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Abstract

We consider the category Coalg(
∏
) of

∏
-coalgebras

where
∏

is the endofunctor on the category of local
BL-algebras and BL-morphisms which assigns to each lo-
cal BL-algebra its quotient by its unique maximal filter
and we characterize homomorphisms and subcoalgebras
in Coalg(

∏
) . Moreover, we introduce local BL-frames

based on local BL-algebras, and show that the category
of local BL-frames is isomorphic to Coalg(

∏
).
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A Title

1 Introduction

Coalgebras were introduced by Aczel and Mendler [1] to model various type of transition systems.
Up to now, coalgebras were studied over the category of sets and mappings (see for example [5, 11]),
arbitrary categories (see for example [2, 7, 8]) or categories of topological spaces (see for example
[9]), but not specially on algebraic structures. It has been shown that Kripke frames can be seen
as coalgebras of the covariant powerset functor [16] and descriptive frames as coalgebras of the
Vietoris functor, the topological analogue of the powerset functor, on Stone spaces [9] . These
results provide a strong link between coalgebras and modal logic. The aim of this paper is to
further investigate this connection for coalgebras over BL-algebras.

Coalgebras over the category BL of BL-algebras and BL-morphisms were introduced in [10]
by the authors. They show that coalgebras of the MV-functor, which assigns each BL-algebra to
its MV-center have very nice properties. In this short paper, we establish the link between modal
logic and coalgebras over BL-algebras via a new type of logical frame, namely local BL-frame.

https://doi.org/10.52547/HATEF.JAHLA.2.4.5

https://crossmark.crossref.org/dialog/?doi=10.52547/HATEF.JAHLA.2.4.5


52 C. Nganteu, M. Kianpi, A. Ogadoa

The outline of the paper is as follows: In Section 2, we recollect some definitions and results
which will be used throughout the paper. In Section 3, we state some facts about the category of
local BL-algebras and introduce coalgebras of the functor

∏
, which assigns each local BL-algebra

to its quotient by its maximal filter. We characterize homomorphisms and subcoalgebras of
∏
-

coalgebras and show that the corresponding category is not complete. In the last part of the
paper, we present local BL-frames and models and show that the categories of local BL-frames
and

∏
-coalgebras are isomorphic.

2 Preliminaries

BL-algebras were invented by P. Hájek [6] in order to provide an algebraic proof of the completeness
theorem of basic logic ( BL, for short) arising from the continuous triangular norms, familiar in
the fuzzy logic framework. The language of propositional Hájek basic logic contains the binary
connectives ◦ and ⇒ and the constant 0̄ . Axioms of BL are:

(A1) (φ⇒ ψ) ⇒ ((ψ ⇒ ω) ⇒ (φ⇒ ω))

(A2) (φ ◦ ψ) ⇒ φ

(A3) (φ ◦ ψ) ⇒ (ψ ◦ φ)

(A4) (φ ◦ (φ⇒ ψ)) ⇒ (ψ ◦ (ψ ⇒ φ))

(A5a) (φ⇒ (ψ ⇒ ω)) ⇒ ((φ ◦ ψ) ⇒ ω)

(A5b) ((φ ◦ ψ) ⇒ ω) ⇒ (φ⇒ (ψ ⇒ ω))

(A6) ((φ⇒ ψ) ⇒ ω) ⇒ (((ψ ⇒ φ) ⇒ ω) ⇒ ω))

(A7) 0̄ ⇒ ω.

We recall some definitions and basic results that can be found in [3, 6, 12, 16].
An algebraic structure (L,∧,∨, ∗,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a bounded commutative

residuated lattice if it satisfies the following conditions:

(BL1) (L,∧,∨, 0, 1) is a bounded lattice;

(BL2) (L, ∗, 1) is a commutative monoid;

(BL3) ∗ is a left adjoint of →, that is x ∗ z ≤ y if and only if z ≤ x→ y.

A BL-algebra is a bounded commutative residuated lattice which satisfies the following:

(BL4) x ∧ y = x ∗ (x→ y) (divisibilty);

(BL5) (x→ y) ∨ (y → x) = 1 (prelinearity).

