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Abstract

In BCK-algebras, the notion of Łukasiewicz fuzzy positive im-
plicative ideal is introduced, and several properties are inves-
tigated. The relationship between Łukasiewicz fuzzy ideal and
Łukasiewicz fuzzy positive implicative ideal is discussed, and
characterizations of a Łukasiewicz fuzzy positive implicative
ideal are considered. Conditions for a Łukasiewicz fuzzy ideal
to be a Łukasiewicz fuzzy positive implicative ideal are pro-
vided, and conditions for the ∈-set, q-set and O-set to be pos-
itive implicative ideals are explored.
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1 Introduction
A BCI/BCK-algebra was introduced by K. Iséki and it is an important class of logical algebras (see [2]
and [3]). Since then, it has been extensively investigated by several researchers. In particular, ideal of
BCK/BCI-algebra based on crossing cubic structure was studied by Jun and Song (see [7]). Jan Łukasiewicz
(1878-1956) was a Polish scientist, logician, philosopher, and mathematician. He was the author of three-
valued logic, the first non-classical logic on the basis of which modal logic, probabilistic logic and fuzzy logic
were created. In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It
was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued logic. It was later
generalized to n-valued (for all finite n) as well as infinitely-many-valued variants, both propositional and
first-order. Infinite-valued Łukasiewicz logic is a real-valued logic in which sentences from sentential calculus
may be assigned a truth value of not only zero or one but also any real number. Jun dealt with so called
a Łukasiewicz fuzzy set which is a fuzzy set based on Łukasiewicz t-norm, and applied it to BCK-algebras
and BCI-algebras (see [4, 5]).
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In this paper, we address the concept of Łukasiewicz fuzzy positive implicative ideal in BCK-algebras
and investigate several properties. We consider characterization of a Łukasiewicz fuzzy positive implicative
ideal. We discuss the relationship between a Łukasiewicz fuzzy ideal and a Łukasiewicz fuzzy positive
implicative ideal. We give a condition for a Łukasiewicz fuzzy ideal to be a Łukasiewicz fuzzy positive
implicative ideal. We provide conditions for the ∈-set, q-set and O-set to be positive implicative ideals.

2 Preliminaries
2.1 Basic concepts about BCI/BCK-algebras
This section provides the definitions and default results required for this manuscript. For more information
about BCK-algebras and BCI-algebras, see the books [1, 8].

Let T be a set containing a special element “0” and a binary operation “∗”. If it satisfies the conditions
below:

(I1) (∀r, u, d ∈ T ) (((r ∗ u) ∗ (r ∗ d)) ∗ (d ∗ u) = 0),

(I2) (∀r, u ∈ T ) ((r ∗ (r ∗ u)) ∗ u = 0),

(I3) (∀r ∈ T ) (r ∗ r = 0),

(I4) (∀r, u ∈ T ) (r ∗ u = 0, u ∗ r = 0 ⇒ r = u),

then we say that T is a BCI-algebra. If a BCI-algebra T has the additional condition

(K) (∀r ∈ T ) (0 ∗ r = 0),

then it is called a BCK-algebra.
The order relation “≤” in a BCI/BCK-algebra T is defined as follows:

(∀r, u ∈ T )(r ≤ u ⇔ r ∗ u = 0). (1)

Every BCI/BCK-algebra T satisfies the conditions below (see [1, 8]):

(∀r ∈ T ) (r ∗ 0 = r) , (2)
(∀r, u, d ∈ T ) (r ≤ u ⇒ r ∗ d ≤ u ∗ d, d ∗ u ≤ d ∗ r) , (3)
(∀r, u, d ∈ T ) ((r ∗ u) ∗ d = (r ∗ d) ∗ u) . (4)

A subset Z of a BCI/BCK-algebra T is called

• a subalgebra of T (see [1, 8]) if it satisfies:

(∀r, u ∈ Z)(r ∗ u ∈ Z), (5)

• an ideal of T (see [1, 8]) if it satisfies:

0 ∈ Z, (6)
(∀r, u ∈ T )(r ∗ u ∈ Z, u ∈ Z ⇒ r ∈ Z). (7)

A subset Z of a BCK-algebra T is called a positive implicative ideal of T (see [8]) if it satisfies (6) and

(∀r, u, d ∈ T )((r ∗ u) ∗ d ∈ Z, u ∗ d ∈ Z ⇒ r ∗ d ∈ Z). (8)

Lemma 2.1. [8] A nonempty subset Z of a BCK-algebra T is a positive implicative ideal of T if and only
if Z is an ideal of T that satisfies:

(∀r, u ∈ T )((r ∗ u) ∗ u ∈ Z ⇒ r ∗ u ∈ Z). (9)
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2.2 Basic concepts about (Łukasiewicz) fuzzy sets
A fuzzy set g in a set T of the form

g(u) :=

{
t ∈ (0, 1] if u = r,
0 if u 6= r,

is said to be a fuzzy point with support r and value t and is written as [r/t].
For a fuzzy set g in a set T, we say that a fuzzy point [r/t] is

(i) contained in g, written as [r/t] ∈ g, (see [9]) if g(r) ≥ t.

