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Abstract

In this paper, we define the notion of minimal prime
ideals of hoops and investigate some properties of them.
Then by using the notion of annihilators, we study the
relation between minimal prime ideals and annihilators.
Also, we introduce the notion of zero divisors elements of
hoops and prove that the set of all zero divisors of hoops
is a union of all minimal prime ideals of hoop. Finally, by
using the notions of minimal prime ideals and maximal
ideals of hoop, we introduce two new ideals as p-ideal
and m-ideal. Then we study some properties of them
and investigate the relation between them and prove that
every p-ideal of semi-simple hoop is an m-ideal of it.
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A Title

1 Introduction

It is well known that logic gives a technique for the articial intelligence to make the computers
simulate human being in dealing with certainty and uncertainty in information. And as uncertain
information processing, non-classical logic has become a formal and useful tool for computer science
to deal with uncertain information, fuzzy information and intelligent system. Various logical
algebras have been proposed and researched as the semantical systems of non-classical logical
systems. Among these logical algebras, residuated lattices were introduced by Ward and Dilworth
in 1939 to constitute the semantics of Höhle Monoidal Logic which are the basis for the majority of
formal fuzzy logic. Apart from their logical interest, residuated lattices have interesting algebraic
properties and include two important classes of algebras: BL-algebras and MV-algebras. In order
to study the basic logic framework of fuzzy set system, based on continuous triangle module and
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under the theoretical framework of residuated lattices theory, Hájek [9], proposed a new fuzzy logic
system BL-system and the corresponding logical algebraic system BL-algebra. Hoops are naturally
ordered commutative resituated integral monoids, which was introduced by Bosbach in [6, 7]. In
recent decades, many mathematicians have worked on it and developed structure theory by using
the nation of hoop (see [1, 2, 3, 4, 5, 10, 11, 12, 13]). Many of these results have a strong impact
with fuzzy logic. Particularly, from the structure theorem of finite basic hoops one obtains an
elegant short proof of the completeness theorem for propositional basic logic introduced by Hájek
in [9]. The notion of ideals has been introduced in many algebraic structures such as lattices,
rings, MV-algebras. Ideals theory is a very effective tool for studying various algebraic and logical
systems. In the theory of MV-algebras the notion of ideals is at the center and deductive systems
and ideals are dual notions, while in hoop, with the lack of a suitable algebraic addition, the focus
is shifted to deductive systems also called filters. So the notion of ideals is missing in hoops. In [1],
Aaly and et al., defined and characterized the notion of ideals and different kinds of ideals such as
implicative, maximal and prime ideals on hoops. Then they investigated the relation between them
and proved that every maximal implicative ideal of a ∨-hoop with (DNP) is a prime one. Also,
they defined a congruence relation on hoops by ideals and studied the quotient that is made by it.
This notion helped to show that an ideal is maximal if and only if the quotient hoop is a simple
MV-algebra. Also, they investigated the relationship between ideals and filters by exploiting the
set of complements. In addition, in [3], Aaly and et al., introduced the notions of annihilators
in hoops, investigated some related properties of them and proved that annihilators are ideals of
hoop. In addition, they showed that the set of all ideals of hoop is a bounded distributive pseudo-
complement lattice, and by using this result, they proved that the set of all annihilators of hoop,
is a Boolean algebra. Also, they used the notion of annihilator and introduced the special kind of
ideal of hoop as α-ideal and showed that the set of all α-ideals of hoop is a complete distributive
lattice and consequenced that under what condition it is a Boolean algebra. Now, in this paper,
we define the notion of minimal prime ideals of hoops and investigate some properties of them.
Then by using the notion of annihilators, we study the relation between minimal prime ideals and
annihilators. Also, we introduce the notion of zero divisors elements of hoops and prove that the
set of all zero divisors of hoops is a union of all minimal prime ideals of hoop. Finally, by using
the notions of minimal prime ideals and maximal ideals of hoop, we introduce two new ideals as
p-ideal and m-ideal. Then we study some properties of them and investigate the relation between
them and prove that every p-ideal of semi-simple hoop is an m-ideal of it.

