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Abstract

Double Boolean algebras (dBas) are algebraic structures
D = (D,u,t,¬, ⌟,⊥,>) of type (2, 2, 1, 1, 0, 0), intro-
duced by Rudolf Wille to capture the equational theory
of the algebra of protoconcepts. Our goal is an alge-
braic investigation of dBas, based on similar results on
Boolean algebras. In this paper, first we characterize
filters on dBas as deductive systems and we give many
characterization of primary filters(ideals). Second, for a
given dBa, we show that the set of its filters F (D) (resp.
ideals I(D)) is endowed with the structure of distribu-
tive pseudo-complemented lattices, Heyting algebras and
residuated lattices. We finish by introducing the notions
of annihilators and co-annihilators on dBas and inves-
tigate some relalted properties of them. We show that
pseudo-complement of an ideal I (filter F ) is the annihila-
tor I∗ of I ( co-annihilator F ∗) and the set of annihilators
(co-annihilators) forms a Boolean algebra.

Article Information

Corresponding Author:
T. Jeufack Yannick Léa;
Received: February 2022;
Revised: March 2022;
Accepted: April 2022;
Paper type: Original.

Keywords:
Double Boolean algebra, fil-
ter, ideal, primary, protocon-
cepts.

A Title

  

1 Introduction
The notions of ideals and filters has been introduced in many algebraic structures (such as lattices,
rings, MV-algebras, residuated lattices) and the ideal (resp. filter) theory is an effective tool for
studying various algebraic and logic systems. Theory of filters plays a very important role in
proving completeness with respect to algebraic semantics. For example, in the case of classical
propositional logic (CPL), we can show the completeness theorem of the logic by Boolean algebras.
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To do so we use the Lindenbaum-Tarski algebra of CPL, which is a quotient algebra by theories,
or equivalently, by filters. The Lindenbaum-Tarski method can be applied to many logic including
contextual logic.

Various logical algebras have been proposed and researched as the semantical systems of non-
classical logical systems. Among these logical algebras, double Boolean algebra were introduced by
Rudolf Wille in order to extend Formal Concept Analysis (FCA) to Contextual Logic. A negation
has to be formalized [16], there are many options; one of these wants to preserve the correspondence
between negation and set complementation, and leads to the notions of semiconcept, protoconcept
and preconcept [16]. To capture their equational theory, Wille proved that each double Boolean
algebra ”quasi-embeds” into an algebra of protoconcepts. Thus the equational axioms of double
Boolean algebras generate the equational theory of the algebras of protoconcepts [16] (Corollary
1). Double Boolean algebras form the variety generated by proto-concept algebras which are one
of the fundamental structures of contextual logic. To the best of our knowledge, the investigation
of dBas has been so far concentrated on representation problem such as equational theory [16],
contextual representation [2] and most recently topological representation [2, 10]. Of course, the
prime ideal theorem [12] plays a central role in such representation.

The importance of ideals (filters) and congruences in classification problems, data organization
and formal concept analysis allow us to make an intensive study of the properties of the lattice of
filters(resp. ideals) of double Boolean algebras. This paper is a continuation of the work begining
in [14, 15] and is organized as follows: In Section 2 we recall some basic notions and present
proto-concepts algebras as a rich source of examples for dBas. In Section 3, we show that filters
on dBas are deductive systems and we give additional characterization of primary filters which
extend those of prime filters (resp. ideals) on Boolean algebras. We also introduce the notions of
dense and co-dense elements on double Boolean algebras and show that the set of dense (co-dense)
elements forms a particular filter (ideal) on dBa and some characterizations of trivial dBas using
dense set and co-dense set are obtained. In Section 4 we show that the lattice F (D)(resp I(D))
of filters(resp. ideals) of any dBa D is distributive, pseudocomplemented and is endowed with a
structure of Heyting algebra, Brouwerian algebra, Gödel algebra and residuated lattice. In Section
5 we introduce the notions of annihilators and co-annihilators on double Boolean algebras and
some related properties are studied. We show that co-annihilators(resp. annihilators) are filters
(resp. ideals). We show that the co-annihilators (resp. annihilators) of dBAs form a Boolean
algebra and pseudo-complement of filters (resp. ideals) are exactly the co-annihilators filters(resp.
annihilators ideals).

2 Concepts, protoconcepts and double Boolean algebras
In this section, we provide the reader with some basic notions and notations. For more details we
refer to [6, 16]. A formal context is a triple K := (G,M, I) where G is a set of objects, M a set
of attributes and I ⊆ G×M , a binary relation to describe if an object of G has an attribute in M .
We write gIm for (g,m) ∈ I. To extract clusters, the following derivation operators are defined
on subsets A ⊆ G and B ⊆ M by:

A′ := {m ∈ M | gIm for all g ∈ A} and B′ := {g ∈ G | gIm for all m ∈ B}.

The maps A 7→ A′ and B 7→ B′ form a Galois connection between the power set of G and that
of M . The composition ′′ is a closure operator.

A formal concept is a pair (A,B) with A′ = B and B′ = A. We call A the extent and B
the intent of the formal concept (A,B). They are closed subsets with respect to ′′ (i.e. X ′′ = X).
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The set B(K) of all formal concepts of the formal context K can be ordered by

(A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2 (or equivalently, B2 ⊆ B1).

The poset B(K) := (B(K),≤) is a complete lattice, called the concept lattice of the context
K. Conversely, each complete lattice is isomorphic to a concept lattice. This basic theorem
on concept lattice ([6, Theorem 3]) is a template for contextual representation problems. The
lattice operations ∧ (meet) and ∨ (join) can be interpreted as a logical conjunction and a logical
disjunction for concepts, and are given by:

meet: (A1, B1) ∧ (A2, B2) =
(
A1 ∩A2, (A1 ∩A2)

′) ,
join: (A1, B1) ∨ (A2, B2) =

(
(B1 ∩B2)

′ , B1 ∩B2

)
.

To extent FCA to contextual logic, we need to define the negation of a concept. Unfortunately,
the complement of a closed subset is not always closed. To preserve the correspondence between
a set complementation and negation, the notion of concept is extended to that of proto-concept.

Let K := (G,M, I) be a formal context and A ⊆ G,B ⊆ M . The pair (A,B) is called a
semi-concept if A′ = B or B′ = A, and a proto-concept if A′′ = B′.

The set of all semi-concepts of K is denoted by h(K), and that of all proto-concepts by P(K).
Note that each semi-concept is a proto-concept; i.e. h(K) ⊆ P(K). Meet and join of proto-concepts
are then defined, similar as above for concepts. A negation (resp. opposition) is defined by taking
the complement on objects (resp. attributes). More precisely, for proto-concepts (A1, B1), (A2, B2),
(A,B) of K we define the operations:

meet: (A1, B1) u (A2, B2) := (A1 ∩A2, (A1 ∩A2)
′),

join: (A1, B1) t (A2, B2) := ((B1 ∩B2)
′, B1 ∩B2),

negation: ¬(A,B) := (G \A, (G \A)′),

opposition: ⌟(A,B) := ((M \B)′,M \B),

nothing: ⊥ := (∅,M),

all: > := (G, ∅).

The algebra P(K) := (P(K),u,t, ⌝, ⌟,⊥,>) is called the algebra of proto concepts of K.
Note that applying any operation above on proto concepts gives a semi-concept as result. Therefore
H(K) is a sub-algebra of P(K). For structural analysis of P(K), we split H(K) in u-semi concepts
and t-semi concepts,

P(K)⊓ := {(A,A′) | A ⊆ G}, and P(K)⊔ := {(B′, B) | B ⊆ M},

and set x ∨ y := ¬(¬x u ¬y), x ∧ y :=⌟(⌟xt⌟y), > := ¬⊥ and ⊥ :=⌟> for x, y ∈ P(K).
P(K)⊓ := (P(K)⊓,u,∨,¬,⊥,¬⊥) (resp. P(K)⊔ := (P(K)⊔,∧,t, ⌟, ⌟>,>))) is a Boolean

algebra isomorphic (resp. anti-isomorphic) to the powerset algebra of G (resp. M).

Theorem 2.1. [16] The following equations hold in P(K):
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(1a) (x u x) u y = x u y

(2a) x u y = y u x

(3a) x u (y u z) = (x u y) u z

(4a) ¬(x u x) = ¬x

(5a) x u (x t y) = x u x

(6a) x u (y ∨ z) = (x u y) ∨ (x u z)

(1b) (x t x) t y = x t y

(2b) x t y = y t x

(3b) x t (y t z) = (x t y) t z

(4b) ⌟(x t x) =⌟x

(5b) x t (x u y) = x t x

(6b) x t (y ∧ z) = (x t y) ∧ (x t z)
(7a) x u (x ∨ y) = x u x

(8a) ¬¬(x u y) = x u y

(9a) x u ¬x = ⊥

(10a) ¬⊥ = > u>

(11a) ¬> = ⊥

(7b) x t (x ∧ y) = x t x.

(8b) ⌟⌟(x t y) = x t y

(9b) xt⌟x = >

(10b) ⌟> = ⊥ t⊥

(11b) ⌟⊥ = >

(12) (x u x) t (x u x) = (x t x) u (x t x)

A double Boolean algebra (dBa) is an algebra D := (D;u,t,¬, ⌟,⊥,>) of type (2, 2, 1, 1, 0, 0)
that satisfies the equations in Theorem 2.1. Wille showed that these equations generate the equa-
tional theory of protoconcept algebras [16].

