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Abstract

The notion of a positive implicative equality algebras
are defined, and related properties are studied. Char-
acterizations of a positive implicative equality algebra is
investigated. Conditions for an equality algebra to be
positive implicative are provided. Equality algebra with
some types is considered, and several properties are in-
vestigated. Using equality algebra with some types, we
characterize a commutative equality algebra and a posi-
tive implicative algebra.
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1 Introduction
A new structure, called equality algebras, is introduced by Jenei in [6]. The basic idea for examining
equations of equality algebra is taken from EQ-algebras of Novák et al. [9]. The equality algebra
has two connectives, a meet operation and an equivalence, and a constant. Given that equality
algebra can be considered as corresponding algebras with fuzzy type theory, it is important to
study in this field. In [7], the author studied the relation among equality algebra and BCK-meet
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semilattice and they proved that every BCK(D)-meet semilattice and equality algebra equivalent.
Equality algebra has been studied by mathematicians in various fields and excellent results have
been obtained, including the relation between equality algebra with other algebraic structures are
obtained by Zebardast et al. in [14] such as residuated lattice, MTL-algebra, BL-algebra and etc.
They showed that under special conditions, they are equivalent. Moreover, commutative equality
algebras and characterizations of them are discussed in [4, 5, 13, 14]. Also, in [12], Rezaei and et al.
introduced the concept of derivation on equality algebra X by using the notions of inner and outer
derivations. Then they investigated some properties of (inner, outer) derivation and introduced
some suitable conditions that they help us to define a derivation on X. They introduced kernel
and fixed point sets of derivation on X and proved that under which condition they are filters of
X. Finally, they proved that the equivalence relations on (X,→, 1) coincide with the equivalence
relations on X with derivation d. In addition, in [3], Aaly and et al. introduced the concept of
an implicative equality algebra and related properties are investigated. Characterizations of an
implicative equality algebra and the relation among implicative and positive implicative equality
algebras are discussed. Also, they defined the notion of annihilator of equality algebras and
investigated some traits of it and proved that annihilator of any nonempty set of equality algebras
is a deductive system. Moreover, by using this notion, they define the operation ∗ and proved that
for any commutative equality algebra X, the algebraic structure (DS(X), ∗, {1}) is a bounded
implicative BCK-algebra.

This paper contains the notion of (positive) implicative equality algebras, and we study related
properties of them. We discuss characterizations of a positive implicative equality algebra, and
provide conditions for an equality algebra to be positive implicative. We consider equality algebra
with some types, and investigate several properties. Using equality algebra with some types, we
characterize a commutative equality algebra and a positive implicative algebra.

2 Preliminaries
Definition 2.1. [6, 7] By an equality algebra, we mean an algebra (X,∧,∼, 1) satisfying the next
conditions.

(E1) (X,∧, 1) is a commutative idempotent integral monoid,

(E2) The operation “∼” is commutative,

(E3) (∀x ∈ X)(x ∼ x = 1),

(E4) (∀x ∈ X)(x ∼ 1 = x),

(E5) (∀x, y, z ∈ X)(x ≤ y ≤ z ⇒ x ∼ z ≤ y ∼ z, x ∼ z ≤ x ∼ y),

(E6) (∀x, y, z ∈ X)(x ∼ y ≤ (x ∧ z) ∼ (y ∧ z)),

(E7) (∀x, y, z ∈ X)(x ∼ y ≤ (x ∼ z) ∼ (y ∼ z)),

where x ≤ y iff x ∧ y = x.

Note. From now on the symbol X means an equality algebra such as (X,∧,∼, 1).
In X, we define two operations “→” and “⇋” on X as follows:

x → y := x ∼ (x ∧ y), (1)
x ⇋ y := (x → y) ∧ (y → x). (2)
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Proposition 2.2. [7] For all x, y, z ∈ X, we have

x → y = 1iff x ≤ y, (3)
x → (y → z) = y → (x → z), (4)
1 → x = x, x → 1 = 1, x → x = 1, (5)
x ≤ y → z iff y ≤ x → z, (6)
x ≤ y → x, (7)
x ≤ (x → y) → y, (8)
x → y ≤ (y → z) → (x → z), (9)
y ≤ x ⇒ x ⇋ y = x → y = x ∼ y, (10)
x ∼ y ≤ x ⇋ y ≤ x → y, (11)

x ≤ y ⇒
{

y → z ≤ x → z,
z → x ≤ z → y

(12)

The algebraic structure X is said to be bounded if there is a least element such as 0 ∈ X such
that 0 ≤ x for every x ∈ X. If X is bounded, then we introduce the unary operation “¬” on X as
¬x = x → 0 = x ∼ 0 for each x ∈ X.