2 Preliminaries

In this section, we gather some basic notions relevant to hoop which will need in the next sections.
A hoop is an algebraic structure (H,⊙,→, 1) of type (2, 2, 0) such that, for all x, y, z ∈ H:

(HP1) (H,⊙, 1) is a commutative monoid,
(HP2) x → x = 1,
(HP3) (x⊙ y) → z = x → (y → z),
(HP4) x⊙ (x → y) = y ⊙ (y → x).
On hoop H we define x ≤ y if and only if x → y = 1. Obviously (H,≤) is a poset. A bounded
hoop H is a hoop which has the least element such as 0 such that 0 ≤ x, for all x ∈ H. We let
x0 = 1, xn = xn−1 ⊙ x, for any n ∈ N. Let H be a bounded hoop. Define a unary operation ′ on
H by, x′ = x → 0, for all x ∈ H. If (x′)′ = x, for all x ∈ H, then the bounded hoop H is said to
have the double negation property, or (DNP) for short.
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Proposition 2.1. [6, 7, 8] Let (H,⊙,→, 1) be a hoop. Then for all x, y, z ∈ H we have:
(i) (H,≤) is a ∧-semilattice with x ∧ y = x⊙ (x → y),
(ii) x⊙ y ≤ z if and only if x ≤ y → z,
(iii) x⊙ y ≤ x, y,
(iv) x → 1 = 1 and 1 → x = x,
(v) x⊙ (x → y) ≤ y,
(vi) x ≤ y implies x⊙ z ≤ y ⊙ z, z → x ≤ z → y and y → z ≤ x → z,
(vii) x → (y ∧ z) = (x → y) ∧ (x → z).
(viii) If H is bounded, then x ≤ x′′, x⊙ x′ = 0, x′′′ = x′ and x ≤ x′ → y.

Proposition 2.2. [8] Let H be a hoop and for any x, y ∈ H, we define, x ⊔ y = ((x → y) →
y) ∧ ((y → x) → x). Then the following conditions are equivalent:
(i) ⊔ is an associative operation on H,
(ii) x ≤ y implies x ⊔ z ≤ y ⊔ z, for all x, y, z ∈ H,
(iii) x ⊔ (y ∧ z) ≤ (x ⊔ y) ∧ (x ⊔ z), for all x, y, z ∈ H,
(iv) ⊔ is the join operation on H.

A hoop H is called a ⊔-hoop if ⊔ is a join operation on A and ⊔-hoop is a distributive lattice.

Proposition 2.3. [8] Let H be a ⊔-hoop. Then, for all x, y, z ∈ H we have:
(i) (x ⊔ y) → z = (x → z) ∧ (y → z),
(ii) x⊙ (y ⊔ z) = (x⊙ y) ⊔ (x⊙ z).

Note. From now on, we suppose H = (H,⊙,→, 0, 1) or H is a bounded hoop unless otherwise
state. Let I be a non-empty subset of H. Then I is called an ideal of H if it satisfies the following
conditions:
(I1) 0 ∈ I,
(I2) for any x, y ∈ I, x⊖ y = x′ → y ∈ I,
(I3) for any x, y ∈ H, x ≤ y and y ∈ I imply x ∈ I.
Obviously, H and {0} are the trivial ideals of H. The set of all ideals of H is denoted by Id(H).
An ideal I is called proper if I ̸= H. Clearly, an ideal I is proper if and only if 1 /∈ I (see [1]). Let
∅ ≠ X ⊆ H. We recall that the smallest ideal containing X in H is called the generated ideal by
X in H and it is denoted by (X]. It is also the intersection of all ideals of H containing X.

Theorem 2.4. [1] Let ∅ ̸= X ⊆ H. Then

(X] = {a ∈ H | ∃ n ∈ N such that for x1, x2, . . . , xn ∈ X, a ≤ x1 ⊖ (x2 ⊖ (. . .⊖ (xn−1 ⊖ xn) . . .))}.

Note. Consider a⊖ a⊖ . . .⊖ a = na = (a′)n−1 → a. If H has (DNP), then x⊖ y = y ⊖ x and
na = ((a′)n)′.