A BL-algebra L is called a Gödel algebra if x2 = x ∗x = x for every x ∈ L. In addition, L is called
an MV-algebra if ¯̄x = x for all x ∈ L, where x̄ = x→ 0.

The following holds in any BL-algebra L:

Lemma 2.1. [13] For all x, y, z ∈ L



Modal representation of coalgebras over local BL-algebras 53

(1) x ≤ y if and only if x→ y = 1;

(2) x ∗ y ≤ x ∧ y;

(3) x→ (y → z) = y → (x→ z);

(4) If x ≤ y, then y → z ≤ x→ z and z → x ≤ z → y;

(5) x ≤ y → (x ∗ y); x ∗ (x→ y) ≤ y;

(6) x ∗ x̄ = 0;

(7) (x ∗ y) → z = x→ (y → z);

(8) 1 → x = x; x→ 1 = 1; x→ x = 1; x ≤ y → x; x ≤ x; x = x.

A filter of L is a non-empty subset F of L such that for all x, y ∈ L,

(F1) x, y ∈ F implies x ∗ y ∈ F ;

(F2) x ∈ F and x ≤ y imply y ∈ F .

A subset D of a BL-algebra L is called a deductive system if

(DS1) 1 ∈ D;

(DS2) x ∈ D and x→ y ∈ D imply y ∈ D.

Deductive systems have been widely studied in BL-algebras namely to characterize fragments
of Basic fuzzy logic (see [15]); it is obvious that for a non-empty subset F of L, F is a deductive
system if and only if it is a filter.

Let L1 and L2 be two BL-algebras, a map f : L1 −→ L2 is called a homomorphism of BL-
algebras (BL-morphism), if f(0) = 0 and f(x ∝ y) = f(x) ∝ f(y) for all ∝∈ {∗,→}. We obviously
have f(1) = 1 for any BL-homomorphism f and it is shown in [13] that for any BL-morphism f ,
f(x ∝ y) = f(x) ∝ f(y) with ∝∈ {∨,∧} and if x ≤ y, then f(x) ≤ f(y).

For any deductive system F of a BL-algebra L = (L,∧,∨, ∗,→, 0, 1), we can define a relation
θF on L as follows: for all x, y ∈ L,

(xθF y) ⇐⇒ ((x→ y) ∧ (y → x) ∈ F ).

It is well known that θF is a congruence on L (see, e.g. [6]) and since the class of BL-algebras is
a variety, the quotient structure L/θF is also a BL-algebra for which for all x, y ∈ L, [x ∝ y] :=
[x] ∝ [y] where ∝∈ {∧,∨, ∗,→}, and [x] := [x]θF . A congruence θ on L is called induced by F if
[1]θ = F . In addition, θF is clearly induced by F .

The class of BL-algebras equipped with BL-morphisms form a category. We will denote it by
BL. The one-element BL-algebra {0 = 1} is called the degenerate BL-algebra ( see [12], Remark 8
), we will denote it by G1. The two-element non-degenerate BL-algebra {0, 1} is called the trivial
BL-algebra, we will denote it by G2. These two algebras are examples of BL-algebras which are
both Gödel-algebras and MV -algebras.

Proposition 2.2. [10] There are only two non-degenerate BL-algebras with three elements:
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(i) The chain {0, x, 1}, with the operations ∗ and → defined by the following tables:

∗ 0 x 1

0 0 0 0
x 0 x x
1 0 x 1

→ 0 x 1

0 1 1 1
x 0 1 1
1 0 x 1

It is the unique Gödel-algebra with three elements and we will denote it by G3.

(ii) The chain {0, x, 1}, with the operations ∗ and → defined by the following tables:

∗ 0 x 1

0 0 0 0
x 0 0 x
1 0 x 1

→ 0 x 1

0 1 1 1
x x 1 1
1 0 x 1

It is the unique MV -algebra with three elements and we will denote it by M3.