3 Positive implicative equality algebras
Definition 3.1. The structure X is said to be positive implicative if it satisfies:

(∀x, y, z ∈ X)(x → (y → z) = (x → y) → (x → z)). (13)

Example 3.2. Suppose X = {0, a, b, c, 1} has the next Hasse diagram.

rr rrr
0

c

a b

1
JJ





JJ

Then (X,∧, 1) is a monoid. Define an operation ∼ on X by Table 1. Then (X, ∧, ∼, 1) is positive

Table 1: Cayley table for the implication “∼”

∼ 0 a b c 1

0 1 0 0 0 0
a 0 1 c b a
b 0 c 1 a b
c 0 b a 1 c
1 0 a b c 1

implicative, and the implication (→) is shown in Table 2.
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Table 2: Cayley table for the implication “→”

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

Theorem 3.3. The structure X is positive implicative iff

(∀x, y ∈ X)(x → (x → y) = x → y). (14)

Proof. By using (13) and (5), we have

x → (x → y) = (x → x) → (x → y) = 1 → (x → y) = x → y,

for all x, y ∈ X.
Conversely, consider X is satisfying the condition (14). Consider x, y, z ∈ X. Then

((z → y) → (z → x)) → (z → (y → x)) = ((z → y) → (z → x)) → (y → (z → x))

≥ y → (z → y) = z → (y → y) = z → 1 = 1,

and so (z → y) → (z → x) ≤ z → (y → x). Also,

a → (y → z) ≤ a → ((z → x) → (y → x)) = (z → x) → (a → (y → x)), (15)

for all a ∈ X by (4), (7) and (12). If we put x := z → x, y := z → y, z := z → (z → x) and
a := z → (y → x) in (15), then

((z → (z → x)) → (z → x)) → ((z → (y → x)) → ((z → y) → (z → x)))

≥ (z → (y → x)) → ((z → y) → (z → (z → x)))

≥ (z → (y → x)) → (y → (z → x)) = 1,

by (4), (5), (9) and (12). From (3),(5) and (14) that

z → (y → x) ≤ (z → y) → (z → x).

Hence z → (y → x) ≤ (z → y) → (z → x), and therefore X is positive implicative.

Lemma 3.4. In X, we have

(∀x, y ∈ X)((((x → y) → y) → x) → x ≤ (x → y) → ((y → x) → x)). (16)

Proof. Let x, y ∈ X. Since y ≤ (y → x) → x by (8), we have

(x → y) → y ≤ (x → y) → ((y → x) → x),
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by (12). By (4),

x → y ≤ ((x → y) → y) → ((y → x) → x)

= (y → x) → (((x → y) → y) → x)

= (y → x) → (((((x → y) → y) → x) → x) → x)

= ((((x → y) → y) → x) → x) → ((y → x) → x),

which implies the ((((x → y) → y) → x) → x ≤ (x → y) → ((y → x) → x)).

Proposition 3.5. If X is positive implicative , then

(∀x, y ∈ X)((((x → y) → y) → x) → x = (x → y) → ((y → x) → x)). (17)

Proof. For any x, y ∈ X, we get

(x → y) → ((y → x) → x) ≤ (x → y) → ((x → y) → ((y → x) → y))

= (y → x) → ((x → y) → ((x → y) → y))

= (y → x) → ((x → y) → y)

≤ (((x → y) → y) → x) → ((x → y) → y)

≤ (((x → y) → y) → x) → ((((x → y) → y) → x) → x)

= (((x → y) → y) → x) → x.

From Lemma 3.4,

(((x → y) → y) → x) → x = (x → y) → ((y → x) → x),

for all x, y ∈ X.

