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Abstract

In this research article, new fuzzy K-algebras, namely,
spherical fuzzy K-algebras and (∈,∈ ∨q)-spherical fuzzy
K-algebras are constructed. Certain properties of these
spherical fuzzy K- structures are investigated. The be-
havior of spherical fuzzy K-algebras under homomor-
phism is characterized. The spherical fuzzy K-algebra
with thresholds is also delineated.

Article Information

Corresponding Author:
M. Akram;
Received: August 2021;
Accepted: Invited paper;
Paper type: Original.

Keywords:

Spherical fuzzy sets, K-
algebras, homomorphism,
spherical fuzzy K-algebras.

A Title

1 Introduction

The notion of a K-algebra (G, ·,⊙, e) was first introduced by Dar and Akram in [12, 11, 14, 13].
A K-algebra is an algebra built on a group (G, ·, e) by adjoining an induced binary operation ⊙
on G which is attached to an abstract K-algebra (G, ·,⊙, e). This system is, in general, non-
commutative and non-associative adjoint with a right identity e, if (G, ·, e) is non-commutative.
For a given group G, the K-algebra is proper if G is not an elementary Abelian 2-group. Thus,
whether a K-algebra is Abelian or non-Abelian purely depends on the base group G. We call a
K-algebra on a group G as a K(G)-algebra due to its structural basis G. Akram and Kim [6]
proved that the K-algebra on an Abelian group is equivalent to the p-semisimple BCI-algebra
[16]. Recently, Naghibi et al. [23] have introduced generalized K-algebra (briefly, gK-algebra).
They also have defined gK-subalgebras, (prime) gK-ideals and quotient gK-algebras.
Algebraic structures play an emphatic role in Mathematics and the range of its applications are
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broad and multidisciplinary. Thus, algebraic structures provide a sufficient motivation to the re-
searchers to review various concepts and stems out from the realm of abstract algebra in a broader
framework of fuzzy setting. In 1965, Zadeh [27] proposed fuzzy sets for handling vague or hazy
information. Subsequently, intuitionistic fuzzy sets [8], picture fuzzy sets [10], Pythagorean fuzzy
sets [25] and spherical fuzzy sets [15] were extended to overcome some drawbacks of fuzzy sets.
Akram et al. [3] first introduced fuzzy structures on K-algebras and investigated some of their
properties. We then developed different fuzzy K-algebras [1, 2, 4, 5, 7] with other researchers
worldwide by applying generalizations of Zadeh’s fuzzy set theory. Further, Jun and Cho [18] and
Jun and Park [19] investigated certain properties on fuzzy K-algebras. As a continuation study of
K-algebras, we develop the concept of spherical fuzzy K-subalgebras, and present some of their
properties. Moreover, we study the behavior of spherical fuzzy K-subalgebras under homomor-
phism. Finally, we discuss (∈,∈ ∨q)-spherical fuzzy K-algebras.

For other terminologies and results that are not mentioned in this article, the readers are referred
to [9, 17, 20, 21, 24, 26].

2 Preliminaries

In this section, we review a class of K-algebras and spherical fuzzy sets.

Definition 2.1. [12] Let (G, ·, e) be a group such that each non-identity element is not of order 2.
Let a binary operation ⊙ be introduced on the group G and defined by ⊙(x, y) = x⊙ y = xy−1 for
all x, y ∈ G. If e is the identity of the group G, then:

(1) e takes the shape of right ⊙-identity and not that of left ⊙−identity.

(2) Each non-identity element (x ̸= e) is ⊙-involutionary because x⊙ x = xx−1 = e.

(3) G is ⊙−nonassociative because
(x⊙ y)⊙ z = x⊙ (z ⊙ y−1) ̸= x⊙ (y ⊙ z) for all x, y, z ∈ G.

(4) G is ⊙−noncommutative since x⊙ y ̸= y ⊙ x for all x, y ∈ G.

(5) If G is an elementary Abelian 2-group, then x⊙ y = x · y.

Definition 2.2. [12] Let (G, ·, e) be a group in which each non-identity element is not of order 2.
Then a K- algebra is a structure K = (G, ·,⊙, e) on a group G in which induced binary operation
⊙ : G×G → G is defined by ⊙(x, y) = x⊙ y = x.y−1 and satisfies the following axioms:

(K1) (x⊙ y)⊙ (x⊙ z) = (x⊙ ((e⊙ z)⊙ (e⊙ y)))⊙ x,

(K2) x⊙ (x⊙ y) = (x⊙ (e⊙ y))⊙ x,

(K3) (x⊙ x) = e,

(K4) (x⊙ e) = x,

(K5) (e⊙ x) = x−1

for all x, y, z ∈ G.

Proposition 2.3. [12] Let G be an Abelian group which is not an elementary Abelian 2-group.
Then a K-algebra K on G is represented by the following identities:
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(K1) (x⊙ y)⊙ (x⊙ z) = z ⊙ y,

(K2) x⊙ (x⊙ y) = y,

(K3) x⊙ x = e,

(K4) x⊙ e = x,

(K5) e⊙ x = x−1

for all x, y, z ∈ G.

We give here some examples of K-algebras.

Example 2.4. Let G = GLn(R) ⊂ Mn(R) = {A = [aij ] : det(A) ̸= 0} be the multiplicative group
of all n× n real non-singular matrices. Define the operation ⊙ on GLn(R) by A⊙B = AB−1 for
all A,B ∈ GLn(R). Then (G, ·,⊙, e) is a K-algebra K.