(ii) quasi-coincident with g, written as [r/t] q g, (see [9]) if g(r) + t > 1.

If [r/t]α g is not established for α ∈ {∈, q}, it is written as [r/t] α g.
A fuzzy set g in a BCI/BCK-algebra T is called

• a fuzzy subalgebra of T (see [6]) if it satisfies:

(∀r, u ∈ T )(g(r ∗ u) ≥ min{g(r), g(u)}). (10)

• a fuzzy ideal of T (see [6, 10]) if it satisfies:

(∀r ∈ T )(g(0) ≥ g(r)), (11)
(∀r, u ∈ T )(g(r) ≥ min{g(r ∗ u), g(u)}). (12)

A fuzzy set g in a BCK-algebra T is called a fuzzy positive implicative ideal of T (see [10]) if it satisfies:
(11) and

(∀r, u, d ∈ T )(g(r ∗ u) ≥ min{g((r ∗ u) ∗ d), g(u ∗ d)}). (13)

Definition 2.2. [4] Let g be a fuzzy set in a set T and let κ ∈ (0, 1). A function

κ
g : T → [0, 1], d 7→ max{0, g(d) + κ− 1},

is called the Łukasiewicz fuzzy set of g in T .

Definition 2.3. [4] Let g be a fuzzy set in a BCI/BCK-algebra T and κ an element of (0, 1). Then its
Łukasiewicz fuzzy set κ

g in T is called a Łukasiewicz fuzzy subalgebra of T if it satisfies:

[d/tr] ∈ κ
g , [r/tu] ∈ κ

g ⇒ [(d ∗ r)/min{tr, tu}] ∈ κ
g (14)

for all d, r ∈ T and tr, tu ∈ (0, 1].

Let g be a fuzzy set in T . For the Łukasiewicz fuzzy set κ
g of g in T and t ∈ (0, 1], consider the sets

(κg , t)∈ := {d ∈ T | [d/t] ∈ κ
g},

(κg , t)q := {d ∈ T | [d/t] q κ
g},

which are called the ∈-set and q-set, respectively, of κ
g (with value t). Also, consider a set:

O(κg ) := {d ∈ T | κg (d) > 0}, (15)

which is called an O-set of κ
g . It is observed that

O(κg ) = {d ∈ T | g(d) + κ− 1 > 0}.
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Definition 2.4. [5] Let g be a fuzzy set in a BCI/BCK-algebra T . Then its Łukasiewicz fuzzy set κ
g in T

is called a Łukasiewicz fuzzy ideal of T if it satisfies:

κ
g (0) is an upper bound of {κg (d) | d ∈ T}, (16)
[(d ∗ r)/tr] ∈ κ

g , [r/tu] ∈ κ
g ⇒ [d/min{tr, tu}] ∈ κ

g , (17)

for all d, r ∈ T and tr, tu ∈ (0, 1].

Lemma 2.5. [5] Let g be a fuzzy set in T . Then its Łukasiewicz fuzzy set κ
g is a Łukasiewicz fuzzy ideal of

T if and only if it satisfies:

(∀d ∈ T )(∀tr ∈ (0, 1])
(
[d/tr] ∈ κ

g ⇒ [0/tr] ∈ κ
g

)
, (18)

(∀d, r ∈ T )(κg (d) ≥ min{κg (d ∗ r), κg (r)}). (19)

3 Łukasiewicz fuzzy positive implicative ideals
In what follows, let T be a BCK-algebra, and κ be an element of (0, 1) unless otherwise specified.

Definition 3.1. Let g be a fuzzy set in T . Then its Łukasiewicz fuzzy set κ
g in T is called a Łukasiewicz

positive implicative fuzzy ideal (briefly, ŁPIf-ideal) of T if it satisfies (16) (or, equivalently (18)) and

[((d ∗ r) ∗ u)/tr] ∈ κ
g , [(r ∗ u)/tu] ∈ κ

g ⇒ [(d ∗ u)/min{tr, tu}] ∈ κ
g , (20)

for all d, r, u ∈ T and tr, tu ∈ (0, 1].

Example 3.2. Let T = {0, r1, r2, r3, r4} be a set and the binary operation “ ∗ ” in T is given in Table 1.

Table 1: Cayley table for the binary operation “∗”

∗ 0 r1 r2 r3 r4
0 0 0 0 0 0
r1 r1 0 r1 0 0
r2 r2 r2 0 r2 0
r3 r3 r3 r3 0 0
r4 r4 r4 r3 r2 0

Then T is a BCK-algebra (see [8]). Define a fuzzy set g in T as follows:

g : T → [0, 1], d 7→


0.77 if d = 0,
0.62 if d = r1,
0.42 if d = r2,
0.59 if d = r3,
0.42 if d = r4.

