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Abstract

Polygroups are another important class of hypergroups.
The importance of polygroups is their connection to
graphs, relations and Boolean algebras. In this paper,
we study notions of autosolvable and autonilpotent poly-
groups by using the heart of a polygroup. This study
introduces the concept of autosolvable and autonilpotent
polygroups with respect to the automorphism of poly-
groups. We also prove that autonilpotent polygroups are
autosolvable.
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A Title

1 Introduction

The hyperstructure theory was firstly introduced, by F. Marty at the 8th congress of Scandinavian
Mathematicians in 1934. Marty introduced the concept of hypergroups as a generalization of groups
and used it in different contexts like algebraic functions, rational fractions and non-commutative
groups. In classical algebraic structures, the synthetic result of two elements is an element, while
in the hyper algebraic system, the synthetic result of two elements is a set of elements, therefore it
can be said that the notion of hyperstructures is a generalization of classical algebraic structures,
from this point of view. Hyperstructures have many applications to several sectors of both pure
and applied sciences as geometry, graphs and hypergraphs, fuzzy sets and rough sets, automata,
cryptography, codes, relation algebras, C–algebras, artificial intelligence, probabilities, chemistry,
physics, especially in atomic physics and in harmonic analysis. In this paper, we introduce a type
of automorphism using the automorphism of any hypergroup and invariant congruence relation on
a hypergroup and express a congruence relation between automorphisms and study its properties.
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Finally, we introduce the autosolvable and autonilpotent polygroup using the concept of auto-
commutators and study relationship between autosolvable and autonilpotent polygroups.

2 Preliminaries

Let H be a non-empty set and P ∗(H) be the set of all non-empty subsets of H. Let · be a
hyperoperation on H, that is, · is a map from H × H into P ∗(H) and structure (H, ·) is called
a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H, we define A · B =∪
a∈A, b∈B

a · b, A · x = A · {x}, x ·B = {x} ·B.

A hypergroupoid (H, ·) is called a semihypergroup if for all a, b, c of H we have (a·b)·c = a·(b·c).
A semihypergroup is a hypergroup if a ·H = H · a = H for all a ∈ H. Let (H1, •1) and (H2, •2)
be hypergroups. Define a hyperoperation • on H1 × H2 by (x, y) • (z, w) = (x •1 z, y •2 w).
Then (H1 × H2, •) is a hypergroup. The map f : H1 → H2 is called a homomorphism (or
inclusion homomorphism) of hypergroups if for all a, b ∈ H1, we have f(a · b) = f(a) · f(b) ( or
f(a·b) ⊆ f(a)·f(b)). A homomorphism f is called an isomorphism if f is a one to one and onto map.
If H is a hypergroup, an (inclusion) automorphisms of H is an (inclusion) isomorphism from H to
H. The set of (inclusion) automorphisms ofH denoted by Aut(H) (AutI(H)). In every hypergroup
H, a commutator of x, y ∈ H is denoted by [x, y] = {h ∈ H | x · y ∩ h · y · x ̸= ∅} (See [4]). Let
x ∈ H and α ∈ Aut(H). Define [x, α] = {h ∈ H | x ∈ h ·α(x)} and will call an autocommutator of
x and α. Inductively, for all α1, α2, · · ·αn ∈ Aut(H), [x, α1, α2, · · ·αn] = [[x, α1, α2, · · ·αn−1], αn],
where for any two non-empty subsets X ⊆ H and A ⊆ Aut(H), we define [X,α] =

∪
x∈X

[x, α] and

[X,A] =
∪

x∈X
α∈A

[x, α] (See [8]). Let (H, ·) be a hypergroup and R be an equivalence relation on H.

Letting H/R = {x̄ | x ∈ H}, be the set of all equivalence classes of H with respect R. Define a
hyperoperation ◦ as follows: x̄◦ ȳ = {z̄ | z ∈ x̄ · ȳ}. In [10] it was proved that (H/R, ◦) is a group if
and if only R is a strongly regular equivalence relation. A (strongly) regular equivalence relation
we call (strongly) congruence relation.