Proposition 2.5. [1] Let I ∈ Id(H) and a ∈ H. Then the following statements hold,
(i) (a] = {x ∈ H | ∃ n ∈ N such that x ≤ na},
(ii) if H is a hoop with (DNP), then (I ∪ {a}] = {x ∈ H | ∃ n ∈ N such that x⊙ (na)′ ∈ I},
(iii) if H is a ⊔-hoop with (DNP), then (I ∪ {x}] ∩ (I ∪ {y}] = (I ∪ {x ∧ y}].

Let P be a proper ideal of H. Then P is called a prime ideal of H if x ∧ y ∈ P implies x ∈ P
or y ∈ P , for any x, y ∈ H. The set of all prime ideals of H is denoted by Spec(H). Let U be a
proper ideal of H. Then U is called a maximal ideal of H if no proper ideal of H strictly containing
U . It means that if there exists an ideal of H such as J that U ⊆ J ⊆ H, then U = J or J = H.
The set of all maximal ideals of H is denoted by Max(H) (see [1]).
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Theorem 2.6. [1] Let H be a ⊔-hoop with (DNP), I be a proper ideal of H and ∅ ≠ S ⊆ H such
that I ∩ S = ∅. If S is ∧-closed, then there exists P ∈ Spec(H) such that I ⊆ P and P ∩ S = ∅.

Theorem 2.7. [1] Let H be a ⊔-hoop with (DNP). Then Max(H) ⊆ Spec(H).

Theorem 2.8. [1] Let H be a ⊔-hoop with (DNP) and P be a proper ideal of H. Then P is a
prime ideal of H if and only if, for any I, J ∈ Id(H) such that I ∩J ⊆ P , we get I ⊆ P or J ⊆ P .

Definition 2.9. [3] Let X be a non-void subset of H and set X⊥ = {a ∈ H | a∧x = 0, for any x ∈
X}. Then X⊥ is called an annihilator of X.

Proposition 2.10. [3] Let X be a non-empty subset of H. Then X⊥ is a proper ideal of H.

3 Minimal prime ideals on hoops

In this section, we define the notion of minimal prime ideals and zero divisors elements of hoops
and investigate some properties of them. Then by using the notion of annihilators, we study the
relation between minimal prime ideals and annihilators. Also, we prove that the set of all zero
divisors of hoops is a union of all minimal prime ideals of hoop. But before that we need some
properties about prime ideals and we prove them.

Theorem 3.1. Every proper ideal of H is contained in a maximal ideal of H.

Proof. Suppose I is a proper ideal of H. Define∑
= {Q ∈ Id(H) | Q is a proper ideal of H such that I ⊆ Q}.

Since I ∈
∑

, we have
∑

̸= ∅. Consider (
∑

,⊆). If {Qi}i∈I is a family of proper ideals of H
containing I, then by Zorn’s Lemma, U =

∪
i∈I

Qi is a maximal element of
∑

. Clearly, U is a

maximal ideal of H containing I. Because if there exists a proper ideal J of H such that U ⊆ J ,
then I ⊆ J and so J ∈

∑
which is a contradiction with being maximal element U . Therefore,

every proper ideal of H is contained in a maximal ideal of H.

Proposition 3.2. If H is a chain, then every proper ideal of H is prime. In addition, {0} ∈
Spec(H).

Proof. Suppose P is a proper ideal of H such that x ∧ y ∈ P , for x, y ∈ H. By assumption, H is
a chain, thus x ≤ y or y ≤ x. If x ≤ y, then x = x ∧ y ∈ P . By the similar way, if y ≤ x, then
y ∈ P . Hence, P ∈ Spec(H). In addition, {0} is a proper ideal of H, hence {0} ∈ Spec(H).

Proposition 3.3. Let H be a ⊔-hoop with (DNP). Then
(i)

∩
{P | P ∈ Spec(H)} = {0}.

(ii) If 0 ̸= x ∈ H, then there exists P ∈ Spec(H) such that x /∈ P .

Proof. (i) Clearly, {0} ⊆
∩
{P | P ∈ Spec(H)}. Suppose 0 ̸= x ∈

∩
{P | P ∈ Spec(H)}. Consider

I = {0} and S = {x}. Then by Theorem 2.6, there exists P ∈ Spec(H) such that I ⊆ P and
x /∈ P , which is a contradiction. Therefore, x = 0, and so

∩
{P | P ∈ Spec(H)} = {0}.