If we take κ := 0.56, then the Łukasiewicz fuzzy set κ
g of g in T is given as follows:

κ
g : T → [0, 1], d 7→


0.33 if d = 0,
0.18 if d = r1,
0.15 if d = r3,
0.00 if d ∈ {r2, r4}

and it is simple to check that κ
g is a ŁPIf-ideal of T .
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Lemma 3.3. [5] Every Łukasiewicz fuzzy ideal κ
g of T satisfies:

(∀d, r ∈ T )(∀tr ∈ (0, 1])(d ≤ r, [r/tr] ∈ κ
g ⇒ [d/tr] ∈ κ

g ), (21)

(∀d, r, u ∈ T )(∀tu, td ∈ (0, 1])

(
d ∗ r ≤ u, [r/tu] ∈ κ

g , [u/td] ∈ κ
g

⇒ [d/min{tu, td}] ∈ κ
g

)
. (22)

Lemma 3.4. [5] If κ
g is a Łukasiewicz fuzzy ideal of T , then the conditions (21) and (22) are equivalent to

(∀d, r ∈ T )(d ≤ r ⇒ κ
g (d) ≥ κ

g (r)), (23)
(∀d, r, u ∈ T )(d ∗ r ≤ u ⇒ κ

g (d) ≥ min{κg (r), κg (u)}). (24)

respectively.

Proposition 3.5. If a Łukasiewicz fuzzy set κ
g of a fuzzy set g in T is a Łukasiewicz fuzzy ideal of T , then

the following are equivalent to each other.

[((d ∗ r) ∗ r)/tr] ∈ κ
g ⇒ [(d ∗ r)/tr] ∈ κ

g , (25)
[((d ∗ r) ∗ u)/tr] ∈ κ

g ⇒ [((d ∗ u) ∗ (r ∗ z))/tr] ∈ κ
g , (26)

for all d, r, u ∈ T and tr ∈ (0, 1].

Proof. Assume that (25) is valid. If κ
g (r ∗u) < κ

g ((r ∗u)∗u) := tr for some r, u ∈ T , then [((r ∗u)∗u)/tr] ∈ κ
g

and [(r ∗ u)/tr] ∈ κ
g . This is a contradiction, and thus

κ
g (d ∗ r) ≥ κ

g ((d ∗ r) ∗ r), (27)

for all d, r ∈ T . Let d, r, u ∈ T and tr ∈ (0, 1] be such that [((d ∗ r) ∗ u)/tr] ∈ κ
g . Since

((d ∗ (r ∗ u)) ∗ u) ∗ u = ((d ∗ u) ∗ (r ∗ u)) ∗ u ≤ (d ∗ r) ∗ u,

by (I1), (3) and (4), it follows from (4), (23) and (27) that

κ
g ((d ∗ u) ∗ (r ∗ u)) = κ

g ((d ∗ (r ∗ u)) ∗ u)
≥ κ

g (((d ∗ (r ∗ u)) ∗ u) ∗ u)
≥ κ

g ((d ∗ r) ∗ u) ≥ tr.

Hence [((d ∗ u) ∗ (r ∗ u))/tr] ∈ κ
g .

Conversely, (25) is obtained by taking u = r in (26) and using (I3) and (2).

Theorem 3.6. Every ŁPIf-ideal is a Łukasiewicz fuzzy ideal.

Proof. Let κ
g be a ŁPIf-ideal of T . If we take u = 0 in (20) and use (2), then we have

[(d ∗ r)/tr] ∈ κ
g , [r/tu] ∈ κ

g ⇒ [d/min{tr, tu}] ∈ κ
g ,

for all d, r ∈ T and tr, tu ∈ (0, 1]. Therefore κ
g is a Łukasiewicz fuzzy ideal of T .

The converse of Theorem 3.6 may not be true as shown in the following example.

Example 3.7. Let T = {0, r1, r2, r3} be a set with the binary operation “ ∗ ” which is given in Table 2.
Then T is a BCK-algebra (see [8]). Define a fuzzy set g in T as follows:

g : T → [0, 1], d 7→


0.79 if d = 0,
0.63 if d = r1,
0.63 if d = r2,
0.48 if d = r3.
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Table 2: Cayley table for the binary operation “∗”

∗ 0 r1 r2 r3
0 0 0 0 0
r1 r1 0 0 r1
r2 r2 r1 0 r2
r3 r3 r3 r3 0

If we take κ := 0.57, then the Łukasiewicz fuzzy set κ
g of g in T is given as follows:

κ
g : T → [0, 1], d 7→


0.36 if d = 0,
0.20 if d = r1,
0.20 if d = r2,
0.05 if d = r3

and it is simple to check that κ
g is a Łukasiewicz fuzzy ideal of T . But it is not a ŁPIf-ideal of T because

of [((r2 ∗ r1) ∗ r1)/0.32] = [0/0.32] ∈ κ
g and [(r1 ∗ r1)/0.24] = [0/0.24] ∈ κ

g , but [(r2 ∗ r1)/min{0.32, 0.24}] =
[r1/0.24] ∈ κ

g .

Proposition 3.8. Every ŁPIf-ideal κ
g of T satisfies (25) and (26).

Proof. Let κ
g be a ŁPIf-ideal of T . Let d, r ∈ T and tr ∈ (0, 1] be such that [((d ∗ r) ∗ r)/tr] ∈ κ

g . Since
[(r ∗ r)/tr] = [0/tr] ∈ κ

g , it follows from (20) that [(d ∗ r)/tr] ∈ κ
g . Hence (25) is valid. Also κ

g satisfies (26)
by the combination of Proposition 3.5 and Theorem 3.6.