Let H be a hypergroup and R be a relation on H. Then R is called an invariant relation,
if for all α ∈ Aut(H), we have α(R) ⊆ R, where α(R) = {α(x, y) := (α(x), α(y)) | (x, y) ∈ R}.
A semihypergroup (P, ·) is called a polygroup, provided that (i) it has a scaler identity e, that is,
e · x = x · e = {x}, for every x ∈ P , (ii) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x, where −1 is
an unitary operation on H. A non-empty subset K of P is said to be a subpolygroup of P , if for
any x, y ∈ K, x · y−1 ⊆ K and is denoted by K ≤ P . A subpolygroup K of P is called a normal
subpolygroup, if for any x ∈ P , x−1 ·K ·x ⊆ K and is denoted by K▹P . A subpolygroup K of P is
said to be characteristic in P if α(K) ⊆ K for all α ∈ Aut(P ), and we denote it by K ≤c P . Notice
that if K is characteristic in P and α ∈ Aut(P ), then α(K) = K. There are several commonly
used notations for the image of (x, y) under a binary hyperoperation: xy (multiplicative notation),
x ◦ y, x ∗ y, etc. For convenience we shall generally use the multiplicative notation throughout this
paper and refer to xy as the product of x and y.

Suppose that A and B are two polygroups and A ∩ B = {e}. Then (A[B], ∗) is a polygroup
(See [4]) as follows: x ∗ e = e ∗ x = x for all x ∈ A ∪B, and for all x, y ∈ A ∪B − {e},

x ∗ y =


xy if x, y ∈ A
x if x ∈ B, y ∈ A
y if x ∈ A, y ∈ B
xy if x, y ∈ B, y ̸= x−1

xy ∪A if x−1 = y ∈ B
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Let X be a non-empty subset of a polygroup P define the subpolygroup generated by X, ⟨X⟩
to be the intersection of all subpolygroups of P which contain X. Let U denote the set of all
finite product of elements of P . Then ωP = {x ∈ P | ∃u ∈ U s.t e, x ∈ u} is called heart of P .
Polygroup P is said to be nilpotent if ln(P ) ⊆ ωP , for some integer n, where l0(P ) = P and

ln+1(P ) = ⟨{h ∈ [x, y] | x ∈ ln(P ), y ∈ P}⟩.

A polygroup P is called solvable if P (n) = ωP , for some n ∈ N, where P (1) = P ′ = ⟨[P, P ]⟩, and
P (n+1) = (P (n))′.
Define a relation β on H by aβb ⇐⇒ ∃ u ∈ U(H) such that {a, b} ⊆ u. If β∗ is the transitive
closure of β. In [4] it was rewrote the definition of β∗ on H as follows:

aβ∗b ⇐⇒ ∃z1 = a, z2, ..., zn+1 = b ∈ H,u1, u2.., un ∈ U s.t{zi, zi+1} ⊆ ui, ∀ 1 ≤ i ≤ n.

Also Freni, introduced a strongly regular relation γ on a hypergroup H as follows:

∆ = γ1 = {(x, x) | x ∈ H},

and for all n ≥ 2, (x, y) ∈ γn if and only if there exist z1, z2, . . . , zn ∈ H, σ ∈ Sn such that x ∈
n∏

i=1

zi,

y ∈
n∏

i=1

zσ(i) = uσ and γ =
∪
n≥1

γn, where Sn is the symmetric group of degree n, in addition it was

proved that H/γ∗ is an Abelian group [1, 2, 3, 4, 5, 6, 7, 8].