Proposition 3.6. Every positive implicative equality algebra X satisfies the next conditions:

(∀x, y ∈ X)(((x → y) → y) → (x → y) = x → y). (18)
(∀x, y ∈ X)((x → y) → ((x → y) → y) = (x → y) → y). (19)
(∀x, y ∈ X)((x → y) → ((y → x) → x) = (y → x) → ((x → y) → y)). (20)

Proof. If we replace x with x → y in (17) and use (5), then

x → y = 1 → (x → y) = ((x → y) → (x → y)) → (x → y)

= ((((x → y) → y) → y) → (x → y)) → (x → y)

= ((x → y) → y) → ((y → (x → y)) → (x → y))

= ((x → y) → y) → (x → y),

for all x, y ∈ X. (19) is induced by substituting x → y for x in (18). Using (4), (12) and (19), we
get

(y → x) → ((x → y) → y) = (y → x) → ((x → y) → ((x → y) → y))

≥ (y → x) → ((x → y) → x)

= (x → y) → ((y → x) → x).

Similarly, we have the reverse inequality, and so (20) is valid.
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We find conditions for converting an equality algebra to positive implicative one.

Theorem 3.7. If X satisfies the condition (20), then it is positive implicative.

Proof. Cosider X satisfying the condition (20). If we put y := y → x in (20), then

y → x = 1 → (((y → x) → x) → x)

= (x → (y → x)) → (((y → x) → x) → x)

= ((y → x) → x) → ((x → (y → x)) → (y → x))

= ((y → x) → x) → (y → x)

= y → (((y → x) → x) → x)

= y → (y → x).

By Theorem 3.3, X is positive implicative.

Summarizing the above results induces characterizations of a positive implicative equality al-
gebra which is described in the next theorem.

Theorem 3.8. A structure X is positive implicative iff any one of conditions (17), (18), (19) and
(20) is true.

Proposition 3.9. Every positive implicative equality algebra X satisfies the next assertion.

(∀x, y ∈ X)(x → (x → y) = 1 ⇒ x → y = 1). (21)

Proof. Assume that x → (x → y) = 1 for all x, y ∈ X. If we put y := x and z := y in (13) and use
(5), then

x → y = 1 → (x → y) = (x → x) → (x → y) = x → (x → y) = 1,

for all x, y ∈ X.

Theorem 3.10. If X satisfies the condition (21), then it is positive implicative.

Proof. Using (4), we get

x → (x → ((x → (x → y)) → y)) = (x → (x → y)) → (x → (x → y)) = 1,

and so 1 = x → ((x → (x → y)) → y) = (x → (x → y)) → (x → y). Since (x → y) → (x → (x →
y)) = 1, we obtain x → (x → y) = x → y. Therefore X is a positive implicative equality algebra
by Theorem 3.3.

Given a, b ∈ X, we define

X(a, b) := {x ∈ X | a ≤ b → x}. (22)

Clearly 1, a and b are contained in X(a, b).

Definition 3.11. The structure X is called an &-equality algebra if for all a, b ∈ X, the set X(a, b)
has the least element which is denoted by a � b.
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Easily, we obtain

(∀a, b ∈ X)(a � b ≤ a, a � b ≤ b, a � 1 = 1 � a = a), (23)

in the &-equality algebra X(See [2]).

Lemma 3.12. [2] In an &-equality algebra X, we have

(1) (x � y) → z = x → (y → z),

(2) (x → y) � (y → z) ≤ x → z,

(3) x � y ≤ x → y ≤ (z � x) → (z � y).

(4) x � y = y � x.

(5) (x � y) � z = x � (y � z).

(6) x ≤ y ⇒ x � z ≤ y � z.

Lemma 3.13. [2] For any elements a and b of X, if x ∈ X is infimum of x�a ≤ b, then x = a → b.

Proposition 3.14. Suppose X is a positive implicative &-equality algebra. Then

(∀x, y ∈ X)(x ≤ y ⇒ x � y = x). (24)
(∀x ∈ X)(x � x = x). (25)
(∀x, y, z ∈ X)(z → (y � x) = (z → y) � (z → x)). (26)
(∀x, y ∈ X)(x � y = (x → y) � x). (27)

Proof. Consider x, y ∈ X is such that x ≤ y. Then x → y = 1. Since x ≤ y → (x � y), by (4), (5),
(9) and (13), we consequence

x → (x � y) = 1 → (x → (x � y)) = (x → y) → (x → (x � y)) = x → (y → (x � y)) = 1.