A double Boolean algebra D is called pure if it satisfies xux = x or xtx = x, for all x ∈ D.
In fact, H(K) is a pure double Boolean algebra. A quasi-order v is defined on dBas by:

x v y : if and only if x u y = x u x and x t y = y t y.

We set D⊓ := {x ∈ D : xux = x} and D⊔ := {x ∈ D : x t x = x}. The algebra D⊓ := (D⊓,u,∨,¬,⊥,¬⊥)
(resp. D⊔ = (D⊔,t,∧, ⌟,>, ⌟>)) is a Boolean algebra. In addition x v y iff x u x v y u y and
x t x v y t y, for all x, y ∈ D [16].

Definition 2.2. [12, 16] A dBa D is:

1. contextual if the quasi-order v is an order relation.

2. complete if and only if its Boolean algebras D⊓ and D⊔ are complete lattices.

Example 2.3. Consider the six elements dBa D6 = ({⊥, γ, λ, β, α,>},u,t,¬, ⌟,⊥,>) which is a
pure dBa in which the operations ¬, ⌟,u and t are defined in the following Cayley tabulars and
the Hasse diagram is presented in Figure 1.
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Figure 1. Hasse diagram of D6

u ⊥ γ λ β α >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
γ ⊥ γ ⊥ γ γ γ

λ ⊥ ⊥ λ λ ⊥ λ

β ⊥ γ λ β γ β

α ⊥ γ ⊥ γ γ γ

> ⊥ γ λ β α β

,

t ⊥ γ λ β α >
⊥ γ γ β β α >
γ γ γ β β > >
λ β β β β > >
β β β β β > >
α α α > > α >
> > > > > > >

x ⊥ γ λ β α >
¬x β λ γ ⊥ λ ⊥
⌟x > > α α β γ

.

We have D6,⊓ = {⊥, λ, γ, β} and D6,⊔ = {β, γ, α, β,>} and D6 is a pure dBa.
Additional known algebraic properties of dBas useful for us in these notes are put together in

the following two propositions.

Proposition 2.4. [12, 9, 10, 16] Let D be a double Boolean algebra and x, y, a ∈ D, then:
1. ⊥ v x and x v >.

2. x u y v x, y v x t y.

3. x v y =⇒
{

x u a v y u a
x t a v y t a.

4. ¬(x ∨ y) = ¬x u ¬y.

5. ¬(x u y) = ¬x ∨ ¬y.

6. x v⌟y if and only if y v⌟x.

7. ¬¬x = x u x and ⌟⌟x = x t x.

8. ¬x, x ∨ y ∈ D⊓ and ⌟x, x ∧ y ∈ D⊔.

9. x v y if and only if
{

¬y v ¬x
⌟y v⌟x.

10. ⌟(x ∧ y) = ⌟xt⌟y.

11. ⌟(x t y) = ⌟x∧⌟y.

12. ¬x v y if and only if ¬y v x.

13. ¬x u ¬x = ¬x and ⌟xt⌟x =⌟x.

14. (i) x u y v x ∨ y v x t y.
(ii) x u y v x ∧ y v x t y.

The following proposition gives distributivity-like properties of dBas.

Proposition 2.5. [14, Proposition 3] Let D be a double Boolean algebra. For any a, b, c, d ∈ D,
we have:
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(i) a ∨ (b u c) = (a ∨ b) u (a ∨ c).

(ii) a ∧ (b t c) = (a ∧ b) t (a ∧ c).

(iii) a ∨ (a u b) = a u a.

(iv) a ∧ (a t b) = a t a.

(v) (a u a) ∨ (b u b) = a ∨ b.

(vi) (a t a) ∧ (b t b) = a ∧ b.

(vii) The binary operations ∨, ∧, u and t are compatible with v, that is, if a v b and c v d, then
a ∨ c v b ∨ d (1) , a ∧ c v b ∧ d (2), a u c v b u d (3) and a t c v b t d (4).

The following proposition gives an additional algebraic properties of dBas.

Proposition 2.6. Let D be a dBa, for any a, b ∈ D, the following equality hold:

(1) (i) a u ¬(a u b) = a u ¬b, (ii) at⌟(a t b) = at⌟b.

(2) (i) a t b = (a ∧ a) t (b ∧ b), (ii) a u b = (a ∨ a) u (b ∨ b).

Proof. We give the proof of (1)(i) and (2)(i), that of (1)(ii) and (2)(ii) are obtained dually.

For (1)(i), let a, b ∈ D, we have

a u ¬(a u b) = a u (¬a ∨ ¬b) (by (4) of Proposition 2.4) = (a u ¬a) ∨ (a u ¬b) (by axiom (6a))
= ⊥ ∨ (a u ¬b) (by axiom 9a) = a u ¬b (by (1) of Proposition 2.4).

Thus (1)(i) is proved. We recall that a ∨ a = a u a and a t a = a ∧ a.
For (2)(i) we have a t b = (a t a) t (b t b) (by axiom (1b))= (a ∧ a) t (b ∧ b).

Let D be a dBa. A nonempty subset F of D is called filter if for all x, y ∈ D,

x, y ∈ F =⇒ x u y ∈ F and (x ∈ F, x v y) =⇒ y ∈ F .

Ideals of dBas are defined dually. We denote by F (D) (resp. I(D)) the set of filters (resp.
ideals) of the dBa D. These two sets are closed under intersection [12]. Note that F (D) ∩
I(D) = {D}. For X ⊆ D, the smallest filter (resp. ideal) containing X, denoted by Filter〈X〉
(resp. Ideal〈X〉), is the intersection of all filters (resp. ideals) containing X, and is called the
filter (resp. ideal) generated by X. A principal filter (resp. ideal) is a filter (resp. ideal)
generated by a singleton. In this case we omit the curly brackets and set F(x) := Filter〈{x}〉, and
I(x) := Ideal〈{x}〉. For any a ∈ D, F (a u a) = F (a) and I(a t a) = I(a). The set F (D) (resp.
I(D)) is a complete lattice with least element F (>) (resp. I(⊥)) and greatest element D under set
inclusion in which for any F,G ∈ F (D) (resp. I, J ∈ I(D)) F ∩G (resp. I ∩ J) is the infimum of
F and G (resp. I and J) while the supremum is given by F ∨G (resp. I ∨ J) and is characterized
in the following two propositions.

Proposition 2.7. [14] Let D be a dBa, ∅ 6= X ⊆ D, F1, F2 ∈ F(D) and I1, I2 ∈ I(D). Then

(a) I(a) = {x ∈ D | x v a t a} and F(a) = {x ∈ D | a u a v x}.

(b) Ideal〈∅〉 = I(⊥) = {x ∈ D | x v ⊥ t⊥} and Filter〈∅〉 = F(>) = {x ∈ D | > u > v x}.

(c) Ideal〈X〉 = {x ∈ D | x v b1 t . . . t bn for some b1, . . . , bn ∈ X,n ≥ 1}.

(d) Filter〈X〉 = {x ∈ D | x w b1 u . . . u bn for some b1, . . . , bn ∈ X,n ≥ 1}.

(e) I1 ∨ I2 = Ideal〈I1 ∪ I2〉 = {x ∈ D | x v i1 t i2 for some i1 ∈ I1 and i2 ∈ I2}.
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(f) F1 ∨ F2 = Filter〈F1 ∪ F2〉 = {x ∈ D | f1 u f2 v x for some f1 ∈ F1 and f2 ∈ F2}.

Proposition 2.8. [14] Let D be a dBa. For any a1, . . . , an, a, b, c ∈ D, the following hold:

(1)
n
∨
i=1

F(ai) = F(
n
u
i=1

ai) = Filter〈{a1, . . . , an}〉.

(2)
n
∨
i=1

I(ai) = I(
n
t
i=1

ai) = Ideal〈{a1, . . . , an}〉.

(3) F(a) ∧ (F(b) ∨ F(c)) = (F(a) ∧ F(b)) ∨ (F(a) ∧ F(c)).

(4) I(a) ∨ (I(b) ∧ I(c)) = (I(a) ∨ I(b)) ∧ (I(a) ∨ I(c)).

(5)
n
∩
i=1

F(ai) = F(
n
∨
i=1

ai).

(6)
n
∩
i=1

I(ai) = I(
n
∧
i=1

ai).

(7) F(a) ∧ F(¬a) = F(>).

(8) I(a) ∨ I(⌟a) = I(>).

(9) F(a) ∨ F(¬a) = F(⊥).

(10) I(a) ∧ I(⌟a) = I(⊥).

(11) a v b =⇒ I(a) ⊆ I(b).

(12) a v b =⇒ F (b) ⊆ F (a).

3 Filters as deductive systems, some particulars filters on dBas
3.1 Filters as deductive systems
A subset F of a Boolean algebra B is a deductive filter (system) of B if 1 ∈ F and a, a → b ∈ F

implies b ∈ F (see [5], p.188). It is proven in Turunen (2001) that if F is a filter of a BL-algebra,
then it satisfies

(a) 1 ∈ F and, x ∈ F and x → y ∈ F imply y ∈ F (with x → y := ¬x ∨ y).