B. Davvaz et al, introduced the relation νn =
∪
m≥1

νm,n, where ν1,n = γ1 and for every m > 1,

νm,n is defined by, (a, b) ∈ νm,n ⇔ ∃ u =
m∏
i=1

zi ∈ U , ∃σ ∈ Sm such that σ(i) = i if zi /∈ Ln(H)

and a ∈ u, b ∈ uσ, in addition it was proved thatH/ν∗n is a nilpotent group [1]. Also τn =
∪
m≥1

τm,n,

where τ1,n = {(x, x) | x ∈ H} and for every m > 1, τm,n is defined by,

(a, b) ∈ τm,n ⇔ ∃ u =

m∏
i=1

zi ,∃σ ∈ Sm : σ(i) = i if zi /∈ Γn(H) and a ∈ u, b ∈ uσ,

in addition it was proved that H/τ∗n is a solvable group [2]. Also, A. Mosayebi Dorcheh introduced
a strongly regular relation RK on a hypergroup H and it was proved that H/R∗

K is a k-nilpotent
group [7].

In [8], Mosayebi et al, introduced the notion of auto-Engel polygroup and investigated some
properties of it. Moreover they defined the concept of characteristic sets in hypergroups and gave
some related properties. In [9], Moghaddam and Parvaneh defined the concept of autonilpotent
and autosolvable groups (by definition [x, α] = x−1α(x)). Now, in this paper we define the notion
of autonilpotent and autosolvable (according to the definition [x, α] = xα(x−1)) and investigate
some properties of them.

3 Relation-equality in automorphisms

In this section of the article, we introduce specific automorphisms using automorphisms on hyper-
group and invariant relation.
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Lemma 3.1. Let (P, ·, e) be a polygroup and α ∈ AutI(P ) and x ∈ P . Then

(i) α(e) = e,

(ii) α(x−1) = α(x)−1,

(iii) [x, α] = xα(x−1), [α, x] := [x, α]−1 = α(x)x−1 = [α(x), α−1].

Proof. (i) Let x ∈ P and α(x) = e. Then we have

{e} = {α(x)} = α(e · x) ⊆ α(e) · α(x) = α(e) · e = {α(e)}.

This yields α(e) = e.

(ii) Let a ∈ P . Then we have e ∈ aa−1 and thus α(e) ∈ α(a)α(a−1). Now, we conclude that
α(a)−1 = α(a−1).

(iii) [α, x] = [x, α]−1 = (xα(x−1))−1 = α(x)x−1 = [α(x), α−1].

Lemma 3.2. Let H be a hypergroup and R be an invariant strongly congruence relation on H,
α ∈ Aut(H). Then there is an automorphism ᾱ : H/R → H/R such that ᾱπ = πα, that is to say,
such that the diagram commutes, where ᾱ(x̄) = α(x), x ∈ H.

..H/R

.H

.H/R

.H

.π

.̄α

.α

.π

Figure 1:

Proof. Let x, y ∈ H and x̄ = ȳ. Then

(x, y) ∈ R ⇒ (α(x), α(y)) ∈ R ⇒ ᾱ(x̄) = α(x) = α(y) = ᾱ(ȳ).

Now, let z ∈ xy. Then, ᾱ(x̄ȳ) = ᾱ(z̄) = α(z) = α(x) α(y), and hence α is a homomorphism. It is
easy to see that α is an isomorphism, such that for all x ∈ H, ᾱπ(x) = π(α(x)).

Corollary 3.3. Let H be a hypergroup and R be an invariant strongly congruence relation on H.
Then,

(i) If α1, α2 ∈ Aut(H), then ᾱ1ᾱ2 = α1α2,

(ii) For α ∈ Aut(H), ᾱ−1 = α−1,

(iii) Aut(H) = {ᾱ | α ∈ Aut(H)} ≤ Aut(H/R).

Proof. (i) Let x ∈ H. Then α1α2(x̄) = α1α2(x) = ᾱ1(α2(x)) = ᾱ1(ᾱ2(x̄)) = ᾱ1ᾱ2(x̄).