Example 2.5. Let G = V2(R) = {(x, y) : x, y ∈ R} be the set of all 2-dimensional real vectors
which forms an additive (+) Abelian group. Define the operation ⊙ on V2(R) by x⊙ y = x− y for
all x, y ∈ V2(R). Then (G,+,⊙, e) is a K-algebra K.

Example 2.6. (Z,+,⊙, 0), (Q,+,⊙, 0), (R,+,⊙, 0) form K-algebras by defining the operation ⊙
by x⊙ y = x− y for all x, y.

Remark 2.7. We remark here some facts about K-algebras:

(1) Let G = {e, a, b, c} be a Klein four group. Consider a K-algebra on G with the following
Cayley Table:

⊙ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

This is an improper K-algebra on Klian four group since it is an elementary Abelian 2-group,
i.e., x⊙ y = x.y−1 = x.y.

(2) Each non-identity element of a K-algebra is of order 2, i.e., x⊙ x = e.

(3) A K-algebra is proper if G is not an elementary Abelian 2-group.

(4) A K-algebra is Abelian or non-Abelian if the underline group G is Abelian or non-Abelian.

Definition 2.8. [13] A mapping ϕ from a K-algebra K1 into K2 is called a K-homomorphism if
for every x1, y1 ∈ K1, ϕ(x1 ⊙ y1) = ϕ(x1)⊙ ϕ(y1), where ϕ(x1), ϕ(y1) ∈ K2.

Murali [22] proposed a definition of a fuzzy point belonging to a fuzzy subset under a natural
equivalence on a fuzzy set. The idea of quasi-coincidence of a fuzzy point with a fuzzy set [24]
played a vital role to produce different types of fuzzy algebraic structures.
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Definition 2.9. [22] A fuzzy set µ in a set G of the form

µ(y) =

{
t ∈ [0, 1] for x = y,
0, for x ̸= y,

is said to be a fuzzy point with support x and value t and is denoted by xt. For a fuzzy point xt
and a fuzzy set µ in a set G, Pu and Liu [24] gave meaning to the symbol xtαµ, where α ∈ {∈, q,∈
∨q,∈ ∧q}. We say that a fuzzy point xt ∈ µ ( resp. xtqµ) means that µ(x) ≥ t (resp.µ(x)+ t > 1),
and in this case, xt is said to belong to (resp. be quasi-coincident with) a fuzzy set µ. Further,
xt ∈ ∨qµ means that xt ∈ µ or xtqµ, xt ∈ ∧qµ means that xt ∈ µ and xtqµ, xtαµ means that xtαµ
does not hold.

In 2019, Gündogdu and Kahraman [15] presented the idea of spherical fuzzy sets.

Definition 2.10. [15] Let G be a universe of discourse. An object of the form

S = {(x, µS , νS , λS) | x ∈ G},

is called the spherical fuzzy set over the domain G. The positive membership µS , neutral mem-
bership νS and the negative membership λS lie inside the unit interval [0, 1] and the condition

µ2
S(x) + ν2S(x) + λ2

S(x) ≤ 1 holds ∀x ∈ G. The χS(x) =
√

1− µ2
S(x)− ν2S(x)− λ2

S(x) denotes the

degree of refusal.

The spherical fuzzy sets are more flexible then the existing models [8, 10, 25, 27] and has the
ability to manage ambiguous data using three independent real-valued functions µ, ν and λ, with
relatively relaxed condition. The graphical representation of spherical fuzzy sets is shown in Figure
1.

ν

µ

λ

(0, 0, 0)

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

µ2 + ν2 + λ2 ≤ 1

µ2 + ν2 ≤ 1

µ+ ν ≤ 1

(Spherical fuzzy sets)

(Pythagorean fuzzy sets)

(Intuitionistic fuzzy sets)

Figure 1: Graphical representation of spherical fuzzy sets

3 New fuzzy K-algebras

Definition 3.1. A spherical fuzzy set S = (µS , νS , λS) in a K-algebra K is called a spherical
fuzzy K-subalgebra of K if it satisfies the following conditions:

(a) µS(e) ≥ µS(x),
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(b) νS(e) ≥ νS(x),

(c) λS(e) ≤ λS(x),

(d) µS(x⊙ t) ≥ min{µS(x), µS(y)},

(e) νS(x⊙ y) ≥ min{νS(x), νS(y)},

(f) λS(x⊙ y) ≤ max{λS(x), λS(y)}

for all x, y ∈ G.

Example 3.2. Consider a K-algebra K = (G, ·,⊙, e) on dihedral group G = {e, a, b, c, x, y, u, v},
where c = ab, x = a2, y = a3, u = a2b, v = a3b and ⊙ is given by the following Cayley’s Table.

⊙ e a b c x y u v

e e y b c x a u v
a a e c u y x v b
b b c e y u v x a
c c u a e v b y x
x x a u v e y b c
y y x v b a e c u
u u v x a b c e y
v v b y x c u a e

We define a spherical fuzzy set S = (µS , νS , λS) in K-algebra as follows:
µS(e) = 0.7, νS(e) = 0.4, λS(e) = 0.1,
µS(x) = 0.5, νS(x) = 0.1, λS(x) = 0.3 for all x ̸= e ∈ G.
By direct calculations, it is easy to verify that S is a spherical fuzzy K-subalgebra of K.

Proposition 3.3. If S = (µS , νS , λS) is a spherical fuzzy K-subalgebra of K, then

1. (∀x, y ∈ G), (µS(x⊙ y) = µS(y) ⇒ µS(x) = µS(e)).
(∀x, y ∈ G)(µS(x) = µS(e) ⇒ µS(x⊙ y) ≥ µS(y)).