Hence x�y = x, and (24) is valid. (25) is obtained by taking y := x in (24). Using Lemma 3.12(3),
we get

z → x ≤ (y � z) → (y � x) = (z � y) → (y � x). (28)

From (6), clearly z � y ≤ (z → x) → (y � x). If we take x := y and y := z in (28) and use (25),
(12) and (4), then

z → y ≤ (z � z) → (z � y) = z → (z � y)
≤ z → ((z → x) → (y � x))
= (z → x) → (z → (y � x)),

that is, z → (y � x) ∈ X(z → y, z → x). Therefore

(z → y) � (z → x) ≤ z → (y � x).
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Since y � x ≤ x and y � x ≤ y, we have z → (y � x) ≤ z → x and z → (y � x) ≤ z → y by (12).
Hence

z → (y � x) = (z → (y � x)) � (z → (y � x))
≤ (z → y) � (z → (y � x))
≤ (z → y) � (z → x),

by (25) and (12). Therefore z → (y � x) = (z → y) � (z → x) for all x, y, z ∈ X. If x, y ∈ X,
then obviously y � x is a lower bound of {x, y}. Suppose z ∈ X is a lower bound of {x, y}. Then
z → x = 1 and z → y = 1. By (25) and (26),

z → (y � x) = (z → y) � (z → x) = 1 � 1 = 1,

i.e., z ≤ y � x. Therefore y � x is the greatest lower bound of {x, y}. Lemma 3.13 implies that
(x → y) � x ≤ y. Thus

(x → y) � x = (x → y) � (x � x) = ((x → y) � x) � x ≤ y � x,

by (25) and Lemma 3.12. Obviously, y � x ≤ (x → y) � x. Therefore (27) is valid.

Theorem 3.15. Every &-equality algebra X satisfying the condition (27) is positive implicative.

Proof. Assume that an &-equality algebra X satisfies the condition (27). Using Lemma 3.12(1)
and (27), we get

y → x = (1 � y) → x = ((y → y) � y) → x = (y � y) → x = y → (y → x),

for all x, y ∈ X. By Theorem 3.3, we have X is positive implicative.

Corollary 3.16. If an &-equality algebra X satisfies one of the conditions (24), (25) and (26),
then it is positive implicative.

Theorem 3.17. Every bounded commutative equality algebra is an &-equality algebra.

Proof. Consider X is a bounded commutative equality algebra. Suppose � is an operation on X
defined by

� : X ×X → X, (a, b) 7→ ¬(b → ¬a).

Then b ≤ (b → ¬a) → ¬a = a → ¬(b → ¬a) = a → (a � b), and so a � b ∈ X(a, b). If x ∈ X(a, b),
then b ≤ a → x. Thus

1 = b → (a → x) = b → (a → ¬¬x) = ¬x → (b → ¬a),

that is, ¬x ≤ b → ¬a. Hence a � b = ¬(b → ¬a) ≤ ¬¬x = x. This shows that a � b is the least
element of X(a, b) for all a, b ∈ X. Therefore X is an &-equality algebra.

Corollary 3.18. Every bounded commutative equality algebra X satisfying the condition (27) is
positive implicative.

The next example illustrates Theorem 3.17.

Example 3.19. Assume X = {0, a, b, 1} has the next Hasse diagram.
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Now, we define a binary operation ∼ on X by Table 3. Then the implication (→) is given by Table

Table 3: Cayley table for the implication “∼”

∼ 0 a b 1

0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

4. Also we can verity that it is an &-equality algebra in which the &-operation is given by Table 5.

Table 4: Cayley table for the implication “→”

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Table 5: Cayley table for the binary operation “&”

& 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Now, by an example we show that a bounded &-equality algebra which is not commutative
exists.

Example 3.20. Consider X which is given in Example 3.2. Then the &-operation in X is
given by Table 6. Hence X is a bounded &-equality algebra. But it is not commutative since
(c → 0) → 0 6= (0 → c) → c.
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Table 6: Cayley table for the operation “&”

& 0 a b c 1

0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

The next theorem is an immediate consequence of Proposition 3.14 and Lemma 3.12.

Theorem 3.21. Every positive implicative &-equality algebra is a Brouwerian semi-lattice.

Corollary 3.22. If every bounded commutative equality algebra is positive implicative, then it is
a semi-Brouwerian algebra.