M. Kondo et al in [11] proved a similar result for residuated lattices by showing that deductive
systems of Booleans algebras are exactly the nonempty lattice filters of its lattice reduct. Since
Boolean algebras form a subclass of dBas we extend this result on arbitrary dBas in this subsection.
We denote for any x, y ∈ D, ¬x ∨ y by x → y(resp. ⌟x ∧ y by x ⇝ y). We have the following
proposition.

Proposition 3.1. Let D be a dBa, F and I be a non-empty subsets of D, → and ⇝ as above.
Then the following statements hold:

1. F is a filter of D if and only if (†): > u> ∈ F and x, x → y ∈ F implies y ∈ F .

2. I is an ideal of D if and only if (‡): ⊥ t⊥ ∈ I and x, x⇝ y ∈ I implies y ∈ I.

Proof. We give the proof of (1) and that of (2) is obtained dually.
(⇒) Assume that F is a filter of D, then >u> ∈ F . Let x, y ∈ D such that x, x → y ∈ F . Since
x, x → y ∈ F and F a filter we get x u (x → y) ∈ F , and

x u (x → y) = x u (¬x ∨ y)

= (x u ¬x) ∨ (x u y) (by (i) of Proposition 2.5)
= ⊥ ∨ (x u y) = x u y v y.
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It follows that x u (x → y) = x u y ∈ F and x u y v y, as F is a filter we deduce that y ∈ F .
(⇐) Conversely, assume that (†) holds. We will show that F is a filter. Let x, y ∈ F . Then

x → (y → (x u y)) = ¬x ∨ (¬y ∨ (x u y))

= (¬x ∨ ¬y) ∨ (x u y) (by associativity of ∨)
= ¬(x u y) ∨ (x u y) (by (4) of Prop 2.4)
= > u> ∈ F.

So y → (x u y) ∈ F (due to x ∈ F and (†) holds). As y ∈ F and y → (x u y) ∈ F , we obtain
x u y ∈ F . We deduce that x u y ∈ F . To finish our proof, assume that x v y and x ∈ F ; we will
show that y ∈ F . Since x v y, we have x u y = x u x. Furthermore,

x → y
def
= ¬x ∨ y

= ¬(x u x) ∨ y (due to axiom (4a))
= ¬(x u y) ∨ y (due to x u y = x u x)

= (¬x ∨ ¬y) ∨ y (by (5) of Prop 2.4)
= ¬x ∨ (¬y ∨ y) (by associativity of ∨)
= ¬x ∨ (> u>) = > u> ∈ F.

So x ∈ F and x → y ∈ F ; by assumptions on F we deduce that y ∈ F . Therefore F is a filter.

From the above Proposition 3.1, each filter (resp. ideal) on dBa is a deductive system.

3.2 Some characterization of primary filters (ideals)
To prove that each double Boolean algebra can be quasi-embedded into the algebra of proto-

concepts of a suitable context, Rudolf Wille (see. [16]) consider the set FP (D) of filter F of the
dBa D for which F ∩D⊓ is a prime filter of the Boolean algebra D⊓, and the set IP (D) of ideal
I of D for which I ∩D⊔ is a prime ideal of the Boolean algebra D⊔. To establish the prime ideal
theorem for dBas, Kwuida in [12] introduced the set Fpr(D) of filters F such that F is proper and
for any x ∈ D, x ∈ F or ¬x ∈ F called a primary filter of D and the set Ipr(D) of ideals I such
that I is proper and for any x ∈ D, ⌟x ∈ I or x ∈ I called a primary ideal of D. Prosenjit et al
in [9] shown that the primary filters(ideals) of a dBa D introduced by Kwuida in [12] are exactly
the extension of prime filters(ideals) of the Boolean algebras D⊓(D⊔) as presented in the following
proposition.

Proposition 3.2. [9] Let D be a double Boolean algebra. Then the following statements hold:
(1) Fpr(D) = FP (D).
(2) Ipr(D) = IP (D).

Following this proposition, we retain that the role of prime filter(resp. ideal) of Boolean algebras
is assumed by the primary filters(resp. ideals) introduced by Kwuida for dBas. The filter F is
called maximal or ultrafilter if F is not contained in another proper filter of D. The ideal I is
called a maximal ideal if I is proper and not contained in another proper ideal of D. We say
that an ideal I of a lattice L is prime if I 6= L and a ∧ b ∈ I implies a ∈ I or b ∈ I.

Dually, we say that a filter F of a lattice L is prime if F 6= L and

a ∨ b ∈ F =⇒ a ∈ F or b ∈ F.
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Knowing that primary ideals (resp. filters) are very important for the study of algebraic
structures and topology on algebraic structures, we give many characterizations of primary filters
(resp. primary ideals) on dBas in the following theorem that extend those existing in Boolean
algebras.

Theorem 3.3. Let D be a dBa and let F be a filter of D. Then the following statements are
equivalent:

(1) F is a primary filter.

(2) F is an ultrafilter.

(3) For any x, y ∈ D, x ∨ y ∈ F implies x ∈ F or y ∈ F .

(4) For any x, y ∈ D, x ∨ y ∈ F implies x → y ∈ F or y → x ∈ F .

(5) If F1 and F2 are filters and F1 ∩ F2 ⊆ F , then F1 = F or F2 = F .

Proof. We recall that for any x ∈ D, x → y = ¬x ∨ y, ¬x ∨ x = > u>, and x u x = ¬¬x.
(1)⇒ (2) We assume that F is a primary filter of D, then F uD⊓ is a prime filter of D⊓ and

so a maximal filter of D⊓. Let G be a filter of D such that F ⊆ G, then F ∩ D⊓ ⊆ G ∩ D⊓, as
F ∩D⊓ is maximal in D⊓ we get F ∩D⊓ = G∩D⊓ or G∩D⊓ = D⊓. Assume that G∩D⊓ = D⊓,
then D⊓ ⊆ G. Let x ∈ D, then x u x ∈ D⊓ ⊆ G, since G is a filter, we have x ∈ G, so G = D.
Now we suppose that F ∩D⊓ = G ∩D⊓, then for x ∈ F , x u x ∈ F ∩D⊓ = G ∩D⊓; so x u x ∈ G,
and x ∈ G(due to G a filter); therefore F ⊆ G, similarly one can show that G ⊆ F ; hence F = G.
Thus F is an ultrafilter.

(2) ⇒ (3) Assume that F is an ultrafilter. Let x, y ∈ D such that x∨y ∈ F , in addition assume
that x 6∈ F . We will show that y ∈ F . We define G = {z ∈ D : x ∨ z ∈ F}. Clearly F ⊆ G (due
to z u z v x∨ z for all z ∈ F ). Assume that a, b ∈ G, then x∨ a, x ∨ b ∈ F , as F is a filter, we get
(a u b) ∨ x = (a ∨ x) u (b ∨ x) ∈ F (by (iii) Proposition 2.5), hence a u b ∈ G. If a v b and a ∈ G,
then a ∨ x v b ∨ x (using (vii) of Proposition 2.5 and b ∨ x ∈ F ); so b ∈ G. Thus G is a filter
containing F . Furthermore x ∨ x = x u x 6∈ F , so x 6∈ G, therefore G 6= D, and as F is maximal
we get F = G. Since x ∨ y ∈ F , we deduce that y ∈ G = F .

(3) ⇒(4) Assume that (3) holds. Let x, y ∈ D such that x ∨ y ∈ F . We will show that
x → y ∈ F or y → x ∈ F . From the assumption we get x ∈ F or y ∈ F . If x ∈ F , then x u x ∈ F
and y → x = ¬y ∨ x = (¬y)∨ (xu x) ∈ F (due to xu x v (¬y)∨ (xu x) and F a filter). If y ∈ F ,
then a similar argument shows that x → y ∈ F and (4) holds.

(4)⇒(1) Assume that (4) holds. Let x ∈ D, we will show that x ∈ F or ¬x ∈ F . We have
x ∨ ¬x = >u> ∈ F , so by assumption ¬x → x ∈ F or x → ¬x ∈ F , that is ¬¬x ∨ x = x u x ∈ F
or ¬x ∨ ¬x = ¬x ∈ F ; hence x ∈ F or ¬x ∈ F and we are done.

(3)⇒(5) Assume that (3) holds. Let F1, F2 be two filters such that F1 ∩ F2 ⊆ F . We will
show that F1 ⊆ F or F2 ⊆ F . Assume that Fi is not contained in F (i = 1, 2), then there exist
x ∈ F1 \F and y ∈ F2 \F . Since x∨ y ∈ F1 ∩F2 ⊆ F and (3) holds for F , we get x ∈ F or y ∈ F ,
contradicting the assumption on x and y. It follows that F1 ⊆ F or F2 ⊆ F .

(5)⇒(3). Assume that (5) holds. Let x, y ∈ D such that x∨y ∈ D, then using (7) of Proposition
2.8, F (x) ∩ F (y) = F (x ∨ y) ⊆ F . Applying (5) we get that F (x) ⊆ F or F (y) ⊆ F , and we
deduce that x ∈ F or y ∈ F .

The dual result of the above Theorem 3.3 holds for ideals on dBAs.
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3.3 Filter dense and ideal co-dense in dBas
A dense set and a dense element were studied on a double p-algebras by R. Beaser (see [1]),

we introduce the dense set and co-dense set on double Boolean algebras and study some related
properties. Let D be a dBa, we consider the following sets:

FD := {x ∈ D : ¬x = ⊥}, ID = {x ∈ D :⌟x = >}.