(ii) By (i), we have ᾱα−1 = αα−1 = Ī, where I is the identity of the group Aut(H).
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(iii) Let ᾱ1, ᾱ2 ∈ Aut(H). Then ᾱ1ᾱ2
−1 = ᾱ1α

−1
2 = α1α

−1
2 ∈ Aut(H).

Definition 3.4. Let H be a hypergroup and R be an invariant (strongly) congruence relation on
H. Then the two automorphisms α1 and α2 are called R-equality if (α1(x), α2(x)) ∈ R, for all x
of H. In this case we write α1 =R α2 and it is easy to see that ᾱ1 = ᾱ2. In the special case =∆ is
the equality of automorphisms.

Example 3.5. Let G = S3 = {e, a, a2, b, ab, a2b} and {e, c} be a cyclic group and P = {e, c}[G].
Then (a a2) =γ I and so (a a2) = Ī, but (a a2) ̸=β I, where β and γ are the relations defined in
the previous section.

Corollary 3.6. Let α1, α2, α ∈ Aut(H). Then

(i) If α1 =R α2, then α−1
1 =R α−1

2 ,

(ii) If α1α2 =R I, then α−1
1 =R α2,

(iii) If αα1 =R αα2, then α1 =R α2,

(iv) If α1 =R α2 and R ⊆ S and S is an invariant (strongly) congruence relation, then α1 =S α2.

Proof. (i) Suppose that α1 =R α2. Then, we have ᾱ1 = ᾱ2 and hence ᾱ1
−1 = ᾱ2

−1. Therefore,
by definition α−1

1 =R α−1
2 .

(ii) We have ᾱ1ᾱ2 = Ī and so ᾱ1
−1 = ᾱ2. It follows that α

−1
1 =R α2.

(iii) By definition the proof is clear.

(iv) Let α1 =R α2 and R ⊆ S. Then for every x ∈ H we have (α1(x), α2(x)) ∈ R and so
(α1(x), α2(x)) ∈ S, for all x ∈ H and thus α1 =S α2.

4 Auto-C class polygroups

In this section our main purpose is to explore the structure of autocommutator, we investigate the
concept of autosolvable polygroups and we give some results in this respect. Finally, we discuss
on autonilpotent.

Definition 4.1. Let P be a polygroup. Define

A(1)(P ) = A(P ) = ⟨[P,Aut(P )]⟩ = ⟨h ∈ [x, α] | x ∈ P, α ∈ Aut(P )⟩,

and for every n ∈ N, A(n+1)(P ) = A(A(n)(P )) = ⟨[A(n)(P ), Aut(A(n)(P ))]⟩. Then P is called an
autosolvable polygroup of class at most n, if A(n)(P ) ⊆ ωP . Clearly, if P = ωP , then P is an
autosolvable polygroup.
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Example 4.2. (i) Let P = {1, 2, 3, 4, 5, 6, 7}. Then (P, ·, 1) is a solvable polygroup as follows:

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 {1, 2} 3 4 5 6 7
3 3 3 {1, 2} 7 6 5 4
4 4 4 6 {1, 2} 7 3 5
5 5 5 7 6 {1, 2} 4 3
6 6 6 4 5 3 7 {1, 2}
7 7 7 5 3 4 {1, 2} 6

(See [4]). Since ωP = {1, 2} and Aut(P ) ∼= Aut(S3) ∼= S3, we get A(P ) = {1, 2, 6, 7} and
therefore Aut(A(P )) = {I, (6 7)} and so for n ≥ 3, A(n)(P ) = {1, 2, 6, 7}. Thus, P is a
solvable polygroup which is not an autosolvable polygroup.

(ii) We consider P = {e, a, b} whose table is given below:

· e a b

e e a b
a a {e, b} {a, b}
b b {a, b} {e, a}

Then, Aut(P ) = {I, (a b)}, and thus for all n ≥ 1, A(n)(P ) = P . Therefore P is not an
autosolvable polygroup.