(ii) Let 0 ̸= x ∈ H such that for all P ∈ Spec(H), x ∈ P . Thus by (i), we have x ∈
∩
{P | P ∈

Spec(H)} = {0}, and so x = 0, which is a contradiction.

Theorem 3.4. Let I ∈ Id(H) and Pi ∈ Spec(H), for 1 ≤ i ≤ n such that I ⊆
∪n

i=1Pi. Then there
exists Pi, for 1 ≤ i ≤ n, such that I ⊆ Pi.
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Proof. We prove it by induction on n. If n = 2, then I ⊆ P1∪P2. We show that I ⊆ P1 or I ⊆ P2.
Suppose I * P1 and I * P2. Then there exist x2 ∈ I \ P1 and x1 ∈ I \ P2. Since I ⊆ P1 ∪ P2, we
have x1 ∈ P1 and x2 ∈ P2. Moreover, from I ∈ Id(H), we get x1 ⊖ x2 ∈ I ⊆ P1 ∪P2. We have the
following cases:
Case 1. If x1 ⊖ x2 ∈ P1, since x2 ≤ x1 ⊖ x2, we get x2 ∈ P1, which is a contradiction.
Case 2. If x1 ⊖ x2 ∈ P2, since x1 ≤ x1 ⊖ x2, we get x1 ∈ P2, which is a contradiction.
Hence, x1 ⊖ x2 /∈ P1 ∪ P2, that is a contradiction. Therefore, I ⊆ P1 or I ⊆ P2. Suppose that the
theorem holds for n = k. We prove that it holds for n = k + 1. For this, let I ⊆

∪k+1
i=1 Pi. If for

any 1 ≤ i ≤ k + 1, we have I * Pi, then there exists xj ∈ I \
∪k+1

i=1,i ̸=jPi such that xj ∈ Pj and

xj /∈
∩k+1

i=1,i ̸=j Pi. Thus x1 ∧ x2 ∧ . . . ∧ xk /∈ Pk+1, and so x1 ∧ x2 ∧ . . . ∧ xk ∈
∩k

i=1 Pi \ Pk+1 and

xk+1 ∈ Pk+1 \
∪k

i=1Pi. Now, let y = (x1 ∧ x2 ∧ . . . ∧ xk)⊖ xk+1. From xj ∈ I \
∪k+1

i=1,i ̸=jPi and I ∈
Id(H), we have y ∈ I. If y ∈ Pk+1, then since x1∧x2∧ . . .∧xk ≤ y, we get x1∧x2∧ . . .∧xk ∈ Pk+1,
which is a contradiction, and so y /∈ Pk+1. Since I ⊆

∪k+1
i=1 Pi and y /∈ Pk+1, we obtain y ∈

∪k
i=1Pi.

Then by assumption of induction, there exists 1 ≤ i ≤ k such that I ⊆ Pi. This complete the
proof.

Lemma 3.5. Suppose H has (DNP). Then for any x, y, z ∈ H we have x∧(y⊖z) ≤ (x∧y)⊖(x∧z).

Proof. Let x, y, z ∈ H. Then

[x ∧ (y ⊖ z)] → [(x ∧ y)⊖ (x ∧ z)]

= [x ∧ (y′ → z)] → [(x ∧ y)′ → (x ∧ z)] by (HP3)

= (x ∧ y)′ → [
(
x ∧ (y′ → z)

)
→ (x ∧ z)] by Proposition 2.1(vii)

= (x ∧ y)′ → [
((
x ∧ (y′ → z)

)
→ x

)
∧
((
x ∧ (y′ → z)

)
→ z

)
]

= (x ∧ y)′ → [
((
x ∧ (y′ → z)

)
→ z

)
] by (HP3)

=
((
x ∧ (y′ → z)

)
→ [(x ∧ y)′ → z

)
] by (DNP)

=
(
x ∧ (y′ → z)

)
→ [(x ∧ y)′ → z′′] by (HP3)

=
(
x ∧ (y′ → z)

)
→ [z′ → (x ∧ y)′′] by (DNP)

=
(
x ∧ (y′ → z)

)
→ [z′ → (x ∧ y)] by Proposition 2.1(vii)

=
(
x ∧ (y′ → z)

)
→ [(z′ → x) ∧ (z′ → y)] by Proposition 2.1(vii)

= [
(
x ∧ (y′ → z)

)
→ (z′ → x)] ∧ [

(
x ∧ (y′ → z)

)
→ (z′ → y)] by (HP3)

= [z′ → (
(
x ∧ (y′ → z)

)
→ x)] ∧ [

(
x ∧ (y′ → z)

)
→ (z′ → y′′)] by (DNP)

=
(
x ∧ (y′ → z)

)
→ (y′ → z)

= 1.