The elements of FD are called dense and those of ID co-dense. In the following proposition
we show that FD is a filter and ID is an ideal.

Proposition 3.4. Let D be a dBas and FD, ID as above, then the following hold:
(1) FD is a filter of D.
(2) ID is an ideal of D.

Proof. (1) is dual of (2), we show (1) and the proof of (2) is obtained dually. We have FD 6= ∅ (
due to ¬> = ⊥ (axiom (11a))); so > ∈ FD. Let x, y ∈ FD, then ¬x = ⊥ and ¬y = ⊥; furthermore
¬(x u y) = ¬x ∨ ¬y(by (5) of Proposition 2.4) = ⊥ ∨ ⊥ (due to x, y ∈ FD) = ⊥ u ⊥ = ⊥; so
xu y ∈ FD. Let x ∈ FD and y ∈ D such that x v y, then ¬y v ¬x = ⊥ ( by (9) of Proposition 2.4
and ¬x = ⊥), therefore using (1) of Proposition 2.4 we get ⊥ v ¬y v ⊥ and ¬y = ⊥, so y ∈ FD.
Thus FD is a filter of D.

The set FD is called a dense filter and ID is called a co-dense ideal of D. In [12], Kwuida
defined a trivial double Boolean algebra as a double Boolean algebra in which >u> = ⊥t⊥.
As example of trivial dBa we get the three elements chain D3 = ({⊥, a,>};t,u,¬, ⌟,⊥,>) with
a u a = a t a = a and ⊥ v a v >.

Theorem 3.5. Let D be a dBa, FD and ID as above. Then ID∩FD 6= ∅ if and only if D is trivial.

Proof. Assume that D is trivial; then D⊓∩D⊔ = {e} with e = ⊥t⊥ = >u> and ¬e = ⊥, ⌟e = >.
Hence FD ∩ ID 6= ∅. Conversely, assume that FD ∩ ID 6= ∅. We will show that D is trivial. Let
a ∈ FD ∩ ID, then ¬a = ⊥ and ⌟a = >. Furthermore ¬¬a = ¬⊥ = > u > (axiom (10a)) and
⌟⌟a =⌟> = ⊥t⊥ (axiom (10b)), that is aua = >u> and ata = ⊥t⊥. Knowing that ⊥ v >u>
we have by (viii) of Proposition 2.5 that ⊥ t ⊥ v > u >. Since a t a = ⊥ t ⊥ and a u a v a t a,
we deduce that >u> v ⊥t⊥ v > u>, using the fact that >u>,⊥t⊥ ∈ D⊓ ∩D⊔, we deduce
that ⊥ t⊥ = > u> and D is trivial.

Following the above Theorem 3.5 and the prime ideal theorem [12], we get that if D is not
trivial, then FD ∩ ID = ∅ and there exists a maximal ideal I and a maximal filter F such that
FD ⊆ F , ID ⊆ I and F ∩ I = ∅.

4 The structure of the set of filters(ideals) on dBas
In [14], we have shown that the lattice of filters(resp. ideals) of a dBa form an algebraic lattice in
which compact elements are principal filters(resp. ideals) and principal filters (resp. ideals) form
a Boolean algebras. In this section, we give additional properties of these lattices by showing that
they are distributive, Brouwerian, pseudocomplemented lattices and form a Heyting algebra. We
finish this section by showing that the lattice of filters(resp. ideals) of a double Boolean algebra
possess a structure of residuated lattice. We need the following definitions and properties in lattice
theory for the sequel.
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Definition 4.1. A lattice L is called distributive if the following distributive law holds:

(D) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Infinite analogue of distributive law in a complete lattice is given by:

(JID) x ∧
∨
i∈I

yi =
∨
i∈I

(x ∧ yi) join-infinite distributive law.

The distributivity of a complete lattice does not always imply the law (JID)(see [5], p.20).
An algebra A = (A,∧,∨,→, 0) of type (2, 2, 2, 0) is called a Heyting algebra if A = (A,∧,∨, 0)
is a lattice with a smallest element 0 and for all x, y, z ∈ A the following holds:

x ∧ y ≤ z iff y ≤ (x → z) (the law of ∧ residuation),

that is x → z = max{y : x ∧ y ≤ z}(see [5], p.21). A complete lattice (L,∧,∨) is Brouwerian iff
it satisfies the above ”join-infinite distributive law” whenever the arbitrary joins exist.

Let L be a lattice. An element a ∈ L is compact if whenever
∨
A exists and a ≤

∨
A for

A ⊆ L, we have a ≤
∨
B for some finite B ⊆ A. The lattice L is compactly generated if every

element in L is a supremum of compact elements; L is algebraic if L is complete and compactly
generated(see) [3], p.17).

In a bounded distributive lattice L, if b is a complement of a, then b is the largest element x of L
with a∧x = 0. More generally, let L be a lattice with zero; an element a∗ is a pseudocomplement
of a (∈ L) if a ∧ a∗ = 0 and a ∧ x = 0 implies that x ≤ a∗. An element can have at most one
pseudocomplement (see [7], p.99). A pseudocomplement lattice is one in which every element
has a pseudocomplement ([8]). A homomorphism ϕ of a pseudocomplemented lattice into another
pseudocomplemented lattice is a lattice homomorphism additionnally preserving 0, 1,∗, that is

ϕ(0) = 0, ϕ(1) = 1 and ϕ(x)∗ = ϕ(x∗).

We will use the following remark in the sequel.

Remark 4.2. Let D be a dBa. Let J be an arbitrary nonempty set, {Fj : j ∈ J} ⊆ F (D) and
{Ij : j ∈ J} ⊆ I(D). Set J̃ := {(i1, . . . , in) ∈ Jn : n ≥ 1, n ∈ N}. The following hold:

(∗) ∨
j∈J

Fj =
∪

(i1,...,in)∈J̃
(Fi1 ∨ . . . ∨ Fin), (∗∗) ∨

j∈J
Ij =

∪
(i1,...,in)∈J̃

(Ii1 ∨ . . . ∨ Iin).

Lemma 4.3. Let D be a dBa, {F, Fi, i ∈ I} ⊆ F (D), {I, Ij , j ∈ J} ⊆ I(D), then
(1) I ∧ ( ∨

j∈J
Ij) = ∨

j∈J
(I ∧ Ii).

(2) F ∧ ( ∨
j∈J

Fj) = ∨
j∈J

(F ∧ Fi).

Proof. (2) is dual to (1), we give the proof of (1). Let I ∈ I(D) and {Ij : j ∈ J} ⊆ I(D), We show
that I∧( ∨

j∈J
Ij) = ∨

j∈J
(I∧Ij). Since I(D) is a complete lattice, clearly ∨

j∈J
(I∩Ij) ⊆ I∩( ∨

j∈J
Ij). Let

now x ∈ I ∩ ( ∨
j∈J

Ij), then x ∈ I and by the Remark 4.2 there exist j1, . . . , jm ∈ J, xjk ∈ Ijk , (1 ≤

k ≤ m) such that x v xi1 t . . .txim , so by (vii) of Proposition 2.5, x∧x v x∧ (xi1 t . . .txim), in
addition, by (ii) of Proposition 2.5 x∧ (xi1 t . . .t xim) = (x∧ xi1)t . . .t (x∧ xjm), and (by (6) of
Proposition 2.8) I(x) ∩ I(xik) = I(x ∧ xik) ⊆ I ∩ Iik , (1 ≤ k ≤ m); furthermore x v x t x = x ∧ x;
we deduce that x ∈ ∧

j∈J
(I ∩ Ij). Hence, (1) is proved.
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Theorem 4.4. Let D be a dBa. The following statements hold:

1. F(D) = (F (D),∩,∨) is a Brouwerian lattice, algebraic lattice in which compact elements are
principal filters of D,

2. I(D) = (I(D),∩,∨) is a Brouwerian lattice, algebraic lattice in which compact elements are
principal ideals of D.

Proof. We give the proof of (1) and that of (2) is obtained dually. For (1), F(D) is an algebraic
lattice with compact elements, principal filters (see [14, 15]). (1) of Lemma 4.3 achieves the
proof.

Corollary 4.5. The lattices F(D) and I(D) are distributive.

Proof. It follows from Lemma 4.3 and Theorem 4.4

Proposition 4.6. Let D be a dBa and P be a proper filter of D. If {F ∈ F (D) : P ⊆ F} is a
chain, then P is primary.

Proof. Set Σ = {F ∈ F (D) : P ⊆ F} and suppose that Σ is a chain and P is not a primary filter,
then there exist x, y ∈ D such that x∨y ∈ P, x 6∈ P and y 6∈ P . Since F (P ∪{x}), F (P ∪{y}) ∈ Σ,
without loss of generality let F (P ∪ {x}) ⊆ F (P ∪ {y}). By distributivity of F (D) and (5) of
Proposition 2.8 we have the following sequence formulas:

P = P ∨ F (x ∨ y) = P ∨ (F (x) ∩ F (y)) ( by (5) of Proposition 2.8)
= [P ∨ F (x)] ∩ [P ∨ F (y)] (by distributivity of ∨ over ∩)
= F (P ∪ {x}) ∩ F (P ∪ {y}) (using (f) of Proposition 2.7)
= F (P ∪ {x}).