Example 4.3. Let P = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Then (P, ·, 1) is a polygroup as follows:

· 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 {1, 2} 3 4 5 6 7 8 9
3 3 3 {1, 2} 9 8 7 6 5 4
4 4 4 7 {1, 2} 9 8 3 6 5
5 5 5 8 7 {1, 2} 9 4 3 6
6 6 6 9 8 7 {1, 2} 5 4 3
7 7 7 4 5 6 3 8 9 {1, 2}
8 8 8 5 6 3 4 9 {1, 2} 7
9 9 9 6 3 4 5 {1, 2} 7 8

It is easy to see that Aut(P ) ∼= Aut(D8). Now, if

D8 = {e = 1, a = 7, a2 = 8, a3 = 9, b = 3, ab = 4, a2b = 5, a3b = 6, },

then we get P/β ∼= D8 and Aut(D8) = {α : D8 → D8 | α(a) = ai, α(b) = ajb, where i ∈ {1, 3}, j ∈
{0, 1, 2, 3}} and thus

Aut(P ) = {I, (3 4 5 6), (3 5)(4 6), (7 9)(4 6), (3 6 5 4), (7 9)(3 4)

(5 6), (7 9)(3 5), (7 9)(3 6)(4 5)}

It follows A(1)(P ) = {1, 2, 7, 8, 9} and Aut(A(P )) = {I, (7 9)}. Therefore, for n ≥ 3 we have
A(n)(P ) = {1, 2} = ωP and so P is an autosolvable polygroup.
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Corollary 4.4. Let P be a polygroup and for n ∈ N, Aut(A(n)(P )) = {I}. Then P is an auto-
solvable polygroup.
If Aut(P ) = {I} obviously we have Aut(A(n)(P )) = {I} for every n ∈ N.

Example 4.5. Let P = {e, a, b, c}. Then (P, ·) is a polygroup as follows:

· e a b c

e e a b c
a a a P c
b b {e, a, b} b {b, c}
c c {a, c} c P

(See [4]). Since Aut(P ) = {I}, we get that P is an autosolvable polygroup.

Corollary 4.6. Let (P, ·, e) be a polygroup. Then,

(i) For all n ∈ N, e ∈ A(n)(P ),

(ii) For all n ∈ N, A(n+1)(P ) ⊆ A(n)(P ),

(iii) If P is an autosolvable polygroup of class n, then P is an autosolvable polygroup of class
n+ 1.

(iv) For all n ∈ N,

A(n)(P ) = ⟨[x, α1, . . . , αn] | x ∈ P, αi ∈ Aut(A(i−1)(P )), i = 1, . . . , n⟩,

where A(0)(P ) = P .

Proof. (i) Obviously for all n, we have I ∈ Aut(A(n)(P )) and for all x ∈ P , e ∈ x · x−1 = [x, I].
Thus e ∈ A(n)(P ).

(ii) By induction the proof is obtained.

(iii) By item (ii) it is clear.

(iv) It is an immediate consequence of definition.

Corollary 4.7. A group G is autosolvable of class n if and only if A(n)(G) = {e}.

Proof. By Corollary (4.6) we have e ∈ A(n)(G), but ωG = {e} and thus A(n)(G) ⊆ {e} if and only
if A(n)(G) = {e}.

Theorem 4.8. Let G be an autosolvable group. Then G is a solvable group.

Proof. We prove G(n) ⊆ A(n)(G) by induction on n, where G(1) = G′ = ⟨[G,G]⟩ and for every
k ≥ 1,

G(k+1) = ⟨[G(k), G(k)]⟩.

Now, suppose that h = [x, y], where x, y ∈ G(n) so by hypothesis of induction x, y ∈ A(n)(G). Now,
if for every a ∈ G, ϕy(a) = yay−1 is the inner automorphism group of G, then, we have

h = [x, y] = xyx−1y−1 = [x, ϕy] ∈ A(n+1)(G).