2. (∀x, y ∈ G), (νS(x⊙ y) = νS(y) ⇒ νS(x) = νS(e)).
(∀x, y ∈ G)(νS(x) = νS(e) ⇒ νS(x⊙ y) ≥ νS(y)).

3. (∀x, y ∈ G), (λS(x⊙ y) = λS(y) ⇒ λS(x) = λS(e)).
(∀x, y ∈ G)(λS(x) = λS(e) ⇒ λS(x⊙ y) ≤ λS(y)).

Proof. 1. Assume that µS(x ⊙ y) = µS(y), for all x, y ∈ G. Taking y = e and using (K4)
of Definition 2.2, we have µS(x) = µS(x ⊙ e) = µS(e). Let for x, y ∈ G be such that
µS(x) = µS(e).
Then µS(x⊙ y) ≥ min{µS(x), µS(y)} = min{µS(e), µS(y)} = µS(y).

2. Again, assume that νS(x⊙y) = νS(y), for all x, y ∈ G. Taking y = e and by (K4) of Definition
2.2, we have νS(x) = νS(x⊙ e) = νS(e). Also let x, y ∈ G be such that νS(x) = νS(e).
Then νS(x⊙ y) ≥ min{νS(x), νS(y)} = min{νS(e), νS(y)} = νS(y).
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3. Consider that λS(x ⊙ y) = λS(y), for all x, y ∈ G. Taking y = e and again by (K4) of
Definition 2.2, we have λS(x) = λS(x⊙e) = λS(e). Let x, y ∈ G be such that λS(x) = λS(e).
Then λS(x⊙ y) ≤ max{λS(x), λS(y)} = max{λS(e), λS(y)} = λS(y).
This completes the proof.

Definition 3.4. Let S = (µS , νS , λS) be a spherical fuzzy set in a K-algebra K and let
(α, β, γ) ∈ [0, 1]× [0, 1]× [0, 1] with α2 + β2 + γ2 ≤ 1. Then level subset of S is defined by:

S(α,β,γ) = {x ∈ G | µS(x) ≥ α, νS(x) ≥ β, λS(x) ≤ γ}
= {x ∈ G | µS(x) ≥ α} ∩ {x ∈ G | νS(x) ≥ β} ∩ {x ∈ G | λS(x) ≤ γ}

= ∪(µS , α) ∩ ∪′
(νS , β) ∩ L(λS , γ),

is called (α, β, γ) -level subset of spherical fuzzy set S.

The set of all (α, β, γ) ∈ Im(µS)× Im(νS)× Im(λS) is known as an image of S = (µS , νS , λS).
The set S(α,β,γ) = {x ∈ G | µS(x) > α, νS(x) > β, λS(x) < γ} is known as strong (α, β, γ)- level
subset of S.

Proposition 3.5. If S = (µS , νS , λS) is a spherical fuzzy K-subalgebra of K, then the level
subsets ∪(µS , α) = {x ∈ G | µS(x) ≥ α} , ∪′

(νS , β) = {x ∈ G | νS(x) ≥ β} and L(λS , γ) = {x ∈
G | λS(x) ≤ γ} are k-subalgebras of K, for every (α, β, γ) ∈ Im(µS) × Im(νS) × Im(λS) ⊆ [0, 1],
where Im(µS), Im(νS) and Im(λS) are sets of values of µS , νS and λS , respectively.

Proof. Assume that S = (µS , νS , λS) is a spherical fuzzy K-subalgebra of K and let (α, β, γ) ∈
Im(µS) × Im(νS) × Im(λS) be such that ∪(µS , α) ̸= ∅,∪′

(νS , β) ̸= ∅ and L(λS , γ) ̸= ∅. Now
to prove that ∪,∪′

and L are level K-subalgebras. Let for x, y ∈ ∪(µS , α), µS(x) ≥ α and
µS(y) ≥ α. It follows from Definition 3.1 that µS(x⊙ y) ≥ min{µS(x), µS(y)} ≥ α. It implies that
x ⊙ y ∈ ∪(µS , α). Hence ∪(µS , α) is a level K-subalgebra of K. Similar result can be proved for
∪′
(νS , β) and L(λS , γ).

Theorem 3.6. Let S = (µS , νS , λS) be a spherical fuzzy k-subalgebra and (α1, β1, γ1), (α2, β2, γ2) ∈
Im(µS)× Im(νS)× Im(λS) with α2

j + β2
j + γ2j ≤ 1 for j = 1, 2. If (α1, β1, γ1) = (α2, β2, γ2), then

S(α1,β1,γ1) = S(α2,β2,γ2).

Proof. If (α1, β1, γ1) = (α2, β2, γ2), then clearly S(α1,β1,γ1) = S(α2,β2,γ2).
Assume that S(α1,β1,γ1) = S(α2,β2,γ2). Since (α1, β1, γ1) ∈ Im(µS)× Im(νS)× Im(λS), there exists
x ∈ G such that µS(x) = α1, νS(x) = β1 and λS(x) = γ1. It follows that x ∈ S(α1,β1,γ1) = S(α2,β2,γ2)

so that α1 = µS(x) ≥ α2, β1 = νS(x) ≥ β2 and γ1 = λS(x) ≤ γ2.
Also, (α2, β2, γ2) ∈ Im(µS)×Im(νS)×Im(λS), there exists y ∈ G such that µS(y) = α2, νS(y) = β2
and λS(y) = γ2. It follows that y ∈ S(α2,β2,γ2) = S(α1,β1,γ1) so that α2 = µS(y) ≥ α1, β2 = νS(y) ≥
β1 and γ2 = λS(y) ≤ γ1. Hence (α1, β1, γ1) = (α2, β2, γ2).