Remark 2.3. For any set X, define for A ⊆ X and B ⊆ X, A∗B = A∩B and A→ B = AC ∪B.
Then the structure (P (X),∩,∪, ∗,→, ∅, X) where P (X) is the powerset of X is a BL-algebra called
the powerBL-algebra of X.

A Kripke frame is a pair (X,R) where X is a set and R is a binary relation on X. For x ∈ X,
let [x]R = {y ∈ X | xRy} be the R-image of x. A p-morphism between two Kripke frames (X,R)
and (Y,R′) is a function f : X −→ Y satisfying f([x]R) = [f(x)]R′ for each x ∈ X. Kripke frames
and p-morphisms form a category denoted by KFr.

A Kripke model is a tuple (W,R, ν), where (W,R) is a Kripke frame and ν : Prop −→ P (L)
sends proposition letters to the set of states where they are true. A modal algebra is a structure
(L,∧,∨,¬, 0, 1,�) such that (L,∧,∨,¬, 0, 1) is a Boolean algebra and � preserves 1 and ∧.

Definition 2.4. Let C be a category.

(1) A full subcategory D of C is called isomorphism-closed provided that every C-object that is
isomorphic to some D-objects is itself a D-object.

(2) A coalgebra for an endofunctor F : C −→ C is a pair (A,α) where A is an object of C and
α : A −→ F (A) is a C-morphism.

(3) A homomorphism between two coalgebras (A,α) and (B, β) for F is a C-morphism f : A −→
B such that β ◦ f = F (f) ◦ α.

(4) Coalgebras for F and their homomorphisms form a category denoted by Coalg(F ).

3
∏
-coalgebras

In this section, we present some properties of local BL-algebras which are BL-algebras with a
unique maximal filter. We define a non-trivial endofunctor of the category of local BL-algebras
and investigate the corresponding coalgebras.

Definition 3.1. Let L be a BL-algebra.
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(1) A deductive system F of L is proper if 0 /∈ F.

(2) A deductive system M of L is called maximal if it is proper and not contained in any other
proper deductive system.

(3) L is local if it has a unique maximal deductive system.

Theorem 3.2. [13] Let L be a BL-algebra. Define

D(L) = {x ∈ L | xn ̸= 0 for all integers n} .

The following are equivalent:

(i) D(L) is a deductive system of L;

(ii) L is local;

(iii) D(L) is the unique maximal deductive system of L.

Example 3.3. (i) D(G3) = {x, 1}, D(M3) = D(G2) = {1} are deductive systems. So by the
above theorem, G3, M3 and G2 are local BL-algebras;

(ii) Consider A = ([0; 1] ,∧,∨, ∗,→, 0, 1) the BL-algebra such that for all x, y ∈ L, x ∗ y = x · y
and x → y = 1 if x ≤ y and x → y = y

x else. Then D(A) =]0; 1] is a deductive system of A.
Thus A is a local BL-algebra.

(iii) [[15], Proposition 11] Any BL-algebra such that MV (L) = {0, 1} is local.

(iv) [[15], Example 1] The chain {0, x, y, 1}, with the operations ∗ and → defined by the following
tables

∗ 0 x y 1

0 0 0 0 0
x 0 0 x x
y 0 x y y
1 0 x y 1

→ 0 x y 1

0 1 1 1 1
x x 1 1 1
y 0 x 1 1
1 0 x y 1

is a local BL-algebra such that MV (L) = {0, x, 1} .

(v) G1 is not local.

Proposition 3.4 ([4], Proposition 1.10). Let f : L −→ L′ be a BL-morphism. If M ′ is a maximal
deductive system of L′, then f−1(M ′) is a maximal deductive system of L.

Lemma 3.5 ([4], Lemma 1.9). Let L be a nontrivial BL-algebra and M a proper deductive system
of L. The following are equivalent:

(i) M is maximal;

(ii) for any x ∈ L, x /∈M ⇔ (xn) ∈M for some integer n.

Lemma 3.6. Let f be a BL-morphism between two local BL-algebras L and L′ whose maximal
deductive systems are M and M ′, respectively. If f is surjective, then f(M) =M ′.
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Lemma 3.7. Let L be a BL-algebra and F be a deductive system of L. Then θF is the unique
congruence on L induced by F .