4 Equality algebras of type (m,n; i, j)

For any x, y ∈ X, we define

X(1,1)(x, y) := (y → x) → x, (29)
X(i+1,j)(x, y) := (y → x) → X(i,j)(x, y), (30)
X(i,j+1)(x, y) := (x → y) → X(i,j)(x, y), (31)

where i and j are natural numbers. Easily x ≤ X(1,1)(y, x), y ≤ X(1,1)(x, y), and X(1,1)(x, y) →
x = y → x.

Definition 4.1. Suppose m, n, i and j are natural numbers. The structure X is said to be of type
(m,n; i, j) if X(m,n)(x, y) = X(i,j)(y, x) for all x, y ∈ X.

Example 4.2. (1) Consider X which is given in Example 3.19. It is routine to check that it is
an equality algebra of type (2, 1; 2, 1).

(2) Assume X = {0, a, b, 1} is a chain such that 0 ≤ a ≤ b ≤ 1. Then (X,∧, 1) is a commutative
idempotent integral monoid. We define a binary operation ∼ on X by Table 7. Then (X, ∧, ∼, 1)

Table 7: Cayley table for the implication “∼”

∼ 0 a b 1

0 1 0 0 0
a 0 1 a a
b 0 a 1 b
1 0 a b 1

is a positive implicative equality algebra, and the implication “→” is given by Table 8. By routine
calculation, we can see that X is an equality algebra of type (2, 2; 1, 2).
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Table 8: Cayley table for the implication “→”

→ 0 a b 1

0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Example 4.3. Every commutative equality algebra is an equality algebra of type (1, 1; 1, 1).

By Example 4.3, we know that equality algebra of type (m,n; i, j) is a generalization of com-
mutative equality algebra.

Proposition 4.4. In X, we have

(1) If m is fixed, then X(m,n)(x, y) ≤ X(m,1)(x, y) and X(m,n)(y, x) ≤ X(m,1)(y, x),

(2) If n is fixed, then X(m,n)(x, y) ≤ X(1,m)(x, y) and X(m,n)(y, x) ≤ X(1,m)(y, x),

(3) If m ≤ i and n ≤ j, then X(m,n)(x, y) ≤ X(i,j)(x, y),

(4) X(i,j−1)(y, x) → X(m−1,n)(x, y) ≤ X(i,j)(y, x) → X(m,n)(x, y),

(5) X(i−1,j)(y, x) → X(m,n−1)(x, y) ≤ X(i,j)(y, x) → X(m,n)(x, y),

(6) If n ≥ 2, then X(1,1)(y, x) ≤ X(m,n)(x, y), X(1,1)(x, y) ≤ X(m,n)(y, x),

for all x, y ∈ X.

Proof. (1) and (2) are clear. Easily, we consequence X(m,n)(x, y) ≤ X(m+1,n)(x, y) and X(m,n)(x, y) ≤
X(m,n+1)(x, y). Hence the mathematical inducetion induces (3).

(4) and (5). Using (4) and (9), we get

X(i,j−1)(y, x) → X(m−1,n)(x, y) ≤ ((y → x) → X(i,j−1)(y, x)) → ((y → x) → X(m−1,n)(x, y))

= X(i,j)(y, x) → X(m,n)(x, y),

and

X(i−1,j)(y, x) → X(m,n−1)(x, y) ≤ ((x → y) → X(i−1,j)(y, x)) → ((x → y) → X(m,n−1)(x, y))

= X(i,j)(y, x) → X(m,n)(x, y),

for all x, y ∈ X.
(6) We first prove that X(1,1)(y, x) ≤ X(m,2)(x, y) for all x, y ∈ X. Using (8) and (12), we have

X(1,1)(y, x) = (x → y) → y ≤ (x → y) → ((y → x) → x)

= (x → y) → X(1,1)(x, y) = X(1,2)(x, y).

Suppose that X(1,1)(y, x) ≤ X(k,2)(x, y) for any k( 6= 1) ∈ N. Then

X(1,1)(y, x) ≤ X(k,2)(x, y) ≤ (y → x) → X(k,2)(x, y) = X(k+1,2)(x, y),
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by (7). Hense, X(1,1)(y, x) ≤ X(m,2)(x, y) for all m ∈ N by mathematical induction on m. Now,
suppose that X(1,1)(y, x) ≤ X(m,n)(x, y) for all m,n ∈ N with n 6= 1. Then

X(1,1)(y, x) ≤ X(m,n)(x, y)

≤ (y → x) → X(m,n)(x, y)

≤ (x → y) → ((y → x) → X(m,n)(x, y))

≤ (y → x) → ((x → y) → X(m,n)(x, y))

≤ (y → x) → X(m,n+1)(x, y)

= X(m+1,n+1)(x, y).

