On some new operations in soft set theory, Computers and Mathematics with Applications, 57(9) (2009), 1547-1553.
[4] R. Ameri, E. Mohammadzadeh, Engel groups derived from hypergroups, European Journal of Cambinatorics, 44 (2015), 191-197.
[5] R.A. Borzooei, E. Mohammadzadeh, V. Foteata, On engel fuzzy subpolygroups, New Mathematics and Natural Computation, 139(2) (2017), 195-206.
[6] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Tricesimo, 1993.
[7] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Dordrecht, 2003.
[8] B. Davvaz, Polygroup theory and related systems, World Scientific, 2013.
[9] F. Feng, Y.B. Jun, X. Zhao, Soft semirings, Computers and Mathematics with Applications, 56(10) (2008), 2621-2628.
[10] F. Feng, X. Liu, V. Leoreanu-Fotea, Y.B. Jun, Soft sets and soft rough sets, Information Sciences, 181 (2011), 1125-1137.
[11] D. Freni, Une note sur le cuur dun hypergroup et sur la cloture transitive β^{*} de β (A note on the core of a hypergroup and the transitivitive closure β^{*} of β), Rivista di Matematica della Università di Parma, 8 (1991), 153-156 (in French).
[12] D. Freni, A new charactrization of the derived hypergroup via strongly regular equivalences, Communications in Algebra, 30(8) (2002), 3977-3989.
[13] M. Hassanzadeh, A. Pormirzaei, S. Kayvanfar, On the nilpotency of pair of groups, Southeast Asian Bulletin of Mathematics, 37 (2013), 67-77.
[14] T.W. Hungerford, Graduate tex in mathematics, Springer-Verlag New York, Heidelbery Berlin, 1980.
[15] M. Irfan Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications, 57 (2009), 1547-1553.
[16] M. Koskas, Groupoides, demi-hypergroups ehypergroupes, Journal de Mathe'matiques Pures et Applique'es, 49 (1970), 155-192.
[17] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Computers and Mathematics with Applications, 45 (2003), 555-562.
[18] [10] P. Majumdar, S.K. Samanta, On soft mappings, Computers and Mathematics with Applications, 60 (2010), 2666-2672.
[19] F. Marty, Sur une Generalization de la Notion de Groupe, in: 8th Congress Math. Scandenaves, Stockholm, Sweden, (1934), 45-49.
[20] D. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37(4-5) (1999), 19-31.
[21] D. Molodtsov, The theory of soft sets, URSS Publishers, Moscow, 2004 (in Russian).
[22] E. Ozkan, H. Aydin R. Dikici, Applications of Fibonancci sequences in a finite nilpotent, Applied Mathematics and Computation, 141 (2003), 565-578.
[23] K. Qin, Z. Hong, On soft equality, Journal of Computational and Applied Mathematics, 234 (2010), 1347-1355.
[24] J. Wang, M. Yina, W. Gu, Soft polygroups, Computers and Mathematics with Applications, 62 (2011), 3529-3537.