Finally let G be an autosolvable group of class n, then by Corollary (4.7) we get G(n) = {e}.
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Example 4.9. (i) Let G = Z6. Since for n ≥ 1, A(n)(G) = {0̄, 2̄, 4̄}, and Aut(A(n)(G)) =
{I, (2̄ 4̄)}, we have A(n)(G) ̸= {0̄}, and so G is a solvable group which is not an autosolvable
group. Thus the converse of Theorem 4.8 is not neccessarily true.

(ii) Let G be a group and Aut(G) = Inn(G). Then A(n)(G) = G(n). In this case, we have the
property of solvable groups.

Theorem 4.10. Let P be a polygroup and for all n ∈ N, Aut(A(n)(P̄ )) ⊆ Aut(A(n)(P )). Then

(i) P is an autosolvable polygroup if and only if P̄ is an autosolvable group, where P̄ = P/β.

(ii) If P is an autosolvable polygroup, then P is solvable.

Proof. (i) First, we prove that A(n)(P̄ ) = A(n)(P ), for all n by induction on n. Let ā ∈
A(n+1)(P̄ ), without losing generality suppose that ā = [x̄, α], where x̄ ∈ A(n)(P̄ ) and
α ∈ Aut(A(n)(P̄ )). Thus there exists α0 ∈ Aut(A(n)(P ) such that ᾱ0 = α (see Lemma
(3.2)). By the hypothesis of induction there exists t ∈ A(n)(P ) such that x̄ = t̄. If b ∈ [t, α0],
then b ∈ A(n+1)(P ) and b̄ = [t̄, ᾱ0] = [x̄, α] = ā. Similarly, we can see the converse. Now, we
have A(n)(P ) ⊆ ωP if and only if A(n)(P̄ ) = {e}. This completes the proof.

(ii) This follows from (4.8) and (4.10).

Definition 4.11. Let P be a polygroup, we define k0(P ) = P and for every n ∈ N,

kn(P ) = ⟨h ∈ [x, α] | x ∈ kn−1(P ), α ∈ Aut(P )⟩
= ⟨[kn−1(P ), Aut(P )]⟩.

Polygroup P is called an autonilpotent of class at most n if kn(P ) ⊆ ωP . The smallest integer
n such that kn(P ) ⊆ ωP is called the autonilpotency class. It is abvious that for every n ∈ N,
e ∈ kn(P ) and kn(P ) ≤c P and hence a group G is an autonilpotent group if and only if there exists
some n ∈ N in such a way that kn(G) = {e}. In a similar way one can see that if Aut(P ) = {I},
then P is autonilpotent.

Example 4.12. Let P = {e, a, b} be the polygroup as in Example 4.2. Then kn(P ) = {e, a, b} and
so P is not autonilpotent.

Example 4.13. (i) Let G = D8 = {e, a, a2, a3, b, ab, a2b, a3b} the dihedral group of order 8 and
let {e, c} ∼= Z2 and P = {e, c}[G]. Then

Aut(G) = {αi,j : G → G | αi,j(a) = ai, αi,j(b) = ajb, i ∈ {1, 3}, j ∈ {0, 1, 2, 3}},

and Aut(P ) ∼= Aut(G), hence we get k1(P ) = ⟨a⟩ ∪ {c}, k2(P ) = ⟨a2⟩ ∪ {c}, k3(P ) = {e, c}.
Therefore, P is autonilpotent.

(ii) Consider the polygroup P in Example 4.2, since for all n ≥ 1, kn(P ) = {1, 2, 6, 7} and
ωP = {1, 2}, we get that P is not an autonilpotent polygroup.

Corollary 4.14. Let P be a polygroup. Then

(i) kn+1(P ) ⊆ kn(P ).

(ii) kn(P ) = ⟨[x, α1, · · · , αn] | x ∈ P, α1, · · · , αn ∈ Aut(P )⟩.