Theorem 3.7. Let K be a K-algebra. Given a chain of K-subalgebras: S0 ⊂ S1 ⊂ S2 ⊂ ... ⊂
Sn = G. Then there exists a spherical fuzzy K-subalgebra whose level K-subalgebras are exactly
the K-subalgebras in this chain.

Proof. Let {αk | k = 0, 1, . . . , n}, {βk | k = 0, 1, . . . , n} be finite decreasing sequences and {γk | k =
0, 1, . . . , n} be finite increasing sequence in [0, 1] such that α2

i+β2
i +γ2i ≤ 1, for i = 0, 1, 2, . . . , n. Let

S = (µS , νS , λS) be a spherical fuzzy set in K defined by µS(S0) = α0, νS(S0) = β0, λS(S0) = γ0,
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µS(Sk \ Sk−1) = αk, νS(Sk \ Sk−1) = βk and λS(Sk \ Sk−1) = γk, for 0 < k ≤ n. We claim that
S = (µS , νS , λS) is a spherical fuzzy K-subalgebra of K . Let x, y ∈ G. If x, y ∈ Sk \ Sk−1, then it
implies that µS(x) = αk = µS(y), νS(x) = βk = νS(y) and λS(x) = γk = λS(y). Since each Sk is a
K-subalgebra, it follows that x⊙ y ∈ Sk so that either x⊙ y ∈ Sk \ Sk−1 or x⊙ y ∈ Sk−1. In any
case, we conclude that:

µS(x⊙ y) ≥ αk=min{µS(x), µS(y)},
νS(x⊙ y) ≥ βk =min{νS(x), νS(y)},
λS(x⊙ y) ≤ γk=max{λS(x), λS(y)}.

For i > j, if x ∈ Si \ Si−1 and y ∈ Sj \ Sj−1, then µS(x) = αi, µS(y) = αj , νS(x) = βi, νS(y) =
βj and λS(x) = γi, λS(y) = γj and x⊙ y ∈ Si because Si is a K-subalgebra and Sj ⊂ Si. It follows
that:

µS(x⊙ y) ≥ αi=min{µS(x), µS(y)},
νS(x⊙ y) ≥ βi =min{νS(x), νS(y)},
λS(x⊙ y) ≤ γi=max{λS(x), λS(y)}.

Thus, S = (µS , νS , λS) is a spherical fuzzyK-subalgebra of K and all its non-empty level subsets are
level K-subalgebras of K. Since Im(µS) = {α0, α1, . . . , αn}, Im(νS) = {β0, β1, . . . , βn}, Im(λS) =
{γ0, γ1, . . . , γn}. Therefore, the level K-subalgebras of S = (µS , νS , λS) are given by the chain of
K-subalgebras:

∪(µS , α0) ⊂ ∪(µS , α1) ⊂ . . . ⊂ ∪(µS , αn) = G,

∪′
(νS , β0) ⊂ ∪′

(νS , β1) ⊂ . . . ⊂ ∪′
(νS , βn) = G,

L(λS , γ0) ⊂ L(λS , γ1) ⊂ . . . ⊂ L(λS , γn) = G,

respectively. Indeed,

∪(µS , α0) = {x ∈ G | µS(x) ≥ α0} = S0,

∪′
(νS , β0) = {x ∈ G | νS(x) ≥ β0} = S0,

L(λS , γ0) = {x ∈ G | λS(x) ≤ γ0} = S0.

Now we prove that ∪(µS , αk) = Sk,∪
′
(νS , βk) = Sk and L(λS , γk) = Sk, for 0 < k ≤ n. Clearly,

Sk ⊆ ∪(µS , αk), Sk ⊆ ∪′
(νS , βk) and Sk ⊆ L(λS , γk). If x ∈ ∪(µS , αk), then µS(x) ≥ αk and so

x /∈ Si, for i > k. Hence µS(x) ∈ {α0, α1, . . . , αk} which implies that x ∈ Si, for some i ≤ k since
Si ⊆ Sk. It follows that x ∈ Sk.
Consequently, ∪(µS , αk) = Sk for some 0 < k ≤ n. Similar case can be proved for ∪′

(νS , βk) = Sk.
Now if y ∈ L(λS , γk), then λS(x) ≤ γk and so y /∈ Si, for some j ≤ k. Thus, λS(x) ∈ {γ0, γ1, . . . , γk}
which implies that x ∈ Sj , for some j ≤ k. Since Sj ⊆ Sk. It follows that y ∈ Sk. Consequently,
L(λS , γk) = Sk, for some 0 < k ≤ n. This completes the proof.

Definition 3.8. Let K1 = (G1, ·,⊙, e1) and K2 = (G2, ·,⊙, e2) be two K-algebras and let ϕ be
a mapping from K1 into K2. If B = (µB, νB, λB) is a spherical fuzzy K-subalgebra of K2, then
the preimage of B = (µB, νB, λB) under ϕ is a spherical fuzzy K-subalgebra of K1 defined by
ϕ−1(µB)(x) = µB(ϕ(x)), ϕ

−1(νB)(x) = νB(ϕ(x)) and ϕ−1(λB)(x) = λB(ϕ(x)) for all x ∈ G1.