Proof. Let θ be a congruence on L induced by F . We have to show that θF = θ. Let (x, y) ∈ θF .
Then x→ y ∈ [1]θ and y → x ∈ [1]θ. So by compatibility,

(x ∗ (x→ y), x ∗ 1) ∈ θ and (y ∗ (y → x), y ∗ 1) ∈ θ.

Hence by BL4 we obtain (x∧y, x) ∈ θ and (y∧x, y) ∈ θ. Since θ is symmetric and ∧ is commutative,
it follows that (x, x ∧ y) ∈ θ and (x ∧ y, y) ∈ θ. By transitivity, we have (x, y) ∈ θ. Conversely, let
(x, y) ∈ θ. Then (x→ y, y → y) ∈ θ and (y → x, y → y) ∈ θ. So (x→ y, 1) ∈ θ and (y → x, 1) ∈ θ.
It follows that x→ y ∈ F and y → x ∈ F and therefore, (x, y) ∈ θF .

In the sequel we will denote L/θF by L/F and [x]θF by [x]F .
Let M be the maximal deductive system of a local BL-algebra L. Then by ([4], Proposition

1.13), since M is the unique maximal deductive system which contains M , L/M is a local BL-
algebra. Therefore, we have:

Lemma 3.8. Let M be the maximal deductive system of a local BL-algebra L. Then L/M is a
local BL-algebra and D(L/M) = {M}.

Proof. We haveMn = [1]nM = [1]M ̸= [0]M , which means thatM ∈ D(L/M). Let [x]M ∈ D(L/M).
Then [xn]M = [x]nM ̸= [0]M , for all integer n. It follows that xn → 0 /∈ M , for all integer n. Thus
by Lemma 3.5, x ∈M ; That is, [x]M =M .

Local BL-algebras and BL-morphisms form a category which will be denoted by lBL.

Proposition 3.9. lBL is an isomorphism-closed subcategory of BL.

Proof. Let f : L −→ G be an isomorphism between a BL-algebra L and a local BL-algebra G,
whose inverse is g. Then by Proposition 3.4, f−1(M ′) is a maximal filter of L, where M ′ is the
unique maximal filter of G. Moreover, let H be another maximal filter of L. Then g−1(H) = M ′

and so H = g(M ′) = f−1(M ′). Thus L is a local BL-algebra.

Remark 3.10. Let L and L′ be two local BL-algebras,M andM ′ their respectives maximal filters.
Then M × L′ and L ×M ′ are maximal filters of L × L′. Thus, L × L′ is not a local BL-algebra.
It follows that lBL has no (co)products and therefore lBL is not complete, nor cocomplete.

Proposition 3.11. Consider the correspondence
∏

: lBL −→ lBL such that
∏
(L) = L/M for

any local BL-algebra L whose unique maximal filter is M and
∏
(f) : L/M −→ L/M ′ such that∏

(f)([x]M ) = [f(x)]M ′ .

Then
∏

is a covariant endofunctor on lBL.

Proof. By Lemma 3.7 and the fact that θM is a congruence,
∏
(L) is well defined. Moreover, let

L
f−→ L′ and L′ g−→ L′′ be two BL-morphisms. Let x ∈ L. We have∏

(g) ◦
∏

(f)([x]M ) =
∏

(g)([f(x)]M ′) = [g ◦ f(x)]M ′ =
∏

(g ◦ f)([x]M )

and also ∏
(idL)([x]M ) = [x]M = id∏(L)([x]M ).
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Let Coalg(
∏
) be the category of

∏
-coalgebras and

∏
-homomorphisms. Let (L,α) be a

∏
-

coalgebra. For any x, y in a BL-algebra L, we denote x
α→ y by α(x) = [y]M . Then one can observe

that
∏
-coalgebras mimic non-deterministic transition systems.

Let (L,α) and (L′, α′) be two
∏
-coalgebras. A BL-morphism f : L −→ L′ weakly reflects

transition systems if for all x ∈ L and y ∈ L′, f(x)
α′
→ y implies x

α→ t, with f(t) ∈ [y]M , t ∈ L.