This shows that x ∈ P , contradiction. Hence P must be a primary filter.

In ordrer to show that for a given double Boolean algebra, the set of all its filters (resp. ideals) is
endowed with a structure of pseudocomplemented distributive lattice and the structure of Heyting
algebra, we define the following operations. Let D be a dBa and F1, F2 ∈ F (D), I1, I2 ∈ I(D), we
set

I1 → I2 = {x ∈ D : I(x) ∩ I1 ⊆ I2}, F1 → F2 = {x ∈ D : F (x) ∩ F1 ⊆ F2}.

Lemma 4.7. Let D be a dBa, Ij , I ∈ I(D), Fj , F ∈ F (D), j = 1, 2 and F1 → F2, I1 → I2 as above,
then the following statements hold:

1. (i) I1 → I2 ∈ I(D). (ii) F1 → F2 ∈ F (D).

2. I1 ∩ I ⊆ I2 iff I ⊆ I1 → I2, that is I1 → I2 = sup{I ∈ I(D) : I1 ∩ I ⊆ I2}.

3. F1 ∩ F ⊆ F2 iff F ⊆ F1 → F2, that is F1 → F2 = sup{F ∈ F (D) : F1 ∩ F ⊆ F2}.

Proof. (1)(i) is dual to (1)(ii) and (2) is dual to (3). We show (1)(i) and (2).
For (1)(i) we show that I1 → I2 is an ideal. Since I(⊥) ∩ I1 = I(⊥) ⊆ I2, we get ⊥ ∈ I1 → I2

and I1 → I2 6= ∅. Let x ∈ D and y ∈ I1 → I2, then I(y) ∩ I1 ⊆ I2; furthermore x v y implies that
I(x) ⊆ I(y) (by (11) of Proposition 2.7); so I(x)∩I1 ⊆ I(y)∩I1 ⊆ I2 and by transitivity of ⊆ we get
that I(x)∩I1 ⊆ I2, therefore x ∈ I1 → I2. Now assume that x, y ∈ I1 → I2, then I(x)∩I1 ⊆ I2 and
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I(y)∩I1 ⊆ I2, which imply that (I(x)∩I1)∨(I(y)∩I1) ⊆ I2; furthermore, by (1) of Lemma 4.3 taking
I(x) = I1, I(y) = I2 and J = {1, 2} we get (I(x)∩I1)∨(I(y)∩I1) = I1∩(I(x)∨I(y)) = I1∩I(xty)
(by (2) of Proposition 2.7) ⊆ I2; therefore x t y ∈ I1 → I2. Thus I1 → I2 ∈ I(D) and (1)(i) is
proved.

(2) (⇒) Assume that I1 ∩ I ⊆ I2, we will show that I ⊆ I1 → I2. Let x ∈ I, we show that
x ∈ I1 → I2, to do this we show that I(x) ∩ I1 ⊆ I2. Let u ∈ I(x) ∩ I1 ⊆ I ∩ I1, then u ∈ I(x) ⊆ I
and u ∈ I1. Since u ∈ I(x) ⊆ I, we have u v xt x (by (1) of Proposition 2.7), and xt x ∈ I, then
u ∈ I ∩ I1 ⊆ I2 (by assumption), therefore x ∈ I1 → I2 and I ⊆ I1 → I2.

(⇐) Assume that I ⊆ I1 → I2, we will show that I1 ∩ I ⊆ I2. Let x ∈ I ∩ I1, we will show that
x ∈ I2. Since x ∈ I∩I1, we get x ∈ I and x ∈ I1, by I ⊆ I1 → I2, x ∈ I implies that I(x)∩I1 ⊆ I2,
but I(x) ⊆ I1 (due to x ∈ I1), therefore x ∈ I2, hence I ∩ I1 ⊆ I2. Thus (2) is proved.

Let I⊔ ∈ I(D⊔), I ∈ I(D), F⊓ ∈ F(D⊓), and F ∈ F(D), we set

I⋆⊔ := {x ∈ D⊔ : ∀i ∈ I⊔ : i ∧ x = ⊥ t⊥}, I⋆ := {x ∈ D : ∀i ∈ I : i ∧ x = ⊥ t⊥},

F ∗
⊓ := {x ∈ D⊓ : ∀j ∈ F⊓, x ∨ j = > u>}, F ∗ := {x ∈ D : ∀j ∈ F, x ∨ j = > u>}.

It is shown in [14, 15], that F(D), I(D), I(D⊔), and F(D⊓) are algebraic lattices. We consider
the following maps: Φ : F (D⊓) → F (D), E 7→ Φ(E) = {x ∈ D : ∃u ∈ E, u v x} and
Ψ : I(D⊔) → I(D), I 7→ Ψ(I) = {x ∈ D : ∃x0 ∈ I, x v x0} defined in [14].

For any a ∈ D, I(a) (resp. F (a)) is the principal ideal (resp. filter) of D generate by a and for
any a ∈ D⊔ (resp. a ∈ D⊓), I⊔(a) (resp. F⊓(a)) denoted the principal ideal (resp. filter) of D⊔
(resp. D⊓). We have the following known result.

Theorem 4.8. [14] Let D be a double Boolean algebra, then:

(1) F(D⊓) and F(D) are isomorphic lattices via Φ,

(2) I(D⊔) and I(D) are isomorphic lattices via Ψ.

We need the following lemma for the proof of Theorem 4.10.

Lemma 4.9. Let D be a dBa, I, J ∈ I(D), F,G ∈ F (D), I⊔ ∈ I(D⊔), F⊓ ∈ F (D⊓) and
I⋆, F ∗, I⋆⊔, F ∗

⊓ as above, then the following statements hold.

(1) (i) I⋆ ∈ I(D), (ii) I ∩ I⋆ = I(⊥ t⊥), (iii) If J ∩ I = I(⊥ t⊥), then J ⊆ I⋆.

(2) (i) F ∗ ∈ F (D), (ii) F ∗ ∩ F = F (> u>), (iii) If G ∩ F = F (> u>), then G ⊆ F ∗.

(3) (i) I⋆⊔ ∈ I(D), (ii) I⊔ ∩ I⋆⊔ = I⊔(⊥ t⊥), (iii) If J⊔ ∩ I⊔ = I⊔(⊥ t⊥), then J⊔ ⊆ I⋆⊔.

(4) (i) F ∗
⊓ ∈ F (D⊓). (ii) F ∗

⊓ ∩ F⊓ = F⊓(> u>), (iii) If G⊓ ∩ F⊓ = F⊓(> u>), then G⊓ ⊆ F ∗
⊓.

(5) (i) Ψ(I⋆⊔) = (Ψ(I⊔))
⋆. (ii) Φ(F ∗

⊓) = (Φ(F⊓))
∗.

Proof. For (1)(i), we have I⋆ 6= ∅ ( due to ⊥ ∧ i = ⊥ t ⊥ for any i ∈ I). Assume that x v y with
y ∈ I⋆. Since y ∈ I⋆, for any i ∈ I we get y∧ i = ⊥t⊥. Furthermore, v is compatible with t and
∧, so from x v y we get ⊥t⊥ v xtx v yty and ⊥t⊥ v (xtx)∧(iti) v (yty)∧(iti) = ⊥t⊥.
It follows that ⊥ t⊥ = (x t x) ∧ (i t i) = x ∧ i and x ∈ I⋆. Let x, y ∈ I⋆, then for i ∈ I we have
(x t x) ∧ (i t i) = ⊥ t⊥ and (y t y) ∧ (i t i) = ⊥ t⊥. In addition,

(i t i) ∧ (x t y) = [(i t i) ∧ (x t x)] t [(i t i) ∧ (y t y)]

= (⊥ t⊥) t (⊥ t⊥) = ⊥ t⊥.
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So xty ∈ I. Thus I⋆ is an ideal of D. For (1)(ii), since I⋆ and I are ideals we have I(⊥t⊥) ⊆ I∩I⋆.
Let x ∈ I∩I⋆, then (xtx)∧ (xtx) = ⊥t⊥, that is xtx = ⊥t⊥ and x v ⊥t⊥, so x ∈ I(⊥t⊥).
Thus I ∩ I⋆ = I(⊥ t⊥) and (1)(ii) holds.

For (1)(iii) let J be an ideal of D such that J ∩ I = I(⊥ t ⊥), we will show that J ⊆ I⋆. Let
x ∈ J and let i ∈ I, then i ∧ x = (i t i) ∧ (x t x) v x t x, i t i (due to x t x, i t i ∈ D⊔) and
xtx ∈ J, it i ∈ I, so x∧ i ∈ I ∩J = I(⊥t⊥), therefore ⊥t⊥ v x∧ i v ⊥t⊥ and x∧ i = ⊥t⊥,
thus x ∈ I⋆ and (iii) holds. The proof of (2) is dual to that of (1).