Therefore X(1,1)(y, x) ≤ X(m,n)(x, y) by mathematical induction. Similarly, we have X(1,1)(x, y) ≤
X(m,n)(y, x).

We consider conditions for equality algebra of type (m,n; i, j) to be commutative and/or pos-
itive implicative.

Lemma 4.5. If for x, y ∈ X, x ≤ y, then X(1,1)(y, x) = y and X(m,n)(x, y) = X(m,1)(x, y) for all
natural numbers m and n.

Proof. Straightforward.

Lemma 4.6 ([14]). The structure X is commutative iff

(∀x, y ∈ X)(y ≤ x ⇒ x = (x → y) → y).

Theorem 4.7. If X is of types (1, 1; i, j), then it is commutative.

Proof. Assume that X is of type (1, 1; i, j) and suppose x, y ∈ X such that y ≤ x. Then

x = X(1,1)(x, y) = X(i,j)(y, x) = X(i,1)(y, x) ≥ X(1,1)(y, x) ≥ x,

and so x = X(1,1)(y, x) = (x → y) → y. Therefore X is commutative by Lemma 4.6.

Corollary 4.8. If X is of type (m, 1; i, j), then it is commutative.

Proof. Assume that X is of type (m, 1; i, j) and suppose x, y ∈ X such that y ≤ x. Then
X(m,1)(x, y) = X(i,j)(y, x) and

X(m,1)(x, y) = (y → x)m−1 → X(1,1)(x, y) = 1 → X(1,1)(x, y) = X(1,1)(x, y).

Moreover, by Theorem 4.7, X is commutative.

Corollary 4.9. If X is of type (m,n; i, 1), then it is commutative.

Proof. Assume that X is of type (m,n; i, 1) and let x, y ∈ X such that y ≤ x. Then X(m,n)(x, y) =
X(i,1)(y, x) and

X(i,1)(y, x) = X(m,n)(x, y) = (y → x)m−1 → X(1,n)(x, y) = X(1,n)(x, y).

Then X is of type (i, 1; 1, n). By Theorem 4.7, X is commutative.
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For any x and y of X, we define

y1 → x := y → x and yn → x := y → (yn−1 → x). (32)

Proposition 4.10. For any natural numbers m and n with m < n, we have

(∀x, y ∈ X)(ym → x = yn → x ⇒ (∀k ∈ N)(ym+k → x = ym → x)). (33)

Proof. Consider x, y ∈ X such that ym → x = yn → x for all m,n ∈ N with m < n. Using (7), we
have ym → x ≤ ym+1 → x ≤ yn → x = ym → x for all x, y ∈ X. Hence

ym → x = ym+1 → x = ym+2 → x = · · · = ym+k → x,

for any k ∈ N.

Proposition 4.11. Every X satisfies:

(∀n ∈ N)(∀x, y ∈ X)(yn → x = (X(1,1)(x, y))
n → x). (34)

Proof. Assume x, y ∈ X and n ∈ N. If n = 1, then

(X(1,1)(x, y)) → x = ((y → x) → x) → x = y → x.

Suppose yk → x = (X(1,1)(x, y))
k → x for k ∈ N. Then

(X(1,1)(x, y))
k+1 → x = ((y → x) → x)k+1 → x

= ((y → x) → x)k → (((y → x) → x) → x)

= ((y → x) → x)k → (y → x)

= y → (((y → x) → x)k → x)

= y → ((X(1,1)(x, y))
k → x)

= y → (yk → x)

= yk+1 → x.

By mathematical induction, we get yn → x = (X(1,1)(x, y))
n → x for all n ∈ N and x, y ∈ X.