Proposition 3.12. Let (L,α) and (L′, α′) be two
∏
-coalgebras, and f : L −→ L′ a BL-morphism.

The following are equivalent:

(i) f is a
∏
-homomorphism;

(ii) for all x ∈ L, α′(f(x)) = [f(z)]M ′, whenever α(x) = [z]M ;

(iii) f preserves and weakly reflects transitions.

Proof. (i) ⇔ (ii) Straightforward.
(ii)⇒ (iii) Suppose for all x ∈ L, α′(f(x)) = [f(z)]M ′ , whenever α(x) = [z]M . Let x, y ∈ L such

that x
α→ y. Then α(x) = [y]M . So by hypothesis, α′(f(x)) = [f(y)]M ′ implying f(x)

α′
→ f(y). So f

preserves transitions. Moreover, let x ∈ L and y ∈ L′ such that f(x)
α′
→ y. Then α′(f(x)) = [y]M ′ .

Let z ∈ L such that α(x) = [z]M . Then x
α→ z and by hypothesis, [f(z)]M ′ = α′(f(x)) = [y]M ′ ,

i.e., so f(z) ∈ [y]M ′ . Thus, f weakly preserves transitions.

(iii) ⇒ (ii) Let x ∈ L, such that α(x) = [z]M . Then x
α→ z, which implies by hypothesis that

f(x)
α′
→ f(z), i.e. α′(f(x)) = [f(z)]M ′ .

Definition 3.13. [3] A monomorphism m is called strong in a category C if for every epimorphism
e and every commutative square

e //

f

��

d

wwo o o o o o o
g

��
m

//

there exists a diagonal d such that g = m ◦ d and f = d ◦ e.

Proposition 3.14. Let (L′, α′) be a
∏
-coalgebra. A local BL-subalgebra L of L′ is a

∏
-subcoalgebra

of (L′, α′) iff there exists a strong mono L
m−→ L′, verifying the following property: for all x ∈ L,

there exists z ∈ L such that m(x)
α′
→ m(z).

Proof. Suppose that (L,α) is a
∏
-subcoalgebra of (L′, α′), and m the corresponding strong mono.

Let x ∈ L. Since m is a
∏
-homomorphism, it follows from Proposition 3.12 that α′ ◦ m(x) =

[m(z)]M ′ , where α(x) = [z]M . So m(x)
α′
→ m(z), z ∈ L.

Conversely, assume that there is a strong mono m : L −→ L′ such that for all x ∈ L, there

exists z ∈ L such that m(x)
α′
→ m(z). Define α : L −→

∏
(L) by α(x) = [z]M , where m(x)

α′
→ m(z).

Let x, x′ ∈ L such that α(x) = [z]M and α(x′) = [z′]M . If x = x′, then α′ ◦m(x) = α′ ◦m(x′). So
by Proposition 3.12 (ii), we obtain [m(z)]M ′ = [m(z′)]M ′ . Hence

(m(z) → m(z′)) ∧ (m(z′) → m(z)) ∈M ′.

Thus
(z → z′) ∧ (z′ → z) ∈ m−1(M ′).
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It follows from Proposition 3.4 that (z → z′) ∧ (z′ → z) ∈ M . So [z]M = [z′]M . Thus α is well
defined. Moreover, since α′ and m are BL-morphisms, we have

α′ ◦m(0) = α′(0) = [1]M = [m(1)]M .

Hence m(0)
α′
→ m(1), implying α(0) = [1]M . On another hand, let x, y ∈ L such that α(x ∝ y) =

[t]M , α(x) = [u]M and α(y) = [v]M where ∝∈ {∗,→}. Then we have m(x ∝ y)
α′
→ m(t), i.e.

α′ ◦m(x ∝ y) = [m(t)]M ′ . Since α′ ◦m is a BL-morphism, we have

α′ ◦m(x) ∝ α′ ◦m(y) = [m(t)]M ′ ,

i.e.
[m(u)]M ′ ∝ [m(v)]M ′ = [m(t)]M ′ .