(3) A similar argument use in the proof of (1) (resp.(2)) show that (3) (resp. (4)) holds.
(5) We show that Ψ(I∗⊔) = (Ψ(I⊔))

⋆. First we show that Ψ(I⋆⊔) ⊆ (Ψ(I⊔))
⋆ . Let y ∈

Ψ(I⋆⊔), then there exists u ∈ I⋆⊔ such that y v u (1.1). As u ∈ I⋆⊔, then for any v ∈ I⊔,
u∧ v = ⊥t⊥. Let z ∈ Ψ(I⊔), then there exists t ∈ I⊔ such that z v t (1.2). From (1.1) and (1.2),
using (vii) of Proposition 2.5 we get ⊥t⊥ v y∧z v u∧t = ⊥t⊥ (by (2)), so y∧z = ⊥t⊥ for any
z ∈ Ψ(I⊔), therefore y ∈ Ψ(I⊔)

⋆ and Ψ(I⋆⊔) ⊆ Ψ(I⊔)
⋆. It remains to show that Ψ(I⊔)

⋆ ⊆ Ψ(I⋆⊔).
Let y ∈ [Ψ(I⊔)]

⋆, we show that y ∈ Ψ(I⋆⊔). As y ∈ [Ψ(I⊔)]
⋆, then for every v ∈ Ψ(I⊔), y∧v = ⊥t⊥.

Furthermore I⊔ ⊆ Ψ(I⊔) (by definition of Ψ), then for any v ∈ I⊔, y ∧ v = ⊥ t ⊥, it follows that
(y t y)∧ (v t v) = ⊥t⊥ for any v ∈ I⊔. Thus y t y ∈ I⋆⊔, furthermore y v y t y, so y t y ∈ Ψ(I⋆⊔).
Therefore y ∈ Ψ(I⋆⊔) and Ψ(I⊔)

⋆ ⊆ Ψ(I⋆⊔). Thus (5) holds.
(6) A similar argument use in the proof of (5) show that (6) holds.

From the above two Lemmas 4.9 and 4.7, the binary operation → is well defined on F (D)
and on I(D), and the unary operation ∗ (resp. ⋆) is also well defined on F (D) (resp. I(D)). We
consider the following algebras:

F(D) = (F (D),∧,∨,→,∗ , F (>), D), F(D⊓) = (F (D⊓),∧,∨,→,∗ , F⊓(> u>), D⊓),

I(D) = (I(D),∧,∨,→,⋆ , I(⊥), D), I(D⊔) = (I(D⊔),∧,∨,→,⋆ , I⊔(⊥ t⊥), D⊔).

Theorem 4.10. Let D be a dBa, Ψ and Φ as above, then the following statement hold:

1. I(D⊔) and I(D) are distributive lattices, pseudocomplemented lattices, algebraic lat-
tices, Brouwerian and Heyting algebras isomorphic via Ψ.

2. F(D⊓) and F(D) are distributive lattices, pseudocomplemented lattices, Brouwerian lattices,
algebraic lattices and Heyting algebras isomorphic via Φ.

Proof. (1) By (1) of Lemma 4.9 we get that I⋆ is a pseudocomplement of I ∈ I(D) and I⋆⊔ is a
pseudocomplement of I⊔ ∈ I(D⊔). In addition, from Theorem 4.8 we get that Ψ is an isomorphism
of Bounded lattices. It remains to show that Ψ(I∗⊔) = Ψ(I⊔)

∗ for any I⊔ ∈ I(D⊔) what is true by
(5)(i) of Lemma 4.9. Thus Ψ is an isomorphism of pseudocomplemented lattices.
The proof of (2) is similar to that of (1).

Definition 4.11. An algebra (A,∧,∨,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a residuated
lattice if it satisfies:

(LR1) (A,∧,∨, 0, 1) is a Bounded lattice.

(LR2) (A,�, 1) is a commutatives monoid.

(LR3) � and → form an adjoint pair .i.e c ≤ a → b if and only if a� c ≤ b, for all a, b, c ∈ A.
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A residuated lattice A is called a Gödel algebra if x2 = x� x = x, for all x ∈ A.
Taking � = ∩ on F(D) (resp. I(D)) and → as above, we consider the algebras

F(D) = (F (D),∩,∨,�,→, F (>), D) and I(D) = (I(D),∩,∨,�,→, I(⊥), D).

Lemma 4.12. Let D be a dBa, I ∈ I(D) and F ∈ F (D), then the following statements hold:
(i) F ∗ = F → F (> u>).
(ii) I⋆ = I → I(⊥ t⊥).

Proof. (i) First, we show that F ∗ ⊆ F → F (>). Let x ∈ F ∗, then for any j ∈ F, x ∨ j = > u >
(1). We will show that x ∈ F → F (>), that is F (x) ∩ F ⊆ F (>). Let y ∈ F (x) ∩ F , then
y ∈ F and x u x v y. Using (1) we get x ∨ y = > u > and using (VII) of Proposition 2.5 we get
(x u x) ∨ y = > u > v y u y v y, so y ∈ F (>) and F (x) ∩ F ⊆ F (>). Hence x ∈ F → F (>) and
F ∗ ⊆ F → F (>). Now let x ∈ F → F (>), then F (x) ∩ F ⊆ F (>). We will show that x ∈ F ∗.
Let j ∈ F , then x ∨ j ∈ F (x ∨ j) = F (x) ∩ F (j) ⊆ F (x) ∩ F ⊆ F (>), so x ∨ j ∈ F (>), that
is > u > v x ∨ j v > u >, hence x ∨ j = > u > and x ∈ F ∗. Therefore F → F ∗ v F ∗. Thus
F ∗ = F → F (>).
The proof of (ii) is similar to that of (i).

Proposition 4.13. Let D be a dBa, � and → the binary operations defined on F (D), F (D⊓),
I(D) and I(D⊔) as above, then:

(1) the algebras F(D) = (F (D),∩,∨,�,→, F (>), D) and F(D⊓) = (F (D⊓),∩,∨,�,→, F (> u
>), D⊓) are residuated lattices;

(2) the algebras I(D) = (I(D),∩,∨,�,→, I(⊥), D) and I(D⊔) = (F (D⊔),∩,∨,�,→, I(⊥), D⊔)
are residuated lattices.

Proof. (1) It is clear that (F (D),∩, D) is a commutative monoid and (F (D),∩,∨, F (>), D) is a
bounded lattice. In addition, (RL3) holds in F(D) by (3) of Lemma 4.7; ∩ is commutative and
F ∩D = F for all F ∈ F (D). Hence F(D) = (F (D),∩,∨,�,→, F (>), D) is a residuated lattice. A
similar argument show that F(D⊓) = (F (D⊓),∩,∨,�,→, F⊓(> u>), D⊓) is a residuated lattice.

(2) A similar argument use in the proof of (1) shows that (2) holds.

Lemma 4.14. Let D be a double Boolean algebra and Φ,Ψ as above, then the following statements
hold:

(1) Φ is an isomorphism of residuated lattices (Heyting) algebras.

(2) Ψ is an isomorphism of residuated lattice, (Heyting) algebras.

Proof. We show (1) and the proof of (2) can be obtained using a similar argument.
For (1), it is known that Φ is an isomorphism of bounded lattices. It remains to show that for

any F,G ∈ F (D⊓), Φ(F �G) = Φ(F )�Φ(G) (∗1) and Φ(F → G) = Φ(F ) → Φ(G) (∗2). It is easy
to see that (∗1) holds (due to � = ∩ and Φ is a morphism of lattices).

To prove (∗2), let F,G ∈ F (D⊓), first we show that Φ(F → G) ⊆ Φ(F ) → Φ(G). Let
x ∈ Φ(F → G), then there exists u ∈ F → G such that u v x. As u ∈ F → G, F⊓(u) ∩ F ⊆ G.
Now we show that x ∈ Φ(F ) → Φ(G), that is F (x) ∩ Φ(F ) ⊆ Φ(G). Let t ∈ F (x) ∩ Φ(F ), then
t ∈ F (x) and t ∈ Φ(F ) and by definition of F (x) we have x u x v t and there exists v ∈ F such
that v v t. In addition, u ∨ v ∈ F (u ∨ v) ⊆ F (u) ∩ F ⊆ G; so u ∨ v ∈ G and by the fact that
u, v v t we get u ∨ v v t and t ∈ Φ(G), therefore F (x) ∩ Φ(F ) ⊆ Φ(G). Now we show that
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Φ(F ) → Φ(G) ⊆ Φ(F → G). Let x ∈ Φ(F ) → Φ(G). We show that x ∈ Φ(F → G), that is we
find u ∈ F → G such that u v x. We have

x ∈ Φ(F⊓) → Φ(G⊓) =⇒ F⊓(x) ∩ Φ(F⊓) ⊆ Φ(G⊓)

=⇒ Φ(F (x) ∩D⊓) ∩ F⊓) ⊆ Φ(G⊓) (due to Φ compatible with ∩)
=⇒ Φ(F⊓(x u x) ∩ F⊓) ⊆ Φ(G⊓)

=⇒ F⊓(x u x) ∩ F ⊆ G (due to Φ is an isomorphism of lattices)
=⇒ x u x ∈ F⊓ → G⊓ and x u x v x.

We deduce that x ∈ Φ(F⊓ → G⊓), so Φ(F⊓) → Φ(G⊓) ⊆ Φ(F⊓ → G⊓). Thus Φ(F⊓ → G⊓) =
Φ(F⊓) → Φ(G⊓) and Φ is an isomorphism of (Heyting algebras) residuated lattices.

We have the following theorem which present residuated lattices derived from Boolean algebras
and double Boolean algebras.