We provide conditions for a Łukasiewicz fuzzy ideal to be a ŁPIf-ideal.

Theorem 3.9. Let κ
g be a Łukasiewicz fuzzy ideal of T . Then it is a ŁPIf-ideal of T if and only if it satisfies:

(∀d, r, u ∈ T )(κg (d ∗ u) ≥ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)}). (28)

Proof. Assume that κ
g be a ŁPIf-ideal of T . Note that

[((d ∗ r) ∗ u)/κg ((d ∗ r) ∗ u)] ∈ κ
g and [(r ∗ u)/κg (r ∗ u)] ∈ κ

g ,

for all d, r, u ∈ T . It follows from (20) that

[(d ∗ u)/min{κg ((d ∗ r) ∗ u), κg (r ∗ z)}] ∈ κ
g ,

and hence, for all d, r, u ∈ T :
κ
g (d ∗ u) ≥ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)}.

Conversely, let κ
g be a Łukasiewicz fuzzy ideal of T that satisfies (28). Let d, r, u ∈ T and tr, tu ∈ (0, 1]

be such that [((d ∗ r) ∗ u)/tr] ∈ κ
g and [(r ∗ u)/tu] ∈ κ

g . Then κ
g ((d ∗ r) ∗ u) ≥ tr and κ

g (r ∗ u) ≥ tu, which
imply from (28) that

κ
g (d ∗ u) ≥ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)} ≥ min{tr, tu}.

Thus [(d ∗ u)/min{tr, tu}] ∈ κ
g . Therefore κ

g is a ŁPIf-ideal of T .

Theorem 3.10. If a Łukasiewicz fuzzy ideal κ
g of T satisfies (25), then it is a ŁPIf-ideal of T .

Proof. Let κ
g be a Łukasiewicz fuzzy ideal of T that satisfies (25). Let d, r, u ∈ T and tr, tu ∈ (0, 1] be such

that [((d ∗ r) ∗ u)/tr] ∈ κ
g and [(r ∗ u)/tu] ∈ κ

g . Since

((d ∗ u) ∗ u) ∗ (r ∗ u) ≤ (d ∗ u) ∗ r = (d ∗ r) ∗ u,

for all d, r, u ∈ T , it follows from Lemma 3.3 that [(((d ∗ u) ∗ u) ∗ (r ∗ u))/tr] ∈ κ
g . Hence [((d ∗ u) ∗

u)/min{tr, tu}] ∈ κ
g by (17), and so [(d ∗ u)/min{tr, tu}] ∈ κ

g by (25). Therefore κ
g is a ŁPIf-ideal of T .
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We discuss the relationship between a fuzzy positive implicative ideal and an ŁPIf-ideal.

Lemma 3.11. [5] If g is a fuzzy ideal of T , then its Łukasiewicz fuzzy set κ
g in T is a Łukasiewicz fuzzy

ideal of T .

Theorem 3.12. If g is a fuzzy positive implicative ideal of T , then its Łukasiewicz fuzzy set κ
g in T is a

ŁPIf-ideal of T .

Proof. If g is a fuzzy positive implicative ideal of T , then it is a fuzzy ideal of T , and so its Łukasiewicz
fuzzy set κ

g in T is a Łukasiewicz fuzzy ideal of T by Lemma 3.11. Let d, r ∈ T and tr ∈ (0, 1] be such that
[((d ∗ r) ∗ r)/tr] ∈ κ

g . Then

κ
g (d ∗ r) = max{0, g(d ∗ r) + κ− 1}

≥ max{0, g((d ∗ r) ∗ r) + κ− 1}
= κ

g ((d ∗ r) ∗ r) ≥ tr,

and so [(d ∗ r)/tr] ∈ κ
g . Therefore κ

g is a ŁPIf-ideal of T by Theorem 3.10.

The converse of Theorem 3.12 may not be true as seen in the following example.

Example 3.13. Let T = {0, r1, r2, r3, r4} be a set with the binary operation “ ∗ ” which is given in Table 3.

Table 3: Cayley table for the binary operation “∗”

∗ 0 r1 r2 r3 r4
0 0 0 0 0 0
r1 r1 0 r1 r1 0
r2 r2 r2 0 r2 0
r3 r3 r3 r3 0 0
r4 r4 r4 r4 r4 0

Then T is a BCK-algebra (see [8]). Define a fuzzy set g in T as follows:

g : T → [0, 1], d 7→


0.92 if d = 0,
0.47 if d = r1,
0.83 if d = r2,
0.79 if d = r3,
0.51 if d = r4.

If we take κ := 0.48, then the Łukasiewicz fuzzy set κ
g of g in T is given as follows:

κ
g : T → [0, 1], d 7→


0.40 if d = 0,
0.00 if d = r1,
0.31 if d = r2,
0.27 if d = r3,
0.00 if d = r4,

and it is simple to check that κ
g is a ŁPIf-ideal of T . But g is not a fuzzy positive implicative ideal of T since

g(r1 ∗ r2) = 0.47 < 0.51 = min{g((r1 ∗ r4) ∗ r2), g(r4 ∗ r2)}.