Theorem 3.9. Let ϕ : K1 → K2 be an epimorphism of K-algebras. If B = (µB, νB, λB) is a
spherical fuzzy K-subalgebra of K2, then ϕ−1(B) is a spherical fuzzy K-subalgebra of K1.
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Proof. It is easy to see that ϕ−1(µB)(e) ≥ ϕ−1(µB)(x), ϕ
−1(νB)(e) ≥ ϕ−1(νB)(x) and ϕ−1(λB)(e) ≤

ϕ−1(λB)(x) for all x ∈ G1. Let x, y ∈ G1, then

ϕ−1(µB)(x⊙ y) = µB(ϕ(x⊙ y)) = µB(ϕ(x)⊙ ϕ(y))

≥ min{µB(ϕ(x)), µB(ϕ(y))} = min{ϕ−1(µB)(x), ϕ
−1(µB)(y)}.

In similar way, we can verify other conditions of Definition 3.1. Thus, we conclude that ϕ−1(B) is
a spherical fuzzy K-subalgebra of K1.

Theorem 3.10. Let ϕ : K1 → K2 be an epimorphism of K-algebras. If B = (µB, νB, λB) is a
spherical fuzzy K-subalgebra of K2 and S = (µS , νS , λS) is the preimage of B under ϕ. Then S is
a spherical fuzzy K-subalgebra of K1.

Proof. It is easy to see that µS(e) ≥ µS(x), νS(e) ≥ νS(x) and λS(e) ≤ λS(x), for all x ∈ G1. Now
for any x, y ∈ G1, we have

µS(x⊙ y) = µB(ϕ(x⊙ y)) = µB(ϕ(x)⊙ ϕ(y))

≥ min{µB(ϕ(x)), µB(ϕ(y))} = min{µS(x), µS(y)}.

In similar way, we can easily verify other conditions of Definition 3.1. Hence S is a spherical fuzzy
K-subalgebra of K1.

Definition 3.11. Let a mapping ϕ : K1 → K2 from K1 into K2 of K-algebras and let S =
(µS , νS , λS) be a spherical fuzzy set of K2. The map S = (µS , νS , λS) is called the preimage of S

under ϕ, if µϕ
S(x) = µS(ϕ(x)), ν

ϕ
S(x) = νS(ϕ(x)) and λϕ

S(x) = λS(ϕ(x)) for all x ∈ G1.

Proposition 3.12. Let ϕ : K1 → K2 be an epimorphism of K-algebras. If S = (µS , νS , λS) is a

spherical fuzzy K-subalgebra of K2, then Sϕ = (µϕ
S , ν

ϕ
S , λ

ϕ
S) is a spherical fuzzy K-subalgebra of

K1.

Proof. For any x ∈ G1, we have

µϕ
S(e1) = µS(ϕ(e1)) = µS(e2) ≥ µS(ϕ(x)) = µϕ

S(x).

For any x, y ∈ G1, since S ia a spherical fuzzy K-subalgebra of K2,

µϕ
S(x⊙ y) = µS(ϕ(x⊙ y)) = µS(ϕ(x)⊙ ϕ(y))

≥ min{µS(ϕ(x)), µS(ϕ(y))} = min{µϕ
S(x), µ

ϕ
S(x)}.

Using the similar arguments, other conditions of Definition 3.1 can be verified. Hence Sϕ =
(µS , νS , λS) is a spherical fuzzy K-subalgebra of K1.

Proposition 3.13. Let ϕ : K1 → K2 be an epimorphism of K-algebras. If Sϕ = (µϕ
S , ν

ϕ
S , λ

ϕ
S) is

a spherical fuzzy K-subalgebra of K2, then S = (µS , νS , λS) is a spherical fuzzy K-subalgebra of
K1.

Proof. Using the similar arguments as used in Proposition 3.12, all conditions of Definition 3.1
can easily be verified. Hence we omit the proof.

From Proposition 3.12 and Proposition 3.13, we conclude the following result.
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Theorem 3.14. Let ϕ : K1 → K2 be an epimorphism of K-algebras. Then Sϕ = (µϕ
S , ν

ϕ
S , λ

ϕ
S) is a

spherical fuzzy K-subalgebra of K1 if and only if S = (µS , νS , λS) is a spherical fuzzy K-subalgebra
of K2.

Definition 3.15. A spherical fuzzy K-subalgebra S = (µS , νS , λS) of a K-algebra K is called
characteristic if µS(ϕ(x)) = µS(x), νS(ϕ(x)) = νS(x) and λS(ϕ(x)) = λS(x) for all x ∈ G and
ϕ ∈ Aut(K).

Definition 3.16. A K-subalgebra S of a K-algebra K is said to be fully invariant if ϕ(S) ⊆ S,
for all ϕ ∈ End(K), where End(K) is the set of all endomorphisms of a K-algebra K. A spherical
fuzzy K-subalgebra S = (µS , νS , λS) of a K-algebra K is called fully invariant if µS(ϕ(x)) ≤ µS(x),
νS(ϕ(x)) ≤ νS(x) and λS(ϕ(x)) ≤ λS(x) for all x ∈ G and ϕ ∈ End(K).

Definition 3.17. Let S1 = (µS1 , νS1 , λS1) and S2 = (µS2 , νS2 , λS2) be spherical fuzzy K-subalgebras
of K. Then S1 = (µS1 , νS1 , S1) is said to be the same type of S2 = (µS2 , νS2 , λS2) if there
exists ϕ ∈ Aut(K) such that S1 = S2 ◦ ϕ, i.e., µS1(x) = µS2(ϕ(x)), νS1(x) = νS2(ϕ(x)) and
λS1(x) = λS2(ϕ(x)) for all x ∈ G.