Thus m([u]M ∝ [v]M ) = m([t]M ). Since m is a mono, [u]M ∝ [v]M = [t]M and so α(x ∝ y) =
α(x) ∝ α(y). Therefore, α is a BL-morphism. It follows that (L,α) is a

∏
-subcoalgebra of

(L′, α′).

It follows from Remark 3.10 that lBL has no products and then bisimulations cannot be defined
on

∏
-coalgebras. Moreover, since limits and colimits in the categories of coalgebras are carried by

limits and colimits in the base categories, we obtain the following result:

Proposition 3.15. Coalg(
∏
) is not complete, nor cocomplete.

4 Local BL-frames as
∏
-coalgebras

Throughout this section, we fix a set Prop of proposition letters.

Definition 4.1. (1) A local BL-frame is a structure (L, θM ) where L is a local BL-algebra and
M is the maximal filter of L;

(2) A local BL-model is a structure (L, θM , ν) where (L, θM ) is a local BL-frame and ν : Prop −→∏
(L) is a compatible valuation, that is for all x, y ∈ L, we have

(i) ν−1({[x]M ∗ [y]M}) = ν−1({[x]M}) ∩ ν−1({[y]M});
(ii) ν−1({[x]M → [y]M}) = ν−1({[x]M})C ∪ ν−1({[y]M});
(iii) ν−1({[0]M}) = ∅.

Local BL-frames (models) and BL-morphisms form a category which will be denoted by
Fr(lBL) (Mod(lBL)).

Remark 4.2. It is well known that the normal modal logic S5 is characterized by the class of
reflexive, symmetric, and transitive Kripke frames, that is, the frames for S5 are exactly that
Kripke frames in which the accessibility relation is an equivalence relation. Therefore S5 is sound
and complete in the class of local BL-frames.

The validity of modal formulas at a world x in a local BL-model (L, θM , ν) is defined recursively
as:

M, x |= p iff x ∈ ν(p)
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M, x |= ¬φ iff not M, x |= φ

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= φ→ ψ iff not M, x |= φ or M, x |= ψ

M, x |= �φ iff for every y ∈ [x]M ,M, y |= φ

M, x |= ♢φ iff there exists y ∈ [x]M ,M, y |= φ

The truth set of a formula φ in a model M is the set [[φ]]M = {x ∈ L/M, x |= φ}. For any
subset K of L, we define the operators ▹ and �̃ by:

▹K = L \K and �̃K = {x ∈ L/ [x]M ⊆ K}.

By checking the semantics clause above, we have the following result:

Lemma 4.3. For any lBL-model M = (L, θM , ν),

(i) [[p]]M = ν(p);

(ii) [[¬φ]]M = ▹ [[φ]]M;

(iii) [[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M ;

(iv) [[�φ]]M = �̃ [[φ]]M.

The following result shows how to construct modal algebras with any lBL-modelM = (L, θM , ν):

Theorem 4.4. For any lBL-model M = (L, θM , ν), define the set

τ(M) = {[[φ]]M , φ ∈ Prop}.

Then the structure (τ(M),∩,∪, ▹, ∅, L, �̃) is a modal algebra.

Proof. Using Lemma 4.3, it is easily checked that (τ(M),∩,∪, ▹, ∅, L) is a Boolean algebra and
that �̃L = L. We only show that �̃ preserves intersections. Let φ,ψ ∈ Prop. We have

�̃([[φ]]M ∩ [[ψ]]M) = {x ∈ L | [x]M ⊆ [[φ]]M ∩ [[ψ]]M} ⊆ �̃ [[φ]]M ∩ �̃ [[ψ]]M .

Conversely, let x ∈ �̃ [[φ]]M ∩ �̃ [[ψ]]M. Then [x]M ⊆ [[φ]]M and [x]M ⊆ [[ψ]]M. Thus for all
y ∈ [x]M , we have M, y |= φ and M, y |= ψ. So M, y |= φ ∧ ψ. By Lemma 4.3 we obtain y ∈
[[φ ∧ ψ]]M = [[φ]]M∩ [[ψ]]M. It follows that [x]M ⊆ [[φ]]M∩ [[ψ]]M and so x ∈ �̃([[φ]]M∩ [[ψ]]M).