Therefore, x ∧ (y ⊖ z) ≤ (x ∧ y)⊖ (x ∧ z).

Proposition 3.6. Let H has (DNP) and P ∈ Spec(H). Then

IP = {x ∈ H | there exists y /∈ P such that x ∧ y = 0},

is a proper ideal of H and IP ⊆ P .

Proof. For any y /∈ P , 0∧ y = 0, and so 0 ∈ IP . Suppose a ∈ H and b ∈ IP such that a ≤ b. Then
there is y /∈ P such that b ∧ y = 0. Since a ≤ b, we have a ∧ y ≤ b ∧ y = 0, and so a ∧ y = 0.
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Hence, a ∈ IP . Now, suppose a, b ∈ IP . Then there are x, y /∈ P such that a∧ y = b∧x = 0. Since
P ∈ Spec(H), it is clear that x ∧ y /∈ P . Thus

(a⊖ b) ∧ (y ∧ x) = ((a⊖ b) ∧ y) ∧ x by Lemma 3.5

≤ ((a ∧ y)⊖ (b ∧ y)) ∧ x

= (0⊖ (b ∧ y)) ∧ x = (b ∧ y) ∧ x = 0.

Hence, (a⊖ b)∧ (y ∧ x) = 0, and so a⊖ b ∈ IP . Hence, IP ∈ Id(H). In addition, obviously 1 /∈ IP ,
and so IP is a proper ideal of H. Let x ∈ IP . Then there exists y /∈ P such that x ∧ y = 0. Since
P ∈ Spec(H), y /∈ P and x ∧ y = 0 ∈ P , we get x ∈ P . Therefore, IP ⊆ P .

Definition 3.7. An ideal P of H is called a minimal prime ideal of H if
(MP1) P ∈ Spec(H).
(MP2) If there exists Q ∈ Spec(H) such that Q ⊆ P , then Q = P .

The set of all minimal prime ideals of H is denoted by Min(H).

Example 3.8. Let H = {0, a, b, 1} be a set by following Hasse diagram. Define the operations ⊙
and → on H as follows:

u
u u

u

@
@

@

�
�
�

�
�
�

@
@

@

0

a

1

b

⊙ 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Then (H,⊙,→, 0, 1) is a bounded hoop. Clearly, Id(H) = {{0}, {0, a}, {0, b},H} and Min(H) =
{{0, a}, {0, b}}. Obviously, {0} /∈ Spec(H).

Note. Every minimal prime ideal of H is prime.

Corollary 3.9. Let H be a ⊔-hoop with (DNP). Then
(i)

∩
{P | P ∈ Min(H)} = {0}.

(ii) If 0 ̸= x ∈ H, then there exists P ∈ Min(H) such that x /∈ P .

Proof. Since every minimal prime ideal ofH is prime ideal, by Proposition 3.3 the proof is clear.

Theorem 3.10. Let I be a proper ideal of H and P ∈ Spec(H) such that I ⊆ P . Then there is
Q ∈ Min(H) such that Q ⊆ P .

Proof. Let
∑

= {U ∈ Spec(H) | I ⊆ U ⊆ P}. Since P ∈
∑

, we have
∑

̸= ∅. Define ≪ on
∑

by U1 ≪ U2 if and only if U2 ⊆ U1. Clearly, (
∑

,≪) is a poset. Suppose {Ui}i∈I is a family of
prime ideals of H such that for any i ∈ I, Ui ∈

∑
. Set Q =

∩
i∈I

Ui. Obviously, Q is a proper ideal

of H which is true in terms of the set
∑

. It is enough to prove that Q is prime. For this suppose
x ∧ y ∈ Q such that x /∈ Q. Then there exists i ∈ I such that x /∈ Ui. Suppose Uj ∈