Theorem 3.18. Let S1 = (µS1 , νS1 , λS1) and S2 = (µS2 , νS2 , λS2) be spherical fuzzy K-subalgebras
of K. Then S1 = (µS1 , νS1 , λS1) is a spherical fuzzy K-subalgebra having the same type of S2 =
(µS2 , νS2 , λS2) if and only if S1 is isomorphic to S2.

Proof. The sufficient condition holds trivially, so we only need to prove the necessary condition. Let
S1 = (µS1 , νS1 , λS1) be a spherical fuzzy K-subalgebra having same type of S2 = (µS2 , νS2 , λS2).
Then there exists ϕ ∈ Aut(K) such that µS1(x) = µS2(ϕ(x)), νS1(x) = νS2(ϕ(x)) and λS1 =
λS2(ϕ(x)) for all x ∈ G.
Let f : S1(K) → S2(K) be a mapping defined by f(S1(x)) = S2(ϕ(x)) for all x ∈ G, that is,
f(µS1(x)) = µS2(ϕ(x)), f(νS1(x)) = νS2(ϕ(x)) and f (λS1 (x )) = λS2 (ϕ(x )), for all x ∈ G.
Clearly, f is surjective. f is injective because if f(µS1(x)) = f (µS1 (y)) for all x, y ∈ G, then
µS2(ϕ(x)) = µS2(ϕ(y)) and hence µS1(x) = µS1(y). Similarly, we can prove νS1(x) = νS1(y),
λS1(x) = λS1(y).
From Definition 2.8, it follows that f is a homomorphism as for x, y ∈ G,

f(µS1(x⊙ y))= µS2(ϕ(x⊙ y)) = µS2(ϕ(x)⊙ ϕ(y)),

f(νS1(x⊙ y)) = νS2(ϕ(x⊙ y)) = νS2(ϕ(x)⊙ ϕ(y)) ,

f(λS1(x⊙ y))= λS2(ϕ(x⊙ y)) = λS2(ϕ(x)⊙ ϕ(y)).

Hence S1 = (µS1 , νS1 , λS1) is isomorphic to S2 = (µS2 , νS2 , λS2).

We now develop (ã, b̃)-spherical fuzzy K-algebras.

Definition 3.19. A spherical fuzzy set S = (µS , νS , λS) in a set G is called an (ã, b̃)−spherical
fuzzy K-subalgebra of K if it satisfies the following condition:

u(α1,β1,γ1) ãS, v(α2,β2,γ2) ãS ⇒ (u⊙ v)(min(α1,α2),min(β1,β2),max(γ1,γ2)) b̃S

for all u, v ∈ G,α1, α2 ∈ (0, 1], β1, β2 ∈ (0, 1], γ1, γ2 ∈ [0, 1).

Different spherical fuzzy K-subalgebras can be built by denoting ã and b̃ by any one of ∈, q,∈
∨q,∈ ∧q unless otherwise specified.

Remark 3.20. Every (∈,∈)-spherical fuzzy K-subalgebra is, in fact, a spherical fuzzy K-subalgebra.
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Proposition 3.21. Every (∈,∈)-spherical fuzzy K-subalgebra is an (∈,∈ ∨q)-spherical fuzzy K-
subalgebra.

Proof. Let S = (µS , νS , λS) be a spherical fuzzy K-subalgebra of K. Let u, v ∈ G and
α1, α2 ∈ (0, 1], β1, β2 ∈ (0, 1], γ1, γ2 ∈ [0, 1) be such that u(α1,β1,γ1) ∈ S, v(α2,β2,γ2) ∈ S. Then
u(α1,β1,γ1) ∈ S, v(α2,β2,γ2) ∈ S ⇒ (u ⊙ v)(min(α1,α2),min(β1,β2),max(γ1,γ2)) ∈ ∨q S. Hence S is an
(∈,∈ ∨q)-spherical fuzzy K-subalgebra of K.

Proposition 3.22. Every (∈ ∨q,∈ ∨q)-spherical fuzzy K-subalgebra is an (∈,∈ ∨q)-spherical
fuzzy K-subalgebra of K.

Proof. By similar arguments as used in Proposition 3.21, it can be proved easily.

Definition 3.23. Let S = (µS , νS , λS) be a spherical fuzzy set in G. The set S={u ∈ G | µS(u) ̸=
0, νS(u) ̸= 0, λS(u) ̸= 0} is called the support of S.

Lemma 3.24. If S is a non-zero (∈,∈)-spherical fuzzy K-subalgebra of K, then S is a K-subalgebra
of K.

Proof. Let S = (µS , νS , λS) be a non-zero (∈,∈)-spherical fuzzy K-subalgebra of K and let u, v ∈S.
Then µS(u) ̸= 0 and µS(v) ̸= 0, νS(u) ̸= 0 and νS(v) ̸= 0 and λS(u) ̸= 0, λS(v) ̸= 0 . If
µS(u⊙ v) = 0, νS(u⊙ v) = 0 and λS(u⊙ v) = 0. Since uµS (u) ∈ S, vµS (v) ∈ S, uνS (u) ∈ S and
vνS (v) ∈ S, uλS

(u) ∈ S and vλS
(v) ∈ S but

(u⊙ v)(min(µS(u),µS(v)),min(νS(u),νS(v)),max(λS(u),λS(v))) /∈ S.