On autosolvable and autonilpotent polygroups 47

Proof. (i) By definition and induction, the proof is clear.

(ii) Using induction on n, we have

kn+1(P ) = ⟨[kn(P ), Aut(P )]⟩ = ⟨[x, α] | x ∈ kn(P ), α ∈ Aut(P )⟩
= ⟨[x, α1, · · · , αn], α] | x ∈ P, αi, α ∈ Aut(P ), i = 1, · · · , n⟩,

then we get our claim.

Example 4.15. Let P = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the polygroup in Example 4.3. It is easy to see
that k3(P ) = {1, 2}. Therefore, we conclude that P is autonilpotent.

Theorem 4.16. Every autonipotent group G is nilpotent.

Proof. It is easy to see that ln(G) ⊆ kn(G), n ≥ 0 and this completes the proof.

Example 4.17. S3 is not nilpotent and hence is not autonilpotent.

The following example, shows that the converse of the above theorem, is not necessarily true.

Example 4.18. Let G = Z6, {0̄, a} ∼= Z2 and P = {0̄, a}[G]. Then Aut(P ) = {I, (1̄ 5̄)(2̄ 4̄)}
and for every n ≥ 1, kn(P ) = {0̄, 2̄, 4̄, a} and hence P is not autonilpotent but it is nilpotent.

Definition 4.19. Let P be a polygroup. Define Z0(P ) = ωP , for every n ∈ N,

Zn(P ) = ⟨x ∈ P | [x, α] ⊆ Zn−1(P ), ∀α ∈ Aut(P )⟩.

Theorem 4.20. Let P be a polygroup. Then

ωP = Z0(P ) ⊆ Z1(P ) ⊆ · · · ⊆ Zn(P ) ⊆ · · · .

Proof. Let α ∈ Aut(P ). Since α(ωP ) ⊆ ωP (by Lemmas 3.1 and 3.2), we get

Z0(P ) = ωP ⊆ ⟨x ∈ P | x̄ = ᾱ(x̄), ∀α⟩ = Z1(P ),

where x̄ = β(x), and so by induction the proof is obtained.

Theorem 4.21. Let P be a polygroup and n ≥ 0. Then

kn(P ) ⊆ ωP if and only if Zn(P ) = P.

Proof. Let kn(P ) ⊆ ωP . Then by induction on i, we show that kn−i(P ) ⊆ Zi(P ). Let x ∈
kn−i−1(P ). Then for every α ∈ Aut(P ), [x, α] ⊆ kn−i(P ). By using the hypothesis of induction,
we have [x, α] ⊆ Zi(P ) and so x ∈ Zi+1(P ). Now for i = n we obtain that P = k0(P ) ⊆ Zn(P ) ⊆ P ,
that is Zn(P ) = P .

Conversely, if Zn(P ) = P , then by induction we prove that ki(P ) ⊆ Zn−i(P ), 0 ≤ i ≤ n.
Suppose that h ∈ [x, α], where x ∈ ki(P ) and α ∈ Aut(P ). Then by the hypothesis of induction
we conclude that x ∈ Zn−i(P ). Hence h ∈ [x, α] ⊆ Zn−i−1(P ). Letting i = n implies that

kn(P ) ⊆ Z0(P ) = ωP .
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Corollary 4.22. Let P be a polygroup. Then P is an autonilpotent polygroup if and only if there
exists some n ∈ N in such a way that Zn(P ) = P .

Corollary 4.23. Every autonipotent polygroup is autosolvable.

Proof. Let P be a polygroup. At first, we prove that A(n)(P ) is characteristic in P . Let α, α1 ∈
Aut(P ), x ∈ P , then α([x, α1]) = α(x)αα1(x

−1) = [α(x), αα1α
−1] ⊆ A(P ). Therefore, A(P ) ≤c P ,

thus we conclude that A(n)(P ) ≤c P , for all n ∈ N. Now, by induction on n we show that

A(n)(P ) ⊆ kn(P ).