Theorem 3.14. If a Łukasiewicz fuzzy ideal κ
g of T satisfies (26), then it is a ŁPIf-ideal of T .
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Proof. Let κ
g be a Łukasiewicz fuzzy ideal of T that satisfies (26). Since

[((d ∗ r) ∗ u)/κg ((d ∗ r) ∗ u)] ∈ κ
g ,

for all d, r, u ∈ T , we have [((d ∗ u) ∗ (r ∗ u))/κg ((d ∗ r) ∗ u)] ∈ κ
g by (26). It follows from (19) that

κ
g (d ∗ u) ≥ min{κg ((d ∗ u) ∗ (r ∗ u)), κg (r ∗ u)}

≥ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)},

for all d, r, u ∈ T . Hence κ
g is a ŁPIf-ideal of T by Theorem 3.9.

Theorem 3.15. Let κ
g be a Łukasiewicz fuzzy ideal of T . Then it is a ŁPIf-ideal of T if and only if it

satisfies:

[(((d ∗ r) ∗ r) ∗ u)/tr] ∈ κ
g , [u/tu] ∈ κ

g ⇒ [(d ∗ r)/min{tr, tu}] ∈ κ
g , (29)

for all d, r, u ∈ T and tr, tu ∈ (0, 1].

Proof. Assume that κ
g is a ŁPIf-ideal of T and let d, r, u ∈ T and tr, tu ∈ (0, 1] be such that

[(((d ∗ r) ∗ r) ∗ u)/tr] ∈ κ
g , [u/tu] ∈ κ

g .

Then
κ
g (d ∗ r) ≥ min{κg ((d ∗ r) ∗ u), κg (u)}

= min{κg (((d ∗ u) ∗ r) ∗ (r ∗ r)), κg (u)}
≥ min{κg (((d ∗ u) ∗ r) ∗ r), κg (u)}
= min{κg (((d ∗ r) ∗ r) ∗ u), κg (u)}
≥ min{tr, tu},

and so [(d ∗ r)/min{tr, tu}] ∈ κ
g .

Conversely, let κ
g be a Łukasiewicz fuzzy ideal of T that satisfies (29). If we take u = 0 in (29), then

[(((d ∗ r) ∗ r) ∗ 0)/tr] ∈ κ
g , [0/tu] ∈ κ

g ⇒ [(d ∗ r)/min{tr, tu}] ∈ κ
g .

It follows from (2) and (18) that

[((d ∗ r) ∗ r)/tr] ∈ κ
g ⇒ [(d ∗ r)/tr] ∈ κ

g .

Therefore κ
g is a ŁPIf-ideal of T by Theorem 3.10.

Lemma 3.16. If a Łukasiewicz fuzzy set κ
g satisfies the condition (24), then it is a Łukasiewicz fuzzy ideal

of T .

Proof. Since 0 ∗ d ≤ d for all d ∈ T , we have κ
g (0) ≥ min{κg (d), κg (d)} = κ

g (d) for all d ∈ T by (24). Hence
κ
g (0) is an upper bound of {κg (d) | d ∈ T}. Let d, r ∈ T and tr, tu ∈ (0, 1] be such that [(d ∗ r)/tr] ∈ κ

g and
[r/tu] ∈ κ

g . Then κ
g (d ∗ r) ≥ tr and κ

g (r) ≥ tu. Since d ∗ (d ∗ r) ≤ r for all d, r ∈ T , it follows from (24) that

κ
g (d) ≥ min{κg (d ∗ r), κg (r)} ≥ min{tr, tu}.

Hence [d/min{tr, tu}] ∈ κ
g , and therefore κ

g is a Łukasiewicz fuzzy ideal of T .

Theorem 3.17. Let κ
g be a Łukasiewicz fuzzy set of a fuzzy set g in T . Then it is a ŁPIf-ideal of T if and

only if it satisfies:

[r/tr] ∈ κ
g , [u/tu] ∈ κ

g ⇒ [(d ∗ r)/min{tr, tu}] ∈ κ
g , (30)

for all tr, tu ∈ (0, 1] and d, r, r, u ∈ T with ((d ∗ r) ∗ r) ∗ r ≤ u.
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Proof. Assume that κ
g is a ŁPIf-ideal of T . Let tr, tu ∈ (0, 1] and d, r, r, u ∈ T be such that ((d∗r)∗r)∗r ≤ u,

[r/tr] ∈ κ
g and [u/tu] ∈ κ

g . Then κ
g is a Łukasiewicz fuzzy ideal of T (see Theorem 3.6), and so

κ
g (d ∗ r) ≥ κ

g ((d ∗ r) ∗ r) ≥ min{κg (r), κg (u)} ≥ min{tr, tu},

by Lemma 3.4 and (25). Hence [(d ∗ r)/min{tr, tu}] ∈ κ
g .

Conversely, suppose that κ
g satisfies (30) for all tr, tu ∈ (0, 1] and d, r, r, u ∈ T with ((d ∗ r) ∗ r) ∗ r ≤ u.