∑
such that

j ̸= i. We have the following cases:
Case 1. If Uj ⊆ Ui, then from x /∈ Ui, we have x /∈ Uj where x ∧ y ∈ Q ⊆ Uj . Thus y ∈ Uj , and
so for any j ∈ I, y ∈ Uj . Hence, y ∈ Q, and so Q ∈ Spec(H).
Case 2. If Ui ⊆ Uj , then since x /∈ Ui and U ∈ Spec(H) such that x∧y ∈ Q ⊆ Uj , we have y ∈ Ui.
Thus for any j ∈ I, y ∈ Uj and so y ∈ Q. Hence, Q ∈ Spec(H).
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Thus, Q is an upper bound of
∑

and by Zorn’s Lemma,
∑

has a maximal element such asQ∗. Now,
we prove that Q∗ ∈ Min(H). For this, suppose there is P̂ ∈ Spec(H) such that I ⊆ P̂ ⊆ Q∗. Then
P̂ ∈

∑
and Q∗ ≪ P̂ , which is a contradiction. Therefore, Q∗ ∈ Min(H) such that Q∗ ⊆ P .

Theorem 3.11. Let H be a ⊔-hoop with (DNP) and P ∈ Spec(H). Then P ∈ Min(H) if and
only if for each x ∈ P , there exists r ∈ H \ P such that x ∧ r = 0.

Proof. (⇒) Suppose there exists x ∈ P such that for any r ∈ H \ P , we have r ∧ x ̸= 0. Define
S = {x∧r | r ∈ H\P}. Let x∧r1, x∧r2 ∈ S, for r1, r2 ∈ H\P . Then (x∧r1)∧(x∧r2) = x∧(r1∧r2).
If r1 ∧ r2 ∈ P , then since P ∈ Spec(H), we get r1 ∈ P or r2 ∈ P , which is a contradiction. Thus,
r1 ∧ r2 ∈ H \P , and so (x∧ r1)∧ (x∧ r2) ∈ S. Hence, S is ∧-closed. By Theorem 2.6, there exists
Q ∈ Spec(H) such that S ∩Q = ∅. Now, we have two following cases:
Case 1. If Q ⊆ P , then by assumption, since P ∈ Min(H), we get Q = P and so P ∩S = ∅. But
by hypothesis, x ∈ P , 1 ∈ H \ P , and x = 1 ∧ x ∈ S, and so P ∩ S ̸= ∅, which is a contradiction.
Case 2. If Q * P , then there exists r ∈ Q \ P , and so r ∈ H \ P . Thus x ∧ r ∈ S. Also, since
Q ∈ Spec(H) and x∧ r ≤ r, we get x∧ r ∈ Q. Hence, x∧ r ∈ Q∩ S ̸= ∅, which is a contradiction.
Since in both cases we have a contradiction, we consequence that for each x ∈ P , there exists
r ∈ H \ P such that x ∧ r = 0.
(⇐) Suppose that there exists Q ∈ Spec(H) such that Q ⊆ P . If Q ̸= P , then there is x ∈ P \Q.
By assumption, there exists r ∈ H \ P such that x ∧ r = 0. Since Q ∈ Spec(H), x ∧ r = 0 ∈ Q
and x /∈ Q, we have r ∈ Q. Also, from Q ⊆ P we get r ∈ P , which is a contradiction. Therefore,
Q = P , and so P ∈ Min(H).

Corollary 3.12. Let H be a ⊔-hoop with (DNP). If P ∈ Min(H), then for any x ∈ P there is
y ∈ H \ P and k ∈ N such that y ∧ kn = 0.

Theorem 3.13. Let H be a ⊔-hoop with (DNP), P ∈ Min(H) and I be a finitly generated ideal
of H. Then I ⊆ P if and only if I⊥ * P .

Proof. (⇒) By assumption, I is a finitly generated ideal of H. Then there exist a1, a2, . . . , an ∈ H
such that I = (a1, a2, . . . , an]. Thus, for any x ∈ I, we have x ≤ a1 ⊖ (a2 ⊖ (. . .⊖ (an−1 ⊖ an) . . .)).
Since I ⊆ P , for any 1 ≤ i ≤ n, ai ∈ P and by Theorem 3.11, there exist ui ∈ H \ P such that
ai ∧ ui = 0. Set u =

∧n
i=1 ui. Clearly u /∈ P . Then by Lemma 3.5, we have

u ∧ x ≤ u ∧ [a1 ⊖ (a2 ⊖ (. . .⊖ (an−1 ⊖ an) . . .))] ≤ (u ∧ a1)⊖ (u ∧ a2)⊖ . . .⊖ (u ∧ an) = 0.