Proposition 4.12. Every X of type (m,n; i, j) satisfies:

(∀x, y ∈ X)(yn → x = yi → x). (35)

Proof. Using (34), we have

X(m,n)(y → x, x)

= (x → (y → x))m−1 → X(1,n)(y → x, x)

= (x → (y → x))m−1 → (((y → x) → x)n−1 → X(1,1)(y → x, x))

= (x → (y → x))m−1 → (((y → x) → x)n−1 → ((x → (y → x)) → (y → x)))

= (x → (y → x))m → (((y → x) → x)n−1 → (y → x))

= 1 → (y → (X(1,1)(x, y))
n−1 → x)

= y → (yn−1 → x) = yn → x,
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and

X(i,j)(x, y → x)

= (x → (y → x))j−1 → X(i,1)(x, y → x)

= (x → (y → x))j−1 → (((y → x) → x)i−1 → X(1,1)(x, y → x))

= ((y → x) → x)i−1 → (((y → x) → x) → x)

= ((y → x) → x)i−1 → (y → x)

= y → (((y → x) → x)i−1 → x)

= y → ((X(1,1)(x, y))
i−1 → x)

= y → (yi−1 → x)

= yi → x,

for all x, y ∈ X. Thus yn → x = yi → x for all x, y ∈ X.

Proposition 4.13. Every X of type (i, i; i, i) is an equality algebra of types (i,m;m, i) and
(m, i; i,m), where i,m ∈ N and m ≥ i.

Proof. Suppose i,m ∈ N with m ≥ i and m = i + k. Since X is of type (i, i; i, i), we have
X(i,i)(x, y) = X(i,i)(y, x) for all x, y ∈ X. Then

X(i,m)(x, y) = (x → y) → X(i,m−1)(x, y)

= (x → y) → ((x → y) → X(i,m−2)(x, y))

= (x → y)2 → X(i,m−2)(x, y)

...
= (x → y)k → X(i,m−k)(x, y)

= (x → y)k → X(i,i)(x, y)

= (x → y)k → X(i,i)(y, x)

= (x → y)k−1 → ((x → y) → X(i,i)(y, x))

= (x → y)k−1 → X(i+1,i)(y, x)

...
= (x → y) → X(i+k−1,i)(y, x)

= X(i+k,i)(y, x)

= X(m,i)(y, x).

Hence X is of type (i,m;m, i). By the similar way, we can prove that X is of type (m, i; i,m).

Corollary 4.14. Every commutative equality algebra is of types (1,m;m, 1) and (m, 1; 1,m) for
all m ∈ N.

Theorem 4.15. The structure X is positive implicative iff it is of type (1, 2; 1, 2).

Proof. If X is positive implicative, then

X(1,2)(x, y) = (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y) = X(1,2)(y, x),
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for all x, y ∈ X by (20). Hence X is of type (1, 2; 1, 2).
Consider X is of types (1, 2; 1, 2). Then

(x → y) → ((y → x) → x) = X(1,2)(x, y) = X(1,2)(y, x) = (y → x) → ((x → y) → y),

for all x, y ∈ X. Therefore X is positive implicative by Theorem 3.7.

Theorem 4.16. Suppose X is a positive implicative equality algebra. If it is of type (m,n; i, j)
for all m,n, i, j ∈ N, iff it can be reduced of type (2, 2; 2, 2).

Proof. Let X be positive implicative of type (m,n; i, j). Then by Theorem 3.3, we get that,

X(m,n)(x, y) = (x → y)n−1 → X(m,1)(x, y)

= (x → y) → X(m,1)(x, y)

= (x → y) → ((y → x)m−1 → X(1,1)(x, y))

= (x → y) → ((y → x) → X(1,1)(x, y))

= X(2,2)(x, y),

and

X(i,j)(y, x) = (y → x)j−1 → X(i,1)(y, x)

= (y → x) → X(i,1)(y, x)

= (y → x) → ((x → y)i−1 → X(1,1)(y, x))

= (y → x) → ((x → y) → X(1,1)(y, x))

= X(2,2)(y, x).

Hence X(2,2)(x, y) = X(m,n)(x, y) = X(i,j)(y, x) = X(2,2)(y, x). Then X is of type (2, 2; 2, 2).
The proof of other side is similar.

Example 4.17. Let X be an equality algebra as in Example 3.19. This example approve Theorem
4.16.

Theorem 4.18. The next statements are equivalent.

(1) X is positive implicative of type (1, n; 1, j) for all n, j ∈ N.

(2) X satisfies yn → x = y → x for all x, y ∈ X, and is of type (m,n; i, j) for all m,n, i, j ∈ N.