Since µS(u ⊙ v) = 0, νS(u ⊙ v) = 0 and λS(u ⊙ v) = 0, a contradiction. Hence µS(u ⊙ v) ̸=
0, νS(u ⊙ v) ̸= 0 and λS(u ⊙ v) ̸= 0 which shows that (u ⊙ v) ∈ S, consequently S is a K-
subalgebra of S.

The proofs of the following results are straightforward, hence we omit.

(a) If S is a non-zero (∈, q)-spherical fuzzy K-subalgebra of K, then S is a K-subalgebra of K.

(b) If S is a non-zero (q,∈)-spherical fuzzy K-subalgebra of K, then S is a K-subalgebra of K.

(c) If S is a non-zero (q, q)-spherical fuzzy K-subalgebra of K, then S is a K-subalgebra of K.

(d) If S is a non-zero (ã, b̃)-spherical fuzzy K-subalgebra of K, then S is a K-subalgebra of K.

Definition 3.25. A spherical fuzzy set S = (µS , νS , λS) in a K-algebra K is called an (∈,∈ ∨q)-
spherical fuzzy K-subalgebra of K if it satisfies the following conditions:

(a) e(α,β,γ) ∈ S ⇒ (u)(α,β,γ) ∈ ∨q S,

(b) u(α1,β1,γ1) ∈ S, v(α2,β2,γ2) ∈ S ⇒ (u⊙ v)(min(α1,α2),min(β1,β2),max(γ1,γ2) ∈ ∨qS

for all u, v ∈ G,α, α1, α2 ∈ (0, 1], β, β1, β2 ∈ (0, 1], γ, γ1, γ2 ∈ [0, 1).
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Example 3.26. Consider a K-algebra K = (G, ·,⊙, e), where G = {e, x, x2, x3, x4, x5, x6} is the
cyclic group of order 7 and ⊙ is given by the following Cayley’s Table.

⊙ e x x2 x3 x4 x5 x6

e e x6 x5 x4 x3 x2 x
x x e x6 x5 x4 x3 x2

x2 x2 x e x6 x5 x4 x3

x3 x3 x2 x e x6 x5 x4

x4 x4 x3 x2 x e x6 x5

x5 x5 x4 x3 x2 x e x6

x6 x6 x5 x4 x3 x2 x e

We define a spherical fuzzy set S = (µS , νS , λS) in K as follows:

µS(u)=

{
1 when u = e,
0.7 otherwise,

νS(u)=

{
1 when u = e,
0.6 otherwise,

λS(u)=

{
0 when u = e,
0.5 otherwise.

Taking α = 0.4, α1 = 0.5, α2 = 0.3, β = 0.5, β1 = 0.6, β2 = 0.3, γ = 0.6, γ1 = 0.6, γ2 = 0.5, where
α, α1, α2 ∈ (0, 1], β, β1, β2 ∈ (0, 1], γ, γ1, γ2 ∈ [0, 1).
By direct calculations, it is easy to see that S is an (∈,∈ ∨q)-spherical fuzzy K-subalgebra of K.

We formulate the following results without their proofs.

Theorem 3.27. Let S be a spherical fuzzy set in K. Then S is an (∈,∈ ∨q)-spherical fuzzy
K-subalgebra of K if and only if

(i) µS(u) ≥ min(µS(e), 0.5),

(ii) νS(u) ≥ min(νS(e), 0.5),

(iii) λS(u) ≤ max(λS(e), 0.5),

(iv) µS(u⊙ v) ≥ min(µS(u), µS(v), 0.5),

(v) νS(u⊙ v) ≥ min(νS(u), νS(v), 0.5),

(vi) λS(u⊙ v) ≤ max(λS(u), λS(v), 0.5)

for all u, v ∈ G.

Theorem 3.28. Let S be a spherical fuzzy set in K. Then S is an (∈,∈ ∨q)-spherical fuzzy
K-subalgebra of K if and only if each non-empty S(α,β,γ) is a K-subalgebra of K. For α, β ∈
(0.5, 1], γ ∈ [0.5, 1).

Theorem 3.29. Let S be a spherical fuzzy set in K. Then S(α,β,γ) is a K-subalgebra of K if and
only if

(a) max(µS(u⊙ v), 0.5) ≥ min(µS(u), µS(v)),

max(νS(u⊙ v), 0.5) ≥ min(νS(u), νS(v)),

min(λS(u⊙ v), 0.5) ≤ max(λS(u), λS(v)),

(b) max(µS(e), 0.5) ≥ (µS(u),

max(νS(e), 0.5) ≥ (νS(u),

min(λS(e), 0.5) ≤ (λS(u), for all u, v ∈ G.
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Proof. Suppose that S(α,β,γ) is aK-subalgebra ofK and let max(µS(u⊙v), 0.5) < min(µS(u), µS(v)) =
α, max(νS(u ⊙ v), 0.5) < min(νS(u), νS(v)) = β, min(λS(u ⊙ v), 0.5) > max(λS(u), λS(v)) = γ.
Then for α, β ∈ (0.5, 1] and γ ∈ [0.5, 1) and u, v ∈ S(α,β,γ), µS(u ⊙ v) < α, νS(u ⊙ v) <
β, λS(u ⊙ v) > γ. Since u, v ∈ S(α,β,γ) and S(α,β,γ) is a K-subalgebra of K, so u, v ∈ S(α,β,γ)