For n = 1, we have A(1)(P ) = A(P ) = k1(P ). Now, suppose that A(n)(P ) ⊆ kn(P ). Then

A(n+1)(P ) = A(A(n)(P )) = ⟨[A(n)(P ), Aut(A(n)(P )]⟩
⊆ ⟨[kn(P ), Aut(P )]⟩ = kn+1(P ).

Now, suppose that P is an autonilpotent polygroup. Then, there exists n ∈ N such that kn(P ) ⊆
ωP and so we obtain A(n)(P ) ⊆ ωP , and the proof is completed.

Theorem 4.24. Let P1 and P2 be two polygroups and n ≥ 1. Then,

(i) A(n)(P1)×A(n)(P2) ⊆ A(n)(P1 × P2),

(ii) If P1 × P2 is an autosolvable polygroup, then P1 and P2 are autosolvable.

Proof. (i) We prove our claim by induction on n. For n = 1, it is obvious. Now, suppose that
(h1, h2) ∈ A(n+1)(P1)× A(n+1)(P2). Then without loss generality suppose that hi ∈ [xi, αi],
for i = 1, 2, where xi ∈ A(n)(Pi) and αi ∈ Aut(A(n)(Pi). By the hypothesis of induction
we conclude that (x1, x2) ∈ A(n)(P1 × P2). Define α = (α1, α2) by α(x, y) = (α1(x), α2(y)).
Clearly α ∈ Aut(A(n)(P1 × P2)). Hence, (h1, h2) ∈ [(x1, x2), (α1, α2)] ⊆ A(n+1)(P1 × P2).

(ii) Since P1 × P2 is an autosolvable polygroup, there exists n ∈ N such that

A(n)(P1)×A(n)(P2) ⊆ A(n)(P1 × P2) ⊆ ωP1×P2 = ωP1 × ωP2 .

It follows that A(n)(Pi) ⊆ ωPi , for i = 1, 2. Hence P1 and P2 are autosolvable.

Example 4.25. Let G = Z2×Z2. Then Aut(G) ∼= S3, Aut(G) = G and A(Z2) = {0̄}. Therefore,
G is not autosolvable while Z2 is autosolvable. On the other hand,

{(0̄, 0̄)} = A(Z2)×A(Z2) ⊂ A(Z2 × Z2).

The above example shows that Theorem 4.24 is not true in general.

Theorem 4.26. Let K be a characteristic subpolygroup of a polygroup P . Then,

(i) Aut(K) ⊆ Aut(P ),

(ii) A(n)(K) ⊆ A(n)(P ),

(iii) If P is autosolvable, then K is autosolvable.

Proof. It is straightforward.

The following example shows that the condition in previous theorem is neccessary.

Example 4.27. Let P be the polygroup in Example 4.3. We consider the non-characteristic
subpolygroup K = {1, 2, 3, 5, 8}. It is easy to see that A(K) = K and hence K is not an autosolvable
subpolygroup of autosolvable polygroup P .
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5 Conclusions

In this paper, we introduce the autosolvable and autonilpotent polygroups using the automor-
phisms and the following results are obtained from it:

(i) Relations β, γ, τn and νn are examples of invariant relations.

(ii) Using automorphism define autosolvable polygroups and prove that each autosolvable group
is a solvable group.

(iii) With the concept of autocommutator, autonilpotent polygroup is introduced and it is proved
that each autonilpotent polygroup is an autosolvable polygroup.

(iv) The symmetric group S3 is neither an autonilpotent group nor an autosolvable group but
the dihedral group D8 is both an autosolvable and autonilpotent group.

(v) With respect to the concept of autonilpotent polygroups, we investigated the relation between
of autonilpotent groups and nilpotent groups.

(vi) It investigated the subpolygroup of autonilpotent polygroups are not necessarity autonilpo-
tent polygroup.
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