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Abstract

In the area of fuzzy logic, expansions of these logics by ∆
operator have been intensively studied; the interest of ∆
operator is due to the fact that it presents a fuzzy behav-
ior, the associated systems were studied in propositional
and first-order level. On the other hand, the possibil-
ity operators that define Łukasiewicz-Moisil algebras have
been studied over different classes of algebras; these op-
erators are known as Moisil’s operators in the literature.
One of these operators coincides with ∆, showing there
are other operators with fuzzy behavior. In this paper,
we present the study of Moisil’s operators over an exten-
sion of a fuzzy logic; namely, n-valued Gödel logic, thus
opening the possibility to explore more fuzzy operators.
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1 Introduction
Moisil introduced n-valued Łukasiewicz algebras or n-valued Łukasiewicz-Moisil algebras, see, for
instance, [3]. Recall that the standard n-valued Łukasiewicz-Moisil algebras is defined by Cn whose
universe is

{0, 1
n
,
2

n
, · · · , n− 1

n
, 1},

endowed with the operations x∧y := min{x, y}, x∨y := max{x, y}, ∼ x := 1−x and the operators
σi are define as follows:

σi(
j

n
) =

{
0 if i+ j < n

1 if i+ j ≥ n
.
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The operators σi are certain lattice-homomorphisms for 0 ≤ i ≤ n − 1. Interestingly, certain
extensions of n-valued Heyting algebras expanded by Moisil’s operators σi were studied by Cignoli
and Iturrioz. These structures were considered with the intention of presenting termwise equivalent
classes to the MVn-algebras and n-valued Łukasiewicz-Moisil algebras, respectively, [8, 22].

Later on, Canals-Frau and Figallo studied different fragments of the class studied by Cignoli
and Iturrios, [4, 5]. Recently, Figallo-Orellano and Slagter studied an implicational fragment with
disjunction and presented sound and complete propositional and quantified calculus w.r.t. the
class of these algebras, [18]. The adequacy Theorems were given through a new algebraic logic
technique developed in this paper; furthermore, this technique was also applied to a family of
semisimple varieties studied in literature of algebraic logic, see [18].

On the other hand, the operator σ0 was studied and called ∆ operator by Baaz, [2]; he studied
the propositional and the quantified version of Gödel logic expanded by ∆. Later on, Hájek
studied the extension of Basic Fuzzy Logic (BL), Łukasiewicz logic, Product logics and other fuzzy
logics with ∆ operator, [20]. In this setting, Esteva and Godo introduced the logic MTL and its
extension MTL∆ by ∆ operator, [10], see also [11, 12]. Furthermore, Hájek and Cintula called all
these systems ∆-fuzzy logics and presented their quantified version with the respective soundness
and Completeness Theorem in [21]. Their completeness proof for these first-order logics is obtained
by adding the axiom of constant domains and using a similar Henkin’s strategy.

In this paper, we will introduce the class of n-valued σ-Gödel logic, this class of algebras is
obtained by taking n-valued Heyting algebras expanded by Moisil’s possibility operator. Later on,
we will present the propositional and quantified logics that have the class introduced as algebraic
counterpart. The soundness and Completeness Theorem will be proved by applying the technique
developed in [17] and [18], see also [9].

Recall that n-valued Heyting algebras are also known as n-valued Gödel algebras and they are
algebraic counterpart to intuitionistic logic with a matrix based on a chain with n elements. To
present this logic, let us consider the language of Gödel logic (for short, G) is built as usual from
a countable set of propositional V , the constant ⊥, the binary connectives ∧ and →. Disjunction
and negation defined as φ ∨ ψ := ((φ → ψ) → ψ) ∧ ((ψ → φ) → φ) and ¬φ := φ → ⊥, and the
constant ⊤ as ⊥ → ⊥. The axioms of G are the following:

(A1) (φ→ ψ) → ((ψ → χ) → (φ→ χ)),

(A2) (φ ∧ ψ) → φ,

(A3) (φ ∧ ψ) → (ψ ∧ φ),

(A4) (φ ∧ (φ→ ψ)) → (ψ ∧ (ψ → φ)),

(A5a) (φ→ (ψ → χ)) → ((φ ∧ ψ) → χ)),

(A5b) ((φ ∧ ψ) → χ)) → (φ→ (ψ → χ)),

(A6) ((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ),

(A7) ⊤ → φ,

(A8) φ→ (φ ∧ φ).

The only deduction rule of G is modus ponens. This axiomatic comes from adding (A8) of
Hájek’s BL logic, [20]. Later on, it was shown that axioms (A2) and (A3) were in fact redundant.
It is well-known that the algebraic counterpart of G is the class of Gödel algebras, which is a variety
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generated by a Gödel algebra with support of the unit interval [0, 1]. If we replace the interval by
the truth-table set GVn = {0, 1/(n− 1), · · · , (n− 2)/(n− 1), 1}, we obtain the standard algebra of
n-valued Gödel logic (for short, Gn), which is the axiomatic extension of G with the axiom:

(Gn) (φ1 → φ2) ∨ (φ3 → φ4) ∨ · · · ∨ (φn−1 → φn).