or µS(u⊙ v) ≥ α, νS(u⊙ v) ≥ β, λS(u⊙ v) ≤ γ, which is a contradiction.
Conversely, suppose that conditions (a) and (b) holds. Assume that α, β ∈ (0.5, 1], γ ∈ [0.5, 1), for
u, v ∈ S(α,β,γ). Then we have
0.5 < α ≤ min(µS(u), µS(v)) ≤ max(µS(u⊙ v), 0.5) ⇒ µS(u⊙ v) ≥ α,
0.5 < β ≤ min(νS(u), νS(v)) ≤ max(νS(u⊙ v), 0.5) ⇒ νS(u⊙ v) ≥ β,
0.5 > γ ≥ max(λS(u), λS(v)) ≥ min(λS(u⊙ v), 0.5) ⇒ λS(u⊙ v) ≤ γ,
0.5 < α ≤ µS(u) ≤ max(µS(e), 0.5) ⇒ µS(u) ≥ α,
0.5 < β ≤ νS(u) ≤ max(νS(e), 0.5) ⇒ νS(u) ≥ β,
0.5 > γ ≥ λS(u) ≥ min(λS(e), 0.5) ⇒ λS(u) ≤ γ for some u, v ∈ G u⊙ v ∈ S(α,β,γ). Thus S(α,β,γ)

is a K-subalgebra of K.

Definition 3.30. Let ϵ1, ϵ2 ∈ [0, 1] and ϵ1 < ϵ2. Suppose S = (µS , νS , λS) is a spherical fuzzy
K-subalgebra of K. Then S is called a spherical fuzzy K-subalgebra with thresholds (ϵ1, ϵ2) of K if

max(µS(u⊙ v), ϵ1) ≥ min(µS(u), µS(v), ϵ2),

max(νS(u⊙ v), ϵ1) ≥ min(νS(u), νS(v), ϵ2),

min(λS(u⊙ v), ϵ1) ≤ max(λS(u), λS(v), ϵ2) for all u, v ∈ G.

Example 3.31. Using Example 3.26, it is easy to see that S = (µS , νS , λS) is a spherical fuzzy
K-subalgebra with thresholds (ϵ1 = 0.3, ϵ2 = 0.52) and for (ϵ1 = 0.55, ϵ2 = 0.64).

Remark 3.32. Let for ϵ1, ϵ2 ∈ [0, 1] and ϵ1 < ϵ2 unless otherwise specified.
(i) When ϵ1 = 0 and ϵ2 = 1 in spherical fuzzy K-subalgebra with thresholds (ϵ1, ϵ2), S is an
ordinary spherical fuzzy K-subalgebra.
(2) When ϵ1 = 0 and ϵ2 = 0.5 in spherical fuzzy K-subalgebra with thresholds (ϵ1, ϵ2), S is an
(∈,∈ ∨q)− spherical fuzzy K-subalgebra.

Theorem 3.33. A spherical fuzzy set S in K is a spherical fuzzy K-subalgebra with thresholds
(ϵ1, ϵ2) if and only if ∪(µS , α), ∪

′
(νS , β), L(λS , γ)( ̸= ϕ), α, β, γ ∈ (ϵ1, ϵ2] is a K-subalgebra of K.

Proof. Assume that S is a spherical fuzzy K-subalgebra with thresholds (ϵ1, ϵ2). First, we prove
that ∪(µS , α) is a K-subalgebra of K, let u, v ∈ ∪(µS , α). Then µS(u) ≥ α and µS(v) ≥ α,
α ∈ (ϵ1, ϵ2]. Since S is a spherical fuzzy K-subalgebra. It follows that

max(µS(u⊙ v), ϵ1) ≥ min(µS(u), µS(v), ϵ2) = α,

so that u⊙v ∈ ∪(µS , α). So, ∪(µS , α) is a K-subalgebra of K. Similarly, we can proof for ∪′
(νS , β)

and L(λS , γ). Thus, S(α,β,γ) is a K-subalgebra of K.
Conversely, consider that a spherical fuzzy set S be such that S(α,β,γ) ̸= ϕ is a K-subalgebra of K
for (ϵ1, ϵ2) ∈ [0, 1] and (ϵ1 < ϵ2). Suppose that max(µS(u ⊙ v), ϵ1) < min(µS(u), µS(v), ϵ2) = α,
then µS(u ⊙ v) < α, u ∈ ∪(µS , α), v ∈ ∪(µS , α), α ∈ (ϵ1, ϵ2]. Since u, v ∈ ∪(µS , α) and ∪(µS , α)
is a K-subalgebra, u ⊙ v ∈ ∪(µS , α), i.e., µS(u ⊙ v) ≥ α, a contradiction. Similar results can be
obtained for ∪′

(νS , β) and L(λS , γ). This completes the proof.
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4 Conclusion

The classical approach to formulate a mathematical model of a problem is based on the assumption
of precise data. On the contrary, real-life data is not always crisp, and all descriptions can not
always be expressed or measured precisely. A fuzzy set theory is a useful mathematical tool for
handling real-life imprecise data. Since Zadeh has proposed the fuzzy set theory, it has aroused a
lot of attention. The spherical fuzzy fuzzy set is one of the most important extensions of a fuzzy
set. We have applied the concept of spherical fuzzy sets to K-algebras and have constructed new
spherical fuzzy K-algebras. The study of K-algebras can be extended to: (i) Spherical fuzzy soft
K-algebras, (ii) T -spherical fuzzy K-algebras, (iii) (α, β)-spherical fuzzy soft K-algebras, (iv) Type
2 fuzzy K-algebras, and (v) Rough K-algebras.
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