Theorem 4.15. Let D be a dBa. The following conditions hold.

1. The algebras F(D) = (F (D),∩,∨,�,→, F (>), D) and F(D⊓) = (F (D⊓),∩,∨,�,→, F⊓(>u
>), D⊓) are isomorphic residuated lattices via Φ.

2. The algebras I(D) = (I(D),∩,∨,�,→, I(⊥), D) and I(D⊔) = (I(D⊔),∩,∨,�,→, I⊔(⊥), D⊔)
are isomorphic residuated lattices via Ψ.

Proof. For (1), by (1) of Proposition 4.13 F(D) = (F (D),∩,∨,�,→, F (>), D) and F(D⊓) =
(F (D⊓),∩,∨,�,→, F⊓(>u>), D⊓) are residuated lattices; in addition from (1) of Lemma 4.14 we
get that Φ is an isomorphism of residuated lattices.
The proof of (2) is similar to that of (1).

Theorem 4.16 ([8], p.99). Let L be a pseudocomplemented semi-lattice, we defined the skeleton
of L:

Skel(L) := {b∗ : b ∈ L}.

Then the ordering of L orders SkelL into a Boolean lattice. For a, b ∈ Skel(L); the meet a ∧ b, is
in Skel(L); the join in Skel(L) is described as follows:

a ∨Skel b = (a∗ ∧ b∗)∗.

The complement of a in Skel(L) is a∗.
We need to give a description of the elements of Skel(F(D)) and Skel(I(D)). Following the above
Theorem 4.16 we known that Skel(F(D)) and Skel(I(D)) are Boolean algebras. It was shown in
[14] that principal filters of D form a Boolean algebra isomorphic to D⊓, principal ideals of D form
a Boolean algebra isomorphic to D⊔ and if D is a finite or a complete dBa, then all filters (resp.
all ideals) of D form a Boolean algebra (see [14]). Now we suppose that D is not a finite nor a
complete dBa; knowing from Theorem 4.16 that SkelF(D) and Skel(I(D)) are Boolean algebras,
our aim here is to give an explicit characterization of the elements of these Boolean algebras.
First, for a principal filter F (a) and principal ideal I(a) we need to characterize F (a)∗ and I(a)⋆.
Recall that Fp(D) (resp. Ip(D)) is the set of principal filter(resp.ideals) of D. It is known that
F (a u a) = F (a) and I(a t a) = I(a) for any a ∈ D.

Lemma 4.17. Let D be a dBa and a ∈ D, then:
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(1) (i) I(a)⋆ = I(⌟a), (ii) F (a)∗ = F (¬a), (iii) F (a)∗∗ = F (a) , (iv) I(a)⋆⋆ = I(a).

(2) (i) I(a)⋆ ∩ I(b)⋆ = (I(a) ∨ I(b))⋆ = I(a t b)⋆, (ii) (I(a) ∩ I(b))⋆ = I(a)⋆ ∨ I(b)⋆ = I(a ∧ b)⋆.

(3) (i) F (a)∗ ∩ F (b)∗ = (F (a) ∨ F (b))∗, (ii) (F (a) ∩ F (b))∗ = F (a)∗ ∨ F (b)∗.

(4) Ip(D) ⊆ SkelI(D).

(5) Fp(D) ⊆ SkelF(D).

Proof. (1) it is enough to show that for any a ∈ D, I(a)⋆ = I(⌟a) and F (a)∗ = F (¬a).
From (6) of Proposition 2.8 we get I(a) ∩ I(⌟a) = I(a∧⌟a) = I(⊥). So I(⌟a) ⊆ I(a)⋆. Let J be
an ideal of D such that I(a) ∩ J = I(⊥). We show that J ⊆ I(⌟a). Let j ∈ J , we need to show
that j ∈ I(⌟a). We have by (vi) of Proposition 2.5 j ∧ a = (j t j) ∧ (a t a) v j t j, a t a; so
j ∧ a ∈ I(a)∩ J = I(⊥), therefore, j ∧ a v ⊥t⊥ and j ∧ a = ⊥t⊥. So (j t j)∧ (at a) = ⊥t⊥;
since ⊥t⊥ is a zero of the Boolean algebra D⊔, we have that ⌟(at a) is the complement of at a
and using the fact that ⌟(a t a) is the greatest element with the property (a t a) ∧ x = ⊥ t ⊥,
we conclude that j t j v⌟(a t a) and j v⌟a (due to ⌟(a t a) =⌟a by axiom (4b)). Hence
j ∈ I(⌟a) and I(a)∗ = I(⌟a). Thus (1)(i) holds. (1)(ii) is proved dually. For (1)(iv) we get
I(a)∗∗ = (I(a)⋆)∗ = I(⌟⌟a) = I(a t a) = I(a).
The proof of (1)(iii) is similar to that of (1)(iv).

For (2) and (3), using (1),(2),(5) and (6) of Proposition 2.8 together with (1), we obtain the
results.

The proof of (4) and (5) are the consequences of (1).

Proposition 4.18. Let D be a dBa, then the following statements hold:
(1) Ip(D) is a Boolean algebra which is a subalgebra of Skel(I(D)).
(2) Fp(D) is a Boolean algebra which is a subalgebra of Skel(F (D)).

Proof. It follows from the Lemma 4.17.

5 Annihilators and co-annihilators on double Boolean algebras.
The concept of annihilator was introduced for lattices by M. Mandelker in [13] as a generalization
of the concept of pseudocomplement and latter extended to the class of distributive lattices by
Cornish in [4]. In this section, the notions of annihilators and co-annihilators are introduced in
double Boolean algebras. Some properties of annihilators and co-annihilators are studied.

Definition 5.1. For any subset S of a dBa D, define S+ and S− as follow:

S+ = {x ∈ D : s ∨ x = > u> for all s ∈ S}, S− = {x ∈ D : x ∧ s = ⊥ t⊥, for all s ∈ D}.

Here S+ is called the co-annihilator of S and S− the annihilator of S. For S = {x} we
denote simply (x)+ for ({x})+ and (x)− for ({x})−. Clearly:

D+ = F (>), F (>)+ = D, D− = I(⊥), and I(⊥)− = D.

Lemma 5.2. Let D be a dBa. For any non-empty subset S of D the following statements hold:

1. S+ (resp. S−) is a filter (resp. an ideal) of D.

2. (i) S+ = (Filter(S))+; (ii) S− = (Ideal(S))−.
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3. (i) Filter(S) ∩ S+ = F (>); (ii) Ideal(S) ∩ S− = I(⊥).

Proof. (1) Let x, y ∈ S+, then for any s ∈ S, x∨s = y∨s = >u>. In addition, using distributivity
of ∨ and u we get that for any s ∈ S, s ∨ (x u y) = (x ∨ s) u (y ∨ s) = > u >, so x u y ∈ S+.
Assume that x v y and x ∈ S+, let t ∈ S, then t ∨ x = > u >, as x ∨ t v y ∨ t v > u >, we get
y ∨ t = > u >. Hence y ∈ S+. Thus S+ is a filter of D. A similar argument show that S− is an
ideal of D and (1) holds.

(2) We will show that S+ = (Filter(S))+. Let x ∈ S+, then for all s ∈ S, s ∨ x = > u >.
We will show that x ∈ (Filter(S))+. Let t ∈ Filter(S), then by (d) of Proposition 2.7 there
exist u1, . . . , un ∈ S such that u1 u . . . u un v t. Furthermore, using (i) of Proposition 2.5 we
get x∨ (u1u . . .uun) = (u1∨x)u . . .u (un∨x) = >u> v t∨x v >u> (due to ui∨x = >u>); so
x∨ t = >u> and x ∈ (Filter(S)+, therefore S+ ⊆ (Filter(S))+. Conversely, let x ∈ Filter(S)+,
then for any s ∈ Filter(S), x ∨ s = > u >, as S ⊆ Filter(S) we deduce that x ∈ S+; therefore
Filter(S))+ ⊆ S+. Thus S+ = Filter(S)+. A similar arguments show that (2)(ii) holds.

(3) Let x ∈ Filter(S) ∩ S+, then there exist u1, . . . , un ∈ S such that u1 u . . . u un v x and
x ∈ S+; hence ui ∨ x = > u >, i = 1, . . . , n. Hence x ∨ x = > u > and x ∈ F (> u >). Thus
Filter(S) ∩ S+ = F (>) and (3)(i) holds. A similar argument shows that (3)(ii) holds.

Proposition 5.3. For any S, T ⊆ D.

(1) (i) S ⊆ T =⇒ T+ ⊆ S+. (ii) S ⊆ T =⇒ T− ⊆ S−.

(2) (i) S ⊆ S++. (ii) S ⊆ S−−.

(3) (i) S+ = S+++, (ii) S−−− = S−.

Proof. (1) It is easy to verify.
(2)(i) Let x ∈ S, we show that x ∈ S++. Let s ∈ S+, then for any t ∈ S, t ∨ s = > u >, since

x ∈ S we have x∨s = >u>; therefore x ∈ S++ and S ⊆ S++. Dually we have the proof of (2)(ii).
(3)(i) By (2)(i) we have S ⊆ S++, and using (1)(i) we get S+++ ⊆ S+. Let x ∈ S+, we show

that x ∈ S+++; that is for any t ∈ S++, s ∨ x = > u >. Let t ∈ S++, then for any z ∈ S+,
x∨ t = >u>, as x ∈ S+ we deduce that x∨ t = >u>, so x ∈ S+++. Hence S+ = S+++. Dually
we have the proof of (3)(ii).