For each BL-algebra L, let L denote the carrier.
In what follows, we give a link between local BL-frames and well known Kripke frames:

Proposition 4.5. Let Fr(lBL)∗ be the category of local BL-frames with surjective morphisms.
Then the correspondance U : Fr(lBL)∗ −→ KFr which sends every (L, θM ) to (L, θM )) and acts
on morphisms as identity is a faithful functor.
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Proof. For any local BL-frame (L, θM ), U((L, θM )) = (L, θM ) is clearly a Kripke frame. Let
f : (L, θM ) −→ (L′, θM ′) be a surjective morphism. In order to show that U is well defined, we
have to show that f is a p-morphism. Let x ∈ L and y ∈ f([x]M ). Then y = f(z) with z ∈ [x]M .
So

(z → x) ∧ (x→ z) ∈M.

Thus
f((z → x) ∧ (x→ z)) ∈ f(M).

It follows from Lemma 3.6 that

(y → f(x)) ∧ (f(x) → y) ∈M ′.

So y ∈ [f(x)]M ′ and we have f([x]M ) ⊆ [f(x)]M ′ . Moreover, let y ∈ [f(x)]M ′ . Since f is surjective,
there exists z ∈ L such that y = f(z) and we have

(f(z) → f(x)) ∧ (f(x) → f(z)) ∈M ′,

that is
f((z → x) ∧ (x→ z)) ∈M ′

so that
(z → x) ∧ (x→ z) ∈ f−1(M ′) =M.

Thus z ∈ [x]M . Therefore y ∈ f([x]M ). Hence f([x]M ) = [f(x)]M . So U is well defined. The
functoriality and the faithfulness of U are straightforward.

We present now the result which allows to see local BL-frames as
∏
-coalgebras:

Theorem 4.6. Fr(lBL) is isomorphic to Coalg(
∏
).

Proof. Consider the correspondance F which assigns to each local BL-frame (L, θM ) the pair

(L,L
αL−→ L/M) such that α(x) = [x]M for all x ∈ L and to each BL-morphism f : L −→ L′,

F(f) = f . Let (L, θM ) be a local BL-frame. Since θM is a congruence, α is a BL-morphism and

so (L,L
αL→ L/M) is a

∏
-coalgebra. Moreover, let (L, θM )

f−→ (L′, θM ′) be a BL-morphism. For
all x ∈ L,

α′ ◦ f(x) = [f(x)]M ′ =
∏

(f)([x]M ) =
∏

(f) ◦ α(x).

So f is a
∏
-homomorphism between (L,L

αL−→ L/M) and (L′, L′ αL−→ L′/M ′) . Hence, F is well
defined. By spelling out the definitions, one shows that F preserves composition and identity. Thus
F : Fr(lBL) −→ Coalg(

∏
) is a covariant functor.

Moreover The correspondance G which assigns to each
∏
-coalgebra (L,L

αL−→ L/M) the local
BL-frame (L, θM ) and which acts as identity on homomorphisms is functorial. Finally, Lemma
3.7 allows to prove that the two functors above statisfy the identities F ◦ G = idCoalg(

∏
) and

G ◦ F = idFr(lBL). So Fr(lBL) and Coalg(
∏
) are isomorphic.
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5 Conclusion

One of the main interests of the study of coalgebras is the development of coalgebraic logical
foundations over base categories, as a way of reasoning in a quantitive way about transition
systems. There is a strong link between coalgebras and modal logic. In this paper, we investigate
this relation in the framework of BL-algebras. After the characterization of

∏
-homomorphisms

and
∏
-subcoalgebras, where

∏
is the endofunctor on the category of local BL-algebras and BL-

morphisms which assigns to each local BL-algebra its quotient by its unique maximal filter, we
introduced local BL-frames based on local BL-algebras, and shown that the category of local
BL-frames is isomorphic to the category of

∏
-coalgebras.
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