Proof. (2) ⇒ (1). If n = 2, then y → (y → x) = y → x for all x, y ∈ X. From Theorem 3.3, X
is positive implicative . Since X is of type (m,n; i, j), we have X(m,n)(x, y) = X(i,j)(y, x) for all
x, y ∈ X. Hence

(x → y)n−1 → [(y → x)m−1 → X(1,1)(x, y)] = (x → y)i−1 → [(y → x)j−1 → X(1,1)(y, x)].

In particular,

(x → y) → ((y → x) → ((y → x) → x)) = (x → y) → ((y → x) → ((x → y) → y)),



84 M. Aaly Kologani, X.L. Xin, Y.B. Jun, M. Mohseni Takallo

and so (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y). Thus

X(1,n)(x, y) = (x → y) → X(1,n−1)(x, y)

= (x → y)n−1 → X(1,1)(x, y)

= (x → y)n−1 → ((y → x) → x)

= (x → y) → ((y → x) → x)

= (y → x) → ((x → y) → y)

= (y → x) → X(1,1)(y, x)

= (y → x)j−1 → X(1,1)(y, x)

= X(1,j)(y, x).

(1) ⇒ (2). Suppose that X is positive implicative of type (1, n; 1, j) for all n, j ∈ N. Then
yn → x = y → x for all x, y ∈ X and n ∈ N by Theorem 3.3, and X(1,n)(x, y) = X(1,j)(y, x), which
implies that

X(m,n)(x, y) = (y → x)m−1 → X(1,n)(x, y)

= (y → x)m−1 → X(1,j)(y, x)

= (y → x) → X(1,j)(y, x)

= (y → x) → ((y → x)j−1 → ((x → y) → y))

= (y → x)j → ((x → y) → y)

= (y → x) → ((x → y) → y)

= (x → y) → ((y → x) → y)

= (x → y)i → ((y → x) → y)

= (x → y)i−1 → ((x → y) → ((y → x) → y))

= (x → y)i−1 → ((y → x) → ((x → y) → y))

= (x → y)i−1 → ((y → x)j−1 → ((x → y) → y))

= X(i,j)(y, x).

Therefore X is of type (m,n; i, j).

Lemma 4.19. If X is positive implicative , then X(m,n)(x, y) = X(2,2)(x, y) for all x, y ∈ X and
m,n ∈ N.

Proof. Assume that X is positive implicative . Using Theorem 3.3, we have

X(m,n)(x, y) = (x → y) → X(m,n−1)(x, y)

= (x → y) → ((x → y) → X(m,n−2)(x, y))

= (x → y) → X(m,n−2)(x, y)

...
= (x → y) → X(m,1)(x, y)

= (x → y) → ((y → x) → X(m−1,1)(x, y))

= (x → y) → ((y → x) → ((y → x) → X(m−2,1)(x, y)))
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= (x → y) → ((y → x) → X(m−2,1)(x, y))

...
= (x → y) → ((y → x) → X(1,1)(x, y))

= (x → y) → X(2,1)(x, y)

= X(2,2)(x, y),

for all x, y ∈ X and m,n ∈ N.

Theorem 4.20. If X is both positive implicative and commutative, then it is of type (m,n; i, j)
for all m,n, i, j ∈ N.

Proof. Consider X is both positive implicative and commutative. Then X(1,1)(x, y) = X(1,1)(y, x)
for all x, y ∈ X and using Theorem 3.3 and Lemma 4.19 induces

X(m,n)(x, y) = X(2,2)(x, y) = (y → x) → ((x → y) → X(1,1)(x, y))

= (y → x) → ((x → y)i−1 → X(1,1)(y, x))

= (y → x) → X(i,1)(y, x)

= (y → x) → ((y → x) → X(i,1)(y, x))

= (y → x)j−1 → X(i,1)(y, x)

= X(i,j)(y, x)),

for all m,n, i, j ∈ N and x, y ∈ X. This completes the proof.

5 Conclusion
The notion of a positive implicative equality algebras are defined, and related properties are stud-
ied. Characterizations of a positive implicative equality algebra is investigated. Conditions for
an equality algebra to be positive implicative are provided. Equality algebra with some types is
considered, and several properties are investigated. Using equality algebra with some types, we
characterize a commutative equality algebra and a positive implicative algebra.
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