Let d, r, u ∈ T be such that d ∗ r ≤ u. Then ((d ∗ 0) ∗ 0) ∗ r ≤ u by (2). Since [r/κg (r)] ∈ κ
g and [u/κg (u)] ∈ κ

g

, it follows from (2) and (30) that

[d/min{κg (r), κg (u)}] = [(d ∗ 0)/min{κg (r), κg (u)}] ∈ κ
g .

Thus κ
g (d) ≥ min{κg (r), κg (u)}, and hence κ

g is a Łukasiewicz fuzzy ideal of T by Lemma 3.16. Let x, r ∈ T and
tr ∈ (0, 1] be such that [((d∗r)∗r)/tr] ∈ κ

g . Note that ((d∗r)∗r)∗((d∗r)∗r) ≤ 0, [((d∗r)∗r)/κg ((d ∗ r) ∗ r)] ∈ κ
g

and [0/κg (0)] ∈ κ
g . Hence

[(d ∗ r)/κg ((d ∗ r) ∗ r)] = [(d ∗ r)/min{κg ((d ∗ r) ∗ r), κg (0)}] ∈ κ
g ,

by (16) and (30), and therefore g(d ∗ r) ≥ κ
g ((d ∗ r) ∗ r) ≥ tr, i.e., [(d ∗ r)/tr] ∈ κ

g . Consequently, κ
g is a

ŁPIf-ideal of T by Theoem 3.10.

Theorem 3.18. Let κ
g be a Łukasiewicz fuzzy set of a fuzzy set g in T . Then it is a ŁPIf-ideal of T if and

only if it satisfies:

[r/tr] ∈ κ
g , [u/tu] ∈ κ

g ⇒ [((d ∗ u) ∗ (r ∗ u))/min{tr, tu}] ∈ κ
g , (31)

for all tr, tu ∈ (0, 1] and d, r, u, r, u ∈ T with ((d ∗ r) ∗ u) ∗ r ≤ u.

Proof. Suppose that κ
g is a ŁPIf-ideal of T . Then it is a Łukasiewicz fuzzy ideal of T (see Theorem 3.6).

Let d, r, u, r, u ∈ T be such that ((d ∗ r) ∗u) ∗ r ≤ u. Assume that [r/tr] ∈ κ
g and [u/tu] ∈ κ

g for tr, tu ∈ (0, 1].
Using Lemma 3.4, (26) and Proposition 3.8, we have

κ
g ((d ∗ u) ∗ (r ∗ u)) ≥ κ

g ((d ∗ r) ∗ u) ≥ min{κg (r), κg (u)} ≥ min{tr, tu},

and thus [((d ∗ u) ∗ (r ∗ u))/min{tr, tu}] ∈ κ
g .

Conversely, assume that κ
g satisfies (31). Let [r/tr] ∈ κ

g and [u/tu] ∈ κ
g for all d, r, r, u ∈ T with

((d ∗ r) ∗ r) ∗ r ≤ u and tr, tu ∈ (0, 1]. Then we get

[(d ∗ r)/min{tr, tu}] = [((d ∗ r) ∗ (r ∗ r))/min{tr, tu}] ∈ κ
g ,

by putting u = r in (31), and using (I3) and (2). Therefore κ
g is a ŁPIf-ideal of T by Theorem 3.17.

Theorem 3.19. Let κ
g be the Łukasiewicz fuzzy set of a fuzzy set g in T . Then the ∈-set (κg , t)∈ of κ

g with
value t ∈ (0.5, 1] is a positive implicative ideal of T if and only if the following assertions are valid.

(∀d ∈ T )
(
max{κg (0), 0.5} ≥ κ

g (d)
)
, (32)

(∀d, r, u ∈ T )
(
max{κg (d ∗ u), 0.5} ≥ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)}

)
. (33)

Proof. Assume that the ∈-set (κg , t)∈ of κ
g with value t ∈ (0.5, 1] is a positive implicative ideal of T . If there

exists r ∈ T such that max{κg (0), 0.5} < κ
g (r), then κ

g (r) ∈ (0.5, 1] and κ
g (r) >

κ
g (0). If we take t = κ

g (r), then
[r/t] ∈ κ

g , that is, r ∈ (κg , t)∈, and 0 /∈ (κg , t)∈. This is a contradiction, and so κ
g (d) ≤ max{κg (0), 0.5} for all

d ∈ T . Now, if the condition (33) is not valid, then there exist r, u, d ∈ T such that

min{κg ((r ∗ u) ∗ d), κg (u ∗ d)} > max{κg (r ∗ d), 0.5}.

If we take s := min{κg ((r∗u)∗d), κg (u∗d)}, then s ∈ (0.5, 1], [((r∗u)∗d)/s] ∈ (κg , s)∈ and [(u∗d)/s] ∈ (κg , s)∈,
i.e., (r ∗ u) ∗ d, u ∗ d ∈ (κg , s)∈. Since (κg , s)∈ is a positive implicative ideal of T , we have r ∗ d ∈ (κg , s)∈. But
κ
g (r ∗ d) < s implies r ∗ d /∈ (κg , s)∈, a contradiction. Hence the condition (33) is valid.
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Conversely, suppose that κ
g satisfies (32) and (33). For every t ∈ (0.5, 1], we have 0.5 < t ≤ κ

g (d) ≤
max{κg (0), 0.5} for all d ∈ (κg , t)∈ by (32). Thus 0 ∈ (κg , t)∈. Let d, r, u ∈ T be such that (d ∗ r) ∗ u ∈ (κg , t)∈
and r ∗ u ∈ (κg , t)∈. Then κ

g ((d ∗ r) ∗ u) ≥ t and κ
g (r ∗ u) ≥ t, which imply from (33) that

0.5 < t ≤ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)} ≤ max{κg (d ∗ u), 0.5}.

Hense [(d∗u)/t] ∈ κ
g , i.e., d∗u ∈ (κg , t)∈. Therefore (κg , t)∈ is a positive implicative ideal of T for t ∈ (0.5, 1].

Theorem 3.20. If the Łukasiewicz fuzzy set κ
g of a fuzzy set g in T is a ŁPIf-ideal of T , then the q-set

(κg , t)q of κ
g with value t ∈ (0, 1] is a positive implicative ideal of T .

Proof. Assume that the κ
g is a ŁPIf-ideal of T and let t ∈ (0, 1]. If 0 /∈ (κg , t)q, then [0/t] q κ

g , that is,
κ
g (0) + t ≤ 1. Since κ

g (0) ≥ κ
g (d) for d ∈ (κg , t)q, it follows that κ

g (d) ≤ κ
g (0) ≤ 1 − t. Hence [d/t] q κ

g , and so
d /∈ (κg , t)q. This is a contadiction, and thus 0 ∈ (κg , t)q. Let d, r, u ∈ T be such that (d ∗ r) ∗ u ∈ (κg , t)q and
r ∗u ∈ (κg , t)q. Then [((d ∗ r) ∗u)/t] q κ

g and [(r ∗u)/t] q κ
g , that is, κ

g ((d ∗ r) ∗u) > 1− t and κ
g (r ∗u) > 1− t. It

follows from (28) that κ
g (d∗u) ≥ min{κg ((d∗ r)∗u), κg (r ∗u)} > 1− t. Thus [(d∗u)/t] q κ

g and so d∗u ∈ (κg , t)q.
Therefore (κg , t)q is a positive implicative ideal of T .

The next corollary is obtained by the combination of Theorems 3.12 and 3.20.

Corollary 3.21. Let κ
g be the Łukasiewicz fuzzy set of a fuzzy set g in T . If g is a fuzzy positive implicative

ideal of T , then the q-set (κg , t)q of κ
g with value t ∈ (0, 1] is a positive implicative ideal of T .

Theorem 3.22. Let g be a fuzzy set in T . For the Łukasiewicz fuzzy set κ
g of g in T , if the q-set (κg , t)q of

κ
g is a positive implicative ideal of T , then the following arguments are valid.

0 ∈ (κg , tr)∈, (34)
[((d ∗ r) ∗ u)/tr] q κ

g , [(r ∗ u)/tu] q κ
g ⇒ d ∗ u ∈ (κg ,max{tr, tu})∈, (35)

for all d, r, u ∈ T and tr, tu ∈ (0, 0.5].

Proof. Let d, r, u ∈ T and tr, tu ∈ (0, 0.5]. If 0 /∈ (κg , tr)∈, then [0/tr] ∈ κ
g and so κ

g (0) < tr ≤ 1 − tr since
tr ≤ 0.5. Hence [0/tr] q

κ
g and thus 0 /∈ (κg , tr)q. This is a contradiction, and therefore 0 ∈ (κg , tr)∈. Let

[((d ∗ r) ∗ u)/tr] q κ
g and [(r ∗ u)/tu] q κ

g . Then

(d ∗ r) ∗ u ∈ (κg , tr)q ⊆ (κg ,max{tr, tu})q , r ∗ u ∈ (κg , tu)q ⊆ (κg ,max{tr, tu})q.

Hence d ∗ u ∈ (κg ,max{tr, tu})q, and so
κ
g (d ∗ u) > 1−max{tr, tu} ≥ max{tr, tu},

that is, [(d ∗ u)/max{tr, tu}] ∈ κ
g . Therefore d ∗ u ∈ (κg ,max{tr, tu})∈.

Theorem 3.23. Given a fuzzy set g in T , let κ
g be the Łukasiewicz fuzzy set of g in T . If g is a fuzzy

positive implicative ideal of T , then the O-set O(κg ) of κ
g is a positive implicative ideal of T .

Proof. Assume that g is a fuzzy positive implicative ideal of T . Then κ
g is a ŁPIf-ideal of T by Theorem

3.12. It is clear that 0 ∈ O(κg ). Let d, r, u ∈ T be such that (d ∗ r) ∗ u ∈ O(κg ) and r ∗ u ∈ O(κg ). Then
g((d ∗ r) ∗ u) + κ− 1 > 0 and g(r ∗ u) + κ− 1 > 0. It follows from (28) that

κ
g (d ∗ u) ≥ min{κg ((d ∗ r) ∗ u), κg (r ∗ u)}

= min{g((d ∗ r) ∗ u) + κ− 1, g(r ∗ u) + κ− 1} > 0.

Hence d ∗ u ∈ O(κg ), and therefore O(κg ) is a positive implicative ideal of T .

Theorem 3.24. Let κ
g be the Łukasiewicz fuzzy set of a fuzzy set g in T . If the image of T under κ

g is
nonzero and κ

g satisfies:

[((d ∗ r) ∗ u)/tr] ∈ κ
g , [(r ∗ u)/tu] ∈ κ

g ⇒ [(d ∗ u)/max{tr, tu}] q κ
g , (36)

for all d, r, u ∈ T and tr, tu ∈ (0, 1], then the O-set O(κg ) of κ
g is a positive implicative ideal of T .
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Proof. Assume that κ
g (d) 6= 0 for all d ∈ T and the condition (36) is valid for all d, r, u ∈ T and tr, tu ∈ (0, 1].

It is clear that 0 ∈ O(κg ). Let d, r, u ∈ T be such that (d ∗ r) ∗ u ∈ O(κg ) and r ∗ u ∈ O(κg ). Then
g((d ∗ r) ∗ u) + κ− 1 > 0 and g(r ∗ u) + κ− 1 > 0. Since

[((d ∗ r) ∗ u)/κg ((d ∗ r) ∗ u)] ∈ κ
g , [(r ∗ u)/κg (r ∗ u)] ∈ κ

g ,

it follows from (36) that

[(d ∗ u)/max{κg ((d ∗ r) ∗ u), κg (r ∗ u)}] q κ
g . (37)

If d ∗ u /∈ O(κg ), then κ
g (d ∗ u) = 0 and so

κ
g (d ∗ u) + max{κg ((d ∗ r) ∗ u), κg (r ∗ u)} = max{κg ((d ∗ r) ∗ u), κg (r ∗ u)}
= max{max{0, g((d ∗ r) ∗ u) + κ− 1},max{0, g(r ∗ u) + κ− 1}}
= max{g((d ∗ r) ∗ u) + κ− 1, g(r ∗ u) + κ− 1}
= max{g((d ∗ r) ∗ u), g(r ∗ u)}+ κ− 1

≤ 1 + κ− 1 = κ ≤ 1,

that is, [(d ∗ u)/max{κg ((d ∗ r) ∗ u), κg (r ∗ u)}] q κ
g . This is impossible, and thus d ∗ u ∈ O(κg ). Therefore O(κg )

is a positive implicative ideal of T .

Theorem 3.25. Let κ
g be the Łukasiewicz fuzzy set of a fuzzy set g in T . If it satisfies [0/κ] q g and the

condition (35) for all d, r ∈ T and tr, tu ∈ (0, 1], then the O-set O(κg ) of κ
g is a positive implicative ideal of

T .

Proof. It is clear that 0 ∈ O(κg ) by the condition [0/κ] q g. Let d, r, u ∈ T be such that (d ∗ r) ∗u ∈ O(κg ) and
r ∗ u ∈ O(κg ). Then g((d ∗ r) ∗ u) + κ− 1 > 0 and g(r ∗ u) + κ− 1 > 0. Hence

κ
g ((d ∗ r) ∗ u) + 1 = max{0, g((d ∗ r) ∗ u) + κ− 1}+ 1

= g((d ∗ r) ∗ u) + κ− 1 + 1

= g((d ∗ r) ∗ u) + κ > 1,

and
κ
g (r ∗ u) + 1 = max{0, g(r ∗ u) + κ− 1}+ 1 = g(r ∗ u) + κ− 1 + 1 = g(r ∗ u) + κ > 1,

that is, [((d ∗ r) ∗ u)/1] q κ
g and [(r ∗ u)/1] q κ

g . It follows from (35) that

d ∗ u ∈ (κg ,max{1, 1})∈ = (κg , 1)∈.

Hence d ∗ u ∈ O(κg ) because if not, then g(d ∗ u) + κ − 1 ≤ 0 and so g(d ∗ u) ≤ 1 − κ < 1, which is a
contradiction. Therefore O(κg ) is a positive implicative ideal of T .

4 Conclusion
Based on on Łukasiewicz t-norm, Jun addressed so called a Łukasiewicz fuzzy set and applied it to BCK-
algebras and BCI-algebras. In this paper, we dealt with the concept of Łukasiewicz fuzzy positive im-
plicative ideals in BCK-algebras and investigated several properties. We considered characterization of a
Łukasiewicz fuzzy positive implicative ideal, and discussed the relationship between Łukasiewicz fuzzy ideals
and Łukasiewicz fuzzy positive implicative ideals. We provided a condition for a Łukasiewicz fuzzy ideal
to be a Łukasiewicz fuzzy positive implicative ideal. We also provided conditions for the ∈-set, q-set and
O-set to be positive implicative ideals. Using the ideas and results of this paper, we will study various
sub-structures in several algebraic systems, for example, BCC-algebras, BCH-algebras, equality algebras,
EQ-algebras, hoop algebras, BE-algebras, GE-algebras, etc., in the future. We will also explore Łukasiewicz
intuitionistic fuzzy sets, Łukasiewicz bipolar fuzzy sets, Łukasiewicz Pythagorean fuzzy sets, Łukasiewicz
picture fuzzy sets, etc. as the generalization of Łukasiewicz fuzzy sets.
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