Thus u ∧ x = 0, and so u ∈ I⊥. Hence, there is an element u ∈ I⊥ such that u /∈ P . Therefore,
I⊥ * P .
(⇐) Suppose I⊥ * P . Then there exists x ∈ I⊥ such that x /∈ P . Since x ∈ I⊥, for any y ∈ I,
x ∧ y = 0. From P ∈ Min(H), x ∧ y = 0 ∈ P and x /∈ P , we have y ∈ P . Hence, I ⊆ P .

Proposition 3.14. Let H be a ⊔-hoop with (DNP) and P ∈ Spec(H). If IP = P , then P ∈
Min(H).

Proof. By Proposition 3.6 and Theorem 3.11, the proof is clear.

Definition 3.15. Let X be a non-empty subset of H. The set of all zero divisors of X is denoted
by ZX(H) and defined as follows:

ZX(H) = {a ∈ H | there exists 0 ̸= x ∈ X such that x ∧ a = 0}.

The set of all zero divisors of H is denoted by ZH.
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Example 3.16. (i) The zero element of H is a trivial zero divisor of H.
(ii) Let H be the hoop as Example 3.8. Suppose X1 = {a} and X2 = {a, b}. Then ZX1(H) = {0, b}
and ZX2(H) = {0, a, b}.

Theorem 3.17. Let H be a ⊔-hoop with (DNP). Then the set of all zero divisors of H contains
at least one prime ideal of H.

Proof. For proving this theorem, we prove that for 0 ̸= x ∈ H\ZH, there exists P ∈ Spec(H) such
that x ∈ P and P ⊆ ZH. Let x, y /∈ ZH. Then for any a, b ∈ H \ {0}, x ∧ a ̸= 0 and y ∧ b ̸= 0. If
x∧ y ∈ ZH, then there is u ∈ H such that (x∧ y)∧u = 0, and so x∧ (y∧u) = 0 or y∧ (x∧u) = 0.
Thus x ∈ ZH or y ∈ ZH, which is a contradiction. Thus x ∧ y /∈ ZH, and so H \ ZH is ∧-closed.
Let x ∈ ZH. Then set I = (x]. We prove I ⊆ ZH. Let y ∈ I \ ZH. Then there is n ∈ N such
that y ≤ nx and y /∈ ZH. Thus for any a ∈ H \ {0}, y ∧ a ̸= 0. Since x ∈ ZH, by Definition 3.15,
there is 0 ̸= b ∈ H such that x ∧ b = 0. By Lemma 3.5, y ∧ b ≤ (nx) ∧ b ≤ n(x ∧ b) = 0, and so
y ∧ b = 0, which is a contradiction. Thus I ⊆ ZH. Since H\ZH is ∧-closed and I ∩ (H\ZH) = ∅,
by Theorem 2.6, there exists P ∈ Spec(H) such that (x] = I ⊆ P and P ∩ (H \ ZH) = ∅ which
means that P ⊆ ZH.

Corollary 3.18. Let H be a ⊔-hoop with (DNP). Then every element of a minimal prime ideal
of H is zero divisor.

Proof. By Theorem 3.17 and Corollary 3.12, the proof is clear.

In the following example we show that the converse of Theorem 3.17 does not hold.

Example 3.19. Let H be the hoop as in Example 3.8. Then ZH = {0, a, b, 1} = H and clearly
there is not any prime ideal containing H.

Proposition 3.20. Let H be a ⊔-hoop with (DNP). Then the set ZH is a union of all minimal
prime ideals of H.

Proof. We prove ZH =
∪

P∈Min(H)

P . Let x ∈
∪

P∈Min(H)

P . Then there is P ∈ Min(H) such that

x ∈ P . By Corollary 3.18, x ∈ ZH and so
∪

P∈Min(H)

P ⊆ ZH. Conversely, suppose x ∈ ZH. Then