2 The class of n-valued σ-Gödel algebras
We start by recalling that M. Canals-Frau and A. V. Figallo studied the n-valued implicative
fragment with Moisil possibility operators, [4, 5]. Figallo-Orellano and Slagter studied the {→,∨}-
fragment n-valued Hilbert algebras with Moisil possibility operators in [18]. So, we will introduce
a new class of algebras where this can be seen as {→,∨,∧,⊥,⊤}-fragment n-valued Distributive
Hilbert algebras ([14]) with Moisil possibility operators.

Definition 2.1. We say that the algebra ⟨A,∨,∧,→, σ0, · · · , σn−1, 0, 1⟩ is an n-valued σ-Gödel
algebra (or Heyσn-algebras) if the reduct ⟨A,∨,∧,→, 0, 1⟩ is an n-valued Gödel algebra and the
operators σ0, · · · , σn−1 verify the following conditions:

(σ-He1) (σ0x→ y) → x = x;

(σ-He2) σi(x→ y) → (σix→ σjy) = 1, for any 0 ≤ i ≤ j ≤ n− 1;

(σ-He3) (σix→ σiy) → ((σi+1x→ σi+1y) → · · · ((σn−1x→ σn−1y) → σi(x→ y)) · · · ) = 1;

(σ-He4) σi(x→ σjy) = x→ σjy;

(σ-He5) σn−1x = (x→ σix) → σjx, for any 0 ≤ i ≤ j ≤ n− 1;

(σ-He6) σi(x ∨ y) = σix ∨ σiy for all 0 ≤ i ≤ n− 1;

(σ-He7) σi(x ∧ y) = σix ∧ σiy for all 0 ≤ i ≤ n− 1;

By Heyσn, we denote the variety of Heyσn-algebras and as usual, sometimes we shall denote a
Heyσn-algebra ⟨A,∨,∧,→, σ0, · · · , σn−1, 0, 1⟩ by A.

Lemma 2.2. For each A ∈ Heyσn, the following properties hold for every x, y ∈ A:

(σ-He8) σ0x ≤ x, (σ-He9) σi(σjx) = σjx,

(σ-He10) σj1 = 1, (σ-He11) σ0x ≤ σ1x ≤ · · · ≤ σn−1x,

(σ-He12) x ≤ σn−1x, (σ-He13) x ≤ y then σix ≤ σiy,

(σ-He14) σi(σjx→ y) = σjx→ σiy, (σ-He15) x→ σj(x→ y) = σj(x→ y),

(σ-He16) x→ σjy ≤ σj(x→ y), (σ-He17) σj(x→ y) ≤ σjx→ σjy,

(σ-He18) (σ0x→ σ0y) → ((σ1x→ σ1y) → ...((σn−1x→ σn−1y) → (x→ y)) · · · ) = 1,

(σ-He19) σix = σiy for all i, 0 ≤ i ≤ n− 1, then x = y,
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(σ-He20) (σjx→ y) → σjx = σjx, (σ-He21) σn−1x = (x→ σ1x) → x,

(σ-He22) σ1(σ1y → x) = (σ1(σ1x→ t) → (σ1y → t)) = 1,

(σ-He23) σj(¬x) = ¬σjx and σj0 = 0 where ¬x := x→ 0.

Proof. The proof from (σ-He8) to (σ-He22) can be consulted in [4], see also [5]. The proof of
(σ-He23) is in [6, Proposition 2.3].

Recall that for any Hilbert algebra A, a subset D is said to be a deductive system of A (d.s.,
for short) if 1 ∈ D and if x, x → y ∈ D, then y ∈ D. We denote by D(A) the set of deductive
systems of A.

A subset D of A ∈ Heyσn is said to be a modal deductive system (m.d.s.) if D ∈ D(A), and
x ∈ D implies σ0x ∈ D. We denote by Dm(A) the set of all m.d.s. of the Heyσn-algebra A. Suppose
M a d.s. of A. We will say M is maximal if for all M0 d.s., such that M ⊆M0, then M =M0 or
M0 = A. We can define the same concept for m.d.s.. Let us note that it is not hard to prove that
for any maximal m.d.s. if x ∈ A\M and y ∈ A, then σ0x → y ∈ M and σkx → y ∈ M , see [18,
Lemma 6.4].

For a given algebra A, it is not hard to see that an arbitrary intersection of modal deductive
systems is a modal deductive system of A. Then, as usual we will consider the notion of generated
modal deductive system by a set X, that we denote [X]. Then:

Lemma 2.3. Let A ∈ Heyσn, and M ⊆ A. Then:

[M ] = {y ∈ A : there are z1, · · · , zn ∈M such that

σ0z1 → (σ0z2 → (· · · (σ0zn−1 → (σ0zn → y) · · · ) = 1}.

Lemma 2.4. Let A ∈ Heyσn, B be a subalgebra of A and DB ∈ Dm(B). Then, there exists
D ∈ Dm(A) such that DB = D∩B; i.e., the variety of Heyσn-algebra has the congruence extension
property.

Proof. It follows immediately from Lemma 2.3.

Theorem 2.5. For any A ∈ Heyσn and any D ∈ Dm(A), we have that Con(A) = {R(D) : D ∈
Dm(A)} where R(D) = {(x, y) ∈ A2 : x→ y, y → x ∈ D}. Then, there exists a lattice-isomorphism
between Con(A) and Dm(A).