Definition 5.4. [6, Definition 14, p.8] A closure operator ϕ on D is a map assigning a closure
ϕ(X) ⊆ D to each subset X ⊆ D under the following conditions:

(1) X ⊆ Y =⇒ ϕ(X) ⊆ ϕ(Y ), (monotony)

(2) X ⊆ ϕ(X), (extensity)

(3) ϕ ◦ ϕ(X) = ϕ(X). (idempotency).

From Proposition 5.3 we get the following corollary.

Corollary 5.5. If D is a dBa, then ++ and −− are closure operators on D.

Proof. Using (1)(i), (2)(i) and (3)(i) of Proposition 5.3, it is easy to check that ++ is a closure
operator. A similar argument shows that −− is a closure operator.

In case of filters or ideals on dBa, we have more results.
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Proposition 5.6. Let D be a dBa, let F,G ∈ F (D) and I, J ∈ I(D), then the following statements
hold:

1. (i) (F ∨G)+ = F+ ∩G+, (ii) (I ∨ J)− = I− ∩ J−.

2. (i) F+ = D iff F = F (>). (ii) I− = D iff I = I(⊥).

3. (i) F ∩G = F (>) iff F ⊆ G+. (ii) I ∩ J = I(⊥) iff I ⊆ J−.

Proof. (1) (i) Since F,G ⊆ F ∨ G, we get by (2) of Lemma 5.2 that (F ∨ G)+ ⊆ F+ ∩ G+. Let
x ∈ F+ ∩ G+. We will show that x ∈ (F ∨ G)+. Let t ∈ F ∨ G, then there exist u ∈ F, v ∈ G
such that u u v v t; as x ∈ F+ ∩G+, we get u ∨ x = >u> and x ∨ v = >u>. In addition, using
distributivity of ∨ over u we get x ∨ (u u v) = (x ∨ u) u (x ∨ v) = > u > v x ∨ t v > u >; so
x ∈ (F ∨G)+. Thus F+ ∩G+ = (F ∨G)+. A similar argument shows that (1)(ii) holds.

(2) (i) Assume that F+ = D. We show that F = F (>). Let x ∈ F , then x ∈ D = F+, so
x∨x = xux = >u>, hence x ∈ F (>). Therefore F = F (>). Conversely, assume that F = F (>).
Then F+ = F (>)+ = D. A similar argument shows that (ii) holds.

(3) Assume that F ∩ G = F (>). Let x ∈ F , we show that x ∈ G+. Let y ∈ G, then
x ∨ y ∈ F (x ∨ y) = F (x) ∩ F (y) ⊆ F ∩G = F (>); so x ∨ y = > u >, hence F ⊆ G+. Conversely,
assume that F ⊆ G+. Let x ∈ F ∩G, then x∨x = >u>, hence x ∈ F (>). Thus F ∩G = F (>).

Corollary 5.7. For any x, y ∈ D, the following conditions hold.

1. (i) x v y =⇒ (x)+ ⊆ (y)+, (ii) x v y =⇒ (y)− ⊆ (x)−.

2. (i) (x u y)+ = (x)+ ∩ (y)+, (ii) (x t y)− = (x)− ∩ (y)−.

3. (i) (x)+ = D iff x ∈ F (>), (ii) (x)− = D iff x ∈ I(⊥).

Proof. We give the proof of (j)(i), j = 1, 2, 3 and the proof of (j)(ii) is obtained dually.
(1) (i) Assume that x v y, we show that (x)+ ⊆ (y)+. Let t ∈ (x)+, then t ∨ x = > u >. We

show that t ∈ (y)+. Since x v y, we get t ∨ x v y ∨ t v > u>, hence y ∨ t = > u> and t ∈ (y)+.
(2) (i) From (1), as x u y v x, y, we get (x u y)+ ⊆ (x)+ ∩ (y)+. Let t ∈ (x)+ ∩ (y)+, then

t ∨ x = t ∨ y = > u >. As x u y v x ∨ y, we get t ∨ (x u y) v (x ∨ y) ∨ t v > u >, in addition,
t ∨ (x u y) = (t ∨ x) u (t ∨ y) = > u >; so t ∨ (x u y) = > u >, therefore t ∈ (x u y)+ and
(x)+ ∩ (y)+ ⊆ (x u y)+. Thus (2) (i) holds.
(3) (i) Assume that (x)+ = D, then x ∨ x = > u > and x ∈ F (>). Conversely, assume that
x ∈ F (>), then > u> v x and for any t ∈ D,> u> v t ∨ x v > u>, so D = (x)+.

Definition 5.8. A filter Fof D is called a direct factor filter of D if there exists a proper filter
G such that F ∩G = F (>) and F ∨G = D. Dually is defined a direct factor ideal of D.

Theorem 5.9. (1) Each (x)+, x ∈ D, is a direct factor filter of D if and only if (x)+∨(x)++ = D.
(2) Each (x)−, x ∈ D, is a direct factor ideal of D if and only if (x)− ∨ (x)−− = D.

Proof. (1) Assume that (x)+, x ∈ D, is a direct factor of D. Then there exists a proper filter
G such that (x)+ ∩ G = F (>) and (x)+ ∨ G = D. Since (x)+ ∩ G = F (>), we get by (3)(i) of
Proposition 5.6, G ⊆ (x)++. Hence D = (x)+ ∨G ⊆ (x)+ ∨ (x)++ ⊆ D. Conversely, assume that
the condition holds, that is x ∈ D and, (x)++ ∨ (x)+ = D. We show that (x)+ is a direct factor of
D. We have always (x)+ ∩ (x)++ = F (>) by (2)(i) and (3)(i) of Lemma 5.2. Furthermore we have
(x)+ ∨ (x)++ = D. Therefore (x)+ is a direct factor of D. The proof of (2) is obtained dually.
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The concept of annihilator ideal and co-annihilator filter are now introduced in the following.

Definition 5.10. Let D be a dBa. A filter F of D is called a co-annihilator filter if F = F++

or equivalently F = S+ for some S ⊆ D,S 6= ∅. Dually is defined the annihilator ideal of D.

Lemma 5.11. Let D be a dBa, F a filter and I an ideal of D, then

(i) F ∗ = {x ∈ D : F (x) ∩ F (a) = F (>), ∀a ∈ F} and F ∗ is a pseudocomplement of F .

(ii) I⋆ = {x ∈ D : I(x) ∩ I(a) = I(⊥ t⊥), ∀a ∈ I} and I⋆ is a pseudocomplement of I.

Proof. For (i), set L := {x ∈ D : F (x) ∩ F (a) = F (>), ∀a ∈ F}. By (2)(i) of Lemma 4.9, F ∗

is a pseudo-complement of F and F ∗ is a filter. It remains to show that F ∗ = L. Let x ∈ L,
then for any a ∈ F, F (x) ∩ F (a) = F (>). We show that x ∈ F ∗. Let j ∈ F , then by assumption,
F (x)∩F (j) = F (>), using (5) of Proposition 2.8 we have F (x)∩F (j) = F (x∨j), so F (x∨j) = F (>)
and x∨ j ∈ F (>); therefore >u> v x∨ j v >u>. So x∨ j = >u> and x ∈ F ∗. Hence L ⊆ F ∗.
Now we show that F ∗ ⊆ L. Let x ∈ F ∗ and a ∈ F , then a∨ x = >u>. By (5) of Proposition 2.8,
we have F (a) ∩ F (x) = F (a ∨ x) = F (> u>); so x ∈ L and F ∗ ⊆ L. Thus F ∗ = L and (i) holds.
A similar argument show that (ii) holds.

Theorem 5.12. Let D be a dBa. The following statements hold:
(1) CA(D) is a Boolean algebra. (2) A(D) is a Boolean algebra.

Proof. One can show that F+ = F ∗ and I− = I⋆ for any F ∈ F (D) and any I ∈ I(D) and
conclude with Theorem 4.16

6 Conclusion
In order to give a complete description of the lattice F (D) (resp. I(D)) of filters (resp. ideals)
of an arbitrary dBa D. In this paper, first we have studied some particular filters of an arbitrary
dBA, namely, primary filters(resp. ideals). We have introduced dense and co-dense elements on
dBas and show that dense (resp. co-dense) elements form a filter (resp. an ideal). We have also
characterized trivial dBas using dense set and co-dense set. We have studied some properties of
the lattice F (D) (resp. I(D) of filters (resp. ideals) of an arbitrary dBa D, and we have obtained
that these lattices are endowed with the structures of distributive, algebraic, pseudocomplemented
lattices, Brouwerian algebras, Heyting algebras, Gödel algebras and possess also the structure of
residuated lattice. We end this paper by introducing the notions of annihilators and co-annihilators
on dBas and study related properties. We have shown that co - annihilators(resp. annihilators) of
F (D) (resp. I(D)) are exactly pseudocomplements and form a Boolean algebras.

Our future work is to study the relationship between filters(ideals) and congruences on arbitrary
dBa and to characterize the sub-directly irreducible dBas and the indecomposable dBas.
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