Proof. It is an immediately consequence from (HM9), (HM10) and well-known results of Heyting
algebras Theory.

In what follows, we will prove that the variety of n-valued σ-Gödel algebra is in fact a semi-
simple variety. To this end, let us start by considering a Heyσn-algebra A, then we can define a
new binary operation ↣ named weak implication such that: x↣ y = σ0x→ y for x, y ∈ A.

Lemma 2.6. [18] Let A ∈ Heyσ
n and for any x, y, z ∈ A, the following properties hold:

(wi1) 1 ↣ x = x, (wi2) x↣ x = 1,

(wi3) x↣ σ0x = 1, (wi4) x↣ (y ↣ z) = (x↣ y) ↣ (x↣ z),
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(wi5) x↣ (y ↣ x) = 1, (wi6) ((x↣ y) ↣ x) ↣ x = 1.

Definition 2.7. Let A be a Heyσn-algebra and suppose D ⊆ A, we say that D is a weak deductive
system (w.d.s.) if 1 ∈ D, and if x, x↣ y ∈ D, then y ∈ D.

We denote by Dw(A) the set of weak deductive systems of a given Heyσn-algebra A. It is not
hard to see that the set of modal deductive systems is equal to the set of weak deductive systems.

Now, for every (weak) deductive system D of A, we say that D is maximal if for every (weak)
deductive system M such that D ⊆ M , then M = A or M = D. Besides, let us consider the set
of all maximal w.d.s. denoted by Ew(A).

Definition 2.8. Let A be a Heyσn-algebra, D ∈ Dw(A) and p ∈ A. We say that D is a weak
deductive system tied to p if p /∈ D and for any D′ ∈ D(A) such that D ⊊ D′, then p ∈ D′.

Lemma 2.9. For a given Heyσn-algebra A, every modal deductive system is a weak deductive
system and vice versa.

Lemma 2.10. Let A be a Heyσn-algebra and M a maximal deductive system of A. Then, for every
x ∈ A \M , we have that σ0x→ y ∈ A for every y ∈ A.

Now, we are in conditions to prove the principal result of this section, Lemma 2.11.

Lemma 2.11. For a given Heyσn-algebra A, then {1} =
∩

M∈Ew(A)

M where Ew(A) is the set of

maximal w.d.s of A.

Proof. To see that for every weak deductive system D, there is a weak deductive system Lp tied
to some element p ∈ A which contains it, let us first consider the set Dw(D, p) = {S ∈ Dw : D ⊆
S, p /∈ S} where Dw is the set of all weak deductive systems of A. It is not hard to see that every
chain of Dw(D, p) has an upper bound on it, then by Zorn’s Lemma there is a maximal element
Lp on it. The set Lp is the desired weak deductive system tied to p such that D ⊆ Lp.

Now, it is clear that D ⊆
∩

p∈A\D
Lp but it is not hard to see that D =

∩
p∈A\D

Lp.

It is possible to see that every maximal weak deductive system is a weak deductive system tied
to some element of A and vise versa. To see this, we need to take into account Lemma 2.10 and
(wi6). Thus, since {1} is a weak deductive system, then the proof is complete.

We will then consider the quotient algebra A/M defined by a ≡M b iff a → b, b → a ∈ M ,
and the canonical projection qM : A → A/M defined by qM = |x|M , where |x|M denotes the
equivalence class of x generated by M . From universal algebra results, we have that if M is a
maximal deductive system of A, then A/M is a simple Heyσn-algebra. We say that a variety is
semisimple if every subdirectly irreducible algebra is simple; or equivalently, every algebra of the
variety is a subdirect product of simple algebras. Now, we will show that the variety of Heyσn-
algebras is in fact a semisimple one. Indeed:

Lemma 2.12. Let A be a Heyσn-algebra then the map Φ : A −→
∏

M∈Ew(A)

A/M , defined by

Φ(x)(M) = qM (x), is a one-to-one homomorphism.

Proof. Taking
∏

Mα∈Ew(A)

A/Mα where Ew(A) is the set of maximal w.d.s. defined before. Let us

define Φ : A →
∏

Mα∈Ew(A)

A/Mα such that for every α we have that Φ(a) = fa where fa(α) =
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qα(a) = |a|α ∈ A/Mα with a ∈ A. It is not hard to see that Φ is a Heyσn-homomorphism in view
of the fact that ≡Mα is a congruence relation. Now, from the fact that {1} =

∩
M∈Ew(A)

M , it is

possible to see that Φ is a one-to-one function which completes the proof.

Our next task is to determine the generating algebras. First, for a given Heyσn-algebra, we
want to determine the associated partition to a given congruence. Indeed:

Lemma 2.13. Let A ∈ Heyσn which contains more than one element and M ∈ Ew(A). Then, the
family FM = {EM

j }0≤j≤m, m ≤ n is a partition of A where

EM
j = {a ∈ A : a, σka /∈M, 1 ≤ k ≤ j, σj+1a ∈M},

with 1 ≤ j ≤ n− 2,
EM

n−1 = {a ∈ A : a, σn−1a /∈M},

and EM
0 =M .

In the next, we will present an important algebra that we call a standard Heyσn-algebra and it
is defined as follows:

Cn = ⟨{0, 1
n
,
2

n
, · · · , n− 1

n
, 1},∨,∧,→ {σi}0≤i≤n−1, 0, 1⟩,

where x→ y =

{
1 if x ≤ y

y otherwise
and σi( jn) =

{
0 if i+ j < n

1 if i+ j ≥ n
.

It is clear that the operator σ0 coincides with Baaz’s △-operator for n-valued Gödel algebras,
see [2]. So, we are in a position to prove the following theorem.

Theorem 2.14. Let A be a non-trivial Heyσn-algebra, M ∈ Ew(A) and FM = {EM
j }0≤j≤m,

m ≤ n− 1 the partition associated with M . Then, the map h : A −→ Cn such that h(x) = n− j

n
if x ∈ EM

j is an homomorphism and h−1({1}) =M .

Proof. In paper [18], it was proved that h(σkx) = σkh(x), h(x→ y) = h(x) → h(y) and h(x∨y) =
h(x)∨h(y). So, we only have to prove that h(x∧y) = h(x)∧h(y).Indeed, from (σ−He7) and the fact
that (x∧y) → x = (x∧y) → y = 1, it follows that x, y ∈ EΓ

j implies that x∧y ∈ EΓ
j . Furthermore,

if x ∈ EΓ
j and y ∈ EΓ

i , with 0 < i < j < 1, then it is easy to see that h(x ∧ y) = h(x) ∧ h(y). The
latter is obtained by taking into account that σkx ̸∈ M , σky /∈ M implies σkx ∧ σky /∈ M . The
rest of the proof is left to the reader. Finally, it is not hard to see that h−1({1}) =M .

From the last theorem and well-known results of universal algebra, we have:

Corollary 2.15. The simple Heyσn-algebras are Cn and their subalgebras. They are the unique
subdirectly irreducible algebras up to isomorphism.

3 The calculus Heyσn

Let V ar be a denumerable set of propositional variables. The symbols →, ∨, ∧ and σ0, · · · , σn−1 are
named implication, supremum, infimum, and Moisil’s possibility operators, respectively. We denote
by Fm the set of formulas and it is defined as usual. Besides, we denote by Fm = ⟨Fm,∨,∧,→
, σ0, · · · , σn−1,⊥,⊤⟩ the absolutely free algebra generated by the set V ar.
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Definition 3.1. We denote by Heyσn the calculus determined by Gödel logic axioms, and the fol-
lowings axioms and inference rules where α, β, γ ∈ Fm:

Axiom schemas

(σ-G1) ((σ0α→ β) → α) → α,

(σ-G2) σi(α→ β) → (σiα→ σjβ), for every i, j such that 0 ≤ i ≤ j ≤ n− 1,

(σ-G3) (σiα → σiβ) → ((σi+1α → σi+1β) → · · · ((σn−1α → σn−1β) → σi(α → β)) · · · ) for
every i such that 0 ≤ i ≤ n− 1,

(σ-G4) (σi(α→ σjβ)) ↔ (α→ σjβ) for every i, j such that 0 ≤ i ≤ j ≤ n− 1,

(σ-G5) σn−1α↔ ((α→ σiα) → σjα), for every i, j such that 0 ≤ i ≤ j ≤ n− 1,

(σ-G6) σi(α ∨ β) ↔ (σiα ∨ σiβ), for every i such that 0 ≤ i ≤ n− 1,

(σ-G7) σi(α ∧ β) ↔ (σiα ∧ σiβ), for every i such that 0 ≤ i ≤ n− 1,

(σ-G8) σ0α→ σiα, for every i such that 1 ≤ i ≤ n− 1.

By α↔ β, we denote α→ β and β → α are axioms.

Inference rules

(MP) α, α→ β

β
(NEC) α

σ0α
.

We will consider the usual notion of derivation of a formula α in Heyσn. We say that α is
derivable from Γ in Heyσn, denoted by Γ ⊢ α, if there exists a derivation of α from Γ in Heyσn. If
Γ = ∅, then we denote it by ⊢ α. In this case, we say that α is a theorem of Heyσn. The following
results can be proven in a standard way.

Proposition 3.2.

(P1) ⊢ α→ α,

(P2) {(α→ β) → (α→ γ)} ⊢ α→ (β → γ),

(P3) ⊢ σ0α→ α,

(RP1) ⊢ σ0α
⊢ σiα

for every 1 ≤ i ≤ j ≤ n− 1,

(RP2) ⊢ β
⊢ α→ β

, (RP3) ⊢ α→ (β → γ)

⊢ (α→ β) → (α→ γ)
,

(RP4) ⊢ α→ β,⊢ β → γ

⊢ α→ γ
, (RP5) ⊢ α→ (β → γ)

⊢ β → (α→ γ)
,
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(RP6) ⊢ α→ β

⊢ (γ → α) → (γ → β)
, (RP7) ⊢ α→ β

⊢ (β → γ) → (α→ γ)
,

(NM2) ⊢ σk(α→ β)

⊢ σkα→ σkβ
, (NM8) ⊢ σj(σiα)

⊢ σiα
,

(NM9) ⊢ σiα→ σjσiα, (NM10) ⊢ σj(σiα) → β

⊢ σiα→ β
,

Proof. Routine.

Lemma 3.3. ≡ is a congruence in Fm, where ≡ is defined by α ≡ β iff ⊢ α→ β and ⊢ β → α.

Proof. We only have to see that if α ≡ β, then σiα ≡ σiβ for every 0 ≤ i ≤ i − 1. But this is
immediately from (NEC), (σ-G2), (RP1) and (MP).

From the last Lemma, it is possible to consider the algebra Fm/ ≡ which is known as Lindenbaum-
Tarski algebra; moreover, it is not hard to see that:

Proposition 3.4. The algebra Fm/ ≡ is a Heyσn-algebra where α→ α is the greatest element,
where we denote by α the class of α by ≡.

Now, we will expose necessary notions in order to prove the Completeness Theorem. To this
end, let us start by recalling that a logic defined over a language S is a system L = ⟨For,⊢⟩, where
For is the set of formulas over S and the relation ⊢L⊆ P(For) × For and P(A) is the set of all
subsets of A. The logic L is said to be a Tarskian logic if it satisfies the following properties, for
every set Γ ∪ Ω ∪ {φ, β} of formulas:

(1) if α ∈ Γ, then Γ ⊢L α,

(2) if Γ ⊢L α and Γ ⊆ Ω, then Ω ⊢L α,

(3) if Ω ⊢L α and Γ ⊢L β for every β ∈ Ω, then Γ ⊢L α.

A logic L is said to be finitary if it satisfies the following:

(4) if Γ ⊢L α, then there exists a finite subset Γ0 of Γ such that Γ0 ⊢L α.

The following condition is to add the structurality to a Tarskian logic:

(5) if Γ ⊢L α, then σ[Γ] ⊢L σ(α) for each L-substitution σ;

in this way, we obtain what is known as deductive system.

Definition 3.5. Let L be a Tarskian logic and let Γ be a set of formulas. We say that every set
of formulas is a theory. Moreover, Γ is said to be a consistent theory if there is a formula φ such
that Γ ̸⊢L φ. Besides, we say that Γ is a maximal consistent theory if Γ, ψ ⊢L φ for any formula
ψ /∈ Γ; and, in this case, we say Γ is maximal respect to φ.

A set of formulas Γ is closed in L if the following property holds for every formula φ: Γ ⊢L φ
if and only if φ ∈ Γ. It is easy to see that any maximal consistent theory is a closed one.

Lemma 3.6 (Lindenbaum-Łoś). Let L be a Tarskian and finitary logic. Let Γ ∪ {φ} be a set of
formulas such that Γ ̸⊢L φ. Then, there exists a set of formulas Ω such that Γ ⊆ Ω with Ω maximal
consistent theory with respect to the formula φ in L.
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Proof. The proof can be found [23, Theorem 2.22].

Going back to our logic, we can affirm that Heyσn is a Tarskian and finitary logic. Now, we are
in condition to see the following:

Proposition 3.7. [18] Let Γ ∪ {α} be a set of formulas where Γ is a maximal theory with respect
to α, then:

(NM11) If σiα ∈ Γ, then σi+1α, · · · , σn−1α ∈ Γ with 1 ≤ i < n− 1,

(NM12) If σn−1α /∈ Γ, then σiα /∈ Γ with 1 ≤ i ≤ n− 1.

(NM13) α ∧ β ∈ Γ if and only if α ∈ Γ and β ∈ Γ.

Proof. The proof of (NM11) and (NM12) are in [18, Proposition 4.5]. The proof of (NM13) follows
immediately from that the formula α→ (β → (α ∧ β)) is a theorem in Gödel logic taking it as an
extension of the logic BL.

We will consider a consequence relation ⊨ as follows: for a given function v : Fm → A, we say
that v is a valuation for Heyσn if it satisfies v(α#β) = v(α)#v(β) with # ∈ {→,∨}, v(σiα) = σiv(α)
for every 0 ≤ i ≤ n− 1. Besides, we say that α is a semantically valid formula if, for all valuation
v and for all Heyσn-algebras A , v(α) = 1 and we denote it by ⊨ α. Moreover, we say Γ ⊨ α if for
every valuation v and every Heyσn-algebra A, if v(β) = 1 for every β ∈ Γ, then v(α) = 1.

Now, for a given maximal theory Γ with respect to φ, we denote by Γ/ ≡ the set {α : α ∈ Γ}.
It is clear that Γ/ ≡ is a subset of the n-valued Gödel modal algebra Fm/ ≡. Then:

Theorem 3.8. [18] Let Γ ∪ {φ} ⊆ Fm, with Γ non-trivial maximal respect to φ in Heyσn. Then:

(i) if α ∈ Γ and α = β, then β ∈ Γ;

(ii) Γ/ ≡ is a modal deductive system tied to φ of Fm/ ≡.

It is important to note that from the last theorem, we have that Γ/ ≡ is a maximal deductive
system in the sense of Definition 2.8. Now, the following lemma can be proven using Theorem 3.8
and Lemma 2.10.

Lemma 3.9. Let Γ ∪ {φ} ⊆ Fm, with Γ non-trivial maximal with respect to φ in Heyσn. If α /∈ Γ
then, σ0α→ β ∈ Γ for any β ∈ Fm.

The following theorem is an adaptation of Theorem 2.14 to the syntactic context where we use
the algebra Cn mentioned in this theorem.

Theorem 3.10. Let Γ ∪ {φ} ⊆ Fm, with Γ non-trivial maximal respect to φ in Heyσn. Consider
the map v : Fm → Cn, defined by v(α) = n− j

n
if α ∈ EΓ

j where Cn = ⟨Cn,→,∨, σ0, · · · , σn−1, 1⟩
and

EΓ
j = {α /∈ Γ : σkα /∈ Γ, 0 ≤ k ≤ j, σj+1α ∈ Γ},

with 0 ≤ j < n− 1 and EΓ
0 = Γ and

EΓ
n−1 = {α /∈ Γ : σn−1α /∈ Γ}.

Then, v is homomorphism in Heyσn.
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Proof. We have to prove that v is an homomorphism. In paper [18], it was proved that v(α →
β) = v(α) → v(β), v(σjα) = σjv(α) and v(α∨β) = v(α)∨ v(β). So, we only show that v(α∧β) =

v(α) ∧ v(β). Let us suppose that v(α ∧ β) = n− j

n
. Then, α ∧ β ∈ EΓ

j and σs(α ∧ β) /∈ Γ (with
0 ≤ s ≤ j), σj+1(α ∧ β) ∈ Γ. Thus, we have to prove that σs(α), σs(β) /∈ Γ (with 0 ≤ s ≤ j) and
σj+1(α), σj+1(β) ∈ Γ. Indeed, if σs(α), σs(β) ∈ Γ, then from (σ−G7) we obtain that σs(α∧β) ∈ Γ
(with 0 ≤ s ≤ j), which is a contradiction. Therefore, σs(α ∧ β) /∈ Γ with 0 ≤ s ≤ j. Taking into
account (NM13), it is easy to see that σj+1(α), σj+1(β) ∈ Γ implies σj+1(α) ∧ σj+1(β) ∈ Γ and
then σj+1(α ∧ β) ∈ Γ as desired.

Theorem 3.11. Let Γ ∪ {φ} ⊆ Fm, Γ ⊢ φ if and only if Γ ⊨ φ.

Proof. It is not hard to see that every axiom of Heyσn is valid; furthermore, satisfaction is preserved
by the inference rules.

Conversely, if Γ ̸⊢ φ, then by Theorem 3.6, there exists Ω a non-trivial maximal respect to φ
such that Γ ⊆ Ω. By Theorem 3.10, there exists a valuation v : Fm → Cn such that v(ψ) = 1 iff
ψ ∈ Ω. By hypothesis, we know that φ /∈ Ω. So, v(φ) ̸= 1, then Ω ̸⊨ φ. Since Γ ⊆ Ω, then Γ ̸⊨ φ,
which is a contradiction.

4 The first-order logics of Heyσn: logic QHeyσn

In this section, the first-order logic of Heyσn will be introduced. To this end, let us start by assuming
Θ the propositional signature of Heyσn, as well as two quantified symbols ∀ and ∃, together with the
punctuation marks, commas and parentheses. Furthermore, let us consider V ar be a denumerable
set of individual variables. We denote by FmΣ the set of the formulas and denote by Ter the
absolutely free algebra of the terms. Next, we will consider a complete Heyσn-algebra A as a
lattice in which all subsets have both a supremum and an infimum.

As usual, a first-order signature Σ is a triple ⟨P ,F , C⟩, where P denotes a non-empty set of
predicate symbols, F is a set of function symbols and C denotes a set of of individual constants.
The notions of bound and free variables, closed terms, sentences, and substitutability are also
defined in the standard way.

A Σ-structure A is a pair ⟨A,S⟩ where A is a completeHeyσn-algebra, S = ⟨S, {PS}P∈P , {fS}f∈F , C, ·A⟩,
S is a non-empty domain and ·A is an interpretation map which assigns:

• to each individual constant c ∈ C, an element cA of S;

• to each functional symbol f , a function fA : Sn → S;

• to each predicate symbol P of arity n, a function PA : Sn → A.

By φ(x/t), we denote the formula that results from φ by replacing simultaneously all the free
occurrences of the variable x by t.

Let Σ be a first-order signature. The logic QHeyσn over Σ is obtained by extending Heyσn to
the new language and adding the following axioms and rules:

Axioms Schemas

(Q1) φ(x/t) → ∃xφ, if t is a term free for x in φ,

(Q2) ∀xφ→ φ(x/t), if t is a term free for x in φ,

(Q3) σi∃xφ↔ ∃xσiφ, with 1 ≤ i ≤ n− 1,
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(Q4) σi∀xφ↔ ∀xσiφ, with 1 ≤ i ≤ n− 1.

Inference rules

(QR1) α→ β

∃xα→ β
, and x does not occur free in β,

(QR2) α→ β

α→ ∀xβ
, and x does not occur free in α,

We denote by ⊢ α the derivation of a formula α in QHeyσn, and with Γ ⊢ α the derivation
of α from the set of premises Γ. These notions are defined as usual. We denote ⊢ φ ↔ ψ as an
abbreviation of ⊢ φ→ ψ and ⊢ ψ → φ.

A A-valuation is a mapping v : V ar → S. By v[x→ a] we denote the the following A-valuation,
v[x→ a](x) = a and v[x→ a](y) = v(y) for any y ∈ V such that y ̸= x.

It is important to note that the axiom (Q3) and (Q4) comes from the definition of monadic
MVn-algebras, see [15, Section 7]. Furthermore, this request is present on monadic version of
algebraic structures with possibility operators or simply unary operators where these operators
commute with the quantifiers as we can see in the paper [1, 16, 19].

Returning to our logic, let S = ⟨A,S⟩ be a Σ-structure and v a S-valuation. We define the
values of the terms and the truth values of the formulas in S for a valuation v as follows:

||c||Sv = cS if c ∈ S,
||x||Sv = v(x) if x ∈ V ar,

||f(t1, · · · , tn)||Sv = fS(||t1||Sv , · · · , ||tn||Sv ), for any f ∈ F ,
||P (t1, · · · , tn)||Sv = PS(||t1||Sv , · · · , ||tn||Sv ), for any P ∈ P ,

||α→ β||Sv = ||α||Sv → ||β||Sv ,
||α ∧ β||Sv = ||α||Sv ∧ ||β||Sv ,
||α ∨ β||Sv = ||α||Sv ∨ ||β||Sv ,

||¬α||Sv = ¬||α||Sv ,
||σiα||Sv = σi||α||Sv ,

||∀xα||Sv =
∧
a∈S

||α||Sv[x→a],

||∃xα||Sv =
∨
a∈S

||α||Sv[x→a].

Now, it is easy to see that the following property ||φ(x/t)||Av = ||φ||A
v[x→||t||Av ]

holds.
Now, we say that A and v satisfy a formula φ, denoted by A ⊨ φ[v], if ||φ||Av = 1. Besides, we

say that φ is true S if ||φ||Av = 1 for each A-valuation v and we denote it by A ⊨ φ. We say that
φ is a semantical consequence of Γ in QHσ

n, if, for any structure A: if A ⊨ γ for each γ ∈ Γ,
then A ⊨ φ. In this case, we denote it by Γ ⊨ φ.

The following technical result is essential to prove the Soundness Theorem.

Lemma 4.1. [18] Let A be a complete Heyσn-algebra and the set {ai}i∈I of elements of A for any
non-empty set I. Then, if there exists

∨
i∈I

ai (
∧
i∈I

ai), then there exists
∨
i∈I

σjai (
∧
i∈I

σjai), and also∨
i∈I

σjai = σj
∨
i∈I

ai and
∧
i∈I

σjai = σj
∧
i∈I

ai hold, for every 0 ≤ j ≤ n− 1.
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Theorem 4.2. Let Γ ∪ {φ} ⊆ FmΣ, if Γ ⊢ φ then Γ ⊨ φ

Proof. Let us consider the fixed structure M = ⟨A,S⟩. Let φ be a formula such that Γ ⊢ φ. Then,
there exists α1, · · · , αn a derivation of φ from Γ. If n = 1 then φ is an axiom or φ ∈ Γ. If φ ∈ Γ,
then it is easy to see that Γ ⊨ φ. If φ is an axiom we have the trueness of (σ-G1) to (σ-G8). Now,
let us Suppose that φ is α(x/t) → ∃xα. Then, ||φ||Mv = ||α||M

v[x→||t||Mv ]
→ ||∃xα||Mv . It is clear that

||α||M
v[x→||t||Mv ]

≤
∨
a∈S

||α||Mv[x→a], then ||α||M
v[x→||t||Mv ]

≤ ||∃xα||Mv . Therefore ||α(x/t) → ∃xα||Mv = 1.

So, we have the axiom (Q1) is valid on M = ⟨A,S⟩. In an analogous way, we have the axiom (Q2)
is also valid. To prove the validity of (Q3) and (Q4), we need to use Lemma 4.1. Besides, it is not
difficult to see that satisfaction is preserved by the inference rules.

In what follows, we will prove a strong version of Completeness Theorem for QHσ
n using the

Lindenbaum-Tarski algebra in a similar way to the propositional case. First, let us consider the
notion of (maximal) consistent and closed theories with respect to some formula in the same way
as the propositional case. Therefore, we have that Lindenbaum- Łoś Theorem holds for QHσ

n, see
Section 3. The relation ≡ defined by α ≡ β iff ⊢ β → α and ⊢ α → β. Thus, we have the algebra
FmΣ/ ≡ is a Heyσn-algebra and the proof is exactly the same as in the propositional case. On the
other hand, it is clear that QHσ

n is a Tarskian and finitary logic, see Section 3. Then, we have the
following:

Lemma 4.3. [18] Let Γ ∪ {φ} ⊆ FmΣ, with Γ non-trivial maximal with respect to φ in QHσ
n. Let

Γ/ ≡= {α : α ∈ Γ} be a subset of FmΣ/ ≡, then:

(i) If α ∈ Γ and α = β, then β ∈ Γ. Besides, it is verified that Γ/ ≡= {α : Γ ⊢ α} in this case
we say that it is closed.

(ii) Γ/ ≡ is a modal deductive system of FmΣ/ ≡. Also, if φ /∈ Γ/ ≡ and for any modal deductive
system D being closed in the sense of 1 and containing properly to Γ/ ≡, then φ ∈ D.

The previous lemma is essential in the proof of Completeness Theorem because it allow us to
prove the following technical result:

Proposition 4.4. Let FmΣ/Γ be the Heyσn-algebra defined as: α ≡Γ β iff α → β, β → α ∈ Γ.
Then, FmΣ/Γ is a finite chain which is a simple Heyσn-algebra.

Proof. For a given maximal consistent theory Γ of FmΣ, we have Γ/ ≡ is a maximal modal
deductive system of FmΣ/ ≡, this is thanks to Lemma 4.3. Let us denote A := FmΣ/ ≡ and
θ := Γ/ ≡ by well-known results of Universal algebra, we have the quotient algebra A/θ is a simple
algebra, see Theorem 2.14.

From the latter and by adapting the first isomorphism theorem, we have that A/θ is isomorphic
to FmΣ/Γ where it is defined by the congruence α ≡Γ β iff α→ β, β → α ∈ Γ as desired.

Now, we are in conditions to prove the following central theorem:

Theorem 4.5. Let Γ ∪ {φ} be a set of formulas sentences, if Γ ⊨ φ then Γ ⊢ φ.

Proof. Let us suppose Γ ⊨ φ and Γ ̸⊢ φ. Then, by Lindenbaum- Łoś Lemma, there exists ∆
maximal consistent theory with respect to φ such that Γ ⊆ ∆. Now, consider the algebra FmΣ/∆
defined by the congruence α ≡∆ β iff α → β, β → α ∈ ∆. We know that FmΣ/∆ is isomorphic
to a subalgebra of Cn (by Proposition 4.4) and so complete as a lattice, in view of the above
observations.
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Let us consider the function π∆ : Fm → FmΣ/∆ (the canonical projection ) and the structure
M = ⟨FmΣ/∆, T er, ·Ter⟩ where Ter is a set of terms defined at the beginning of the section. So,
it is clear that for every t ∈ Ter we have a constant t̂ of Σ. Now, we can consider a function
µ : V ar → Ter defined by µ(x) = x and the interpretation || · ||Mµ : Fm → FmΣ/∆ defined by:

• if t̂ is a constant, then ||t̂||Mµ := t;

• if f ∈ F , then ||f(t1, · · · , tn)||Mµ = f(t1, · · · , tn);

• if P ∈ P , then ||P (t1, · · · , tn)||Mµ = π∆(P (t1, · · · , tn)).

Our interpretation is defined for atomic formulas, but it is easy to see that ||α||Mµ = π∆(α)
for every quantifier-free formula α. Moreover, it is easy to see that for every formula ϕ(x) and
every term t, we have ||ϕ(x/t̂)||Mµ = ||ϕ(x/t)||Mµ . Therefore, from the latter property and by
(Q1) and (RQ1), we have ||∀xα||Mµ =

∧
a∈TΘ

||α||Mµ[x→a] and now using (Q2) and (RQ2), we obtain

||∃xα||Mµ =
∨

a∈TΘ

||α||Mµ[x→a]. So, || · ||Mµ is an interpretation map such that ||α||Mµ = 1 iff α ∈ ∆. On

the other hand, it is not hard to see for every formula β ∈ Γ ∪ {α}, we have ||β||Mµ = ||β||Mv for
every M-valuation v. Therefore, M ⊨ γ for every γ ∈ Γ but M ̸⊨ φ.

Given a formula φ and suppose {x1, · · · , xn} is the set of variables of φ, the universal closure
of φ is defined by ∀x1 · · · ∀xnφ. Thus, it is clear that if φ is a sentence, then the universal closure
of φ is itself. Now, we are in position to prove the following Completeness Theorem for formulas:

Theorem 4.6. Let Γ ∪ {φ} be a set formulas. If Γ ⊨ φ, then Γ ⊢ φ.

Proof. Let us suppose Γ ⊨ φ and consider the set ∀Γ the universal closure of Γ. From the latter and
definition of ⊨, we have ∀Γ ⊨ ∀x1 · · · ∀xnφ. Then, according to Theorem 4.5, ∀Γ ⊢ ∀x1 · · · ∀xnφ.
Now, from latter and (Q1) and (RQ1), we have Γ ⊢ φ as desired.

5 Concluding remarks
In this paper, we have studied logics associated to the class of n-valued σ-Gödel logic. These logics
have been presented in the propositional and first-order versions. The axiomatic for the Gödel
logic is displayed by extending to Basic Fuzzy logic (BL) with a special axiom. Furthermore,
Adequacy theorem for the quantified versions is not based in adding axiom of constant domain, in
general, the proof is different to the one given for ∆-fuzzy logics. As future work, we are interested
in studying BL logic expanded by σi operators presented here. Recall that the BL logic has as
axiomatic extension Łukasiewicz logic and, in n-valued case, this logic has expressive power enough
to define the σi operator in terms of the connective of the language, see, for instance, [15, Section
7]. In our paper, the axiomatization for σi operators is different to the one given by Baaz for
∆ operator. So, we will explore if our axiomatization for Gödel logic is good enough to the BL
finite-valued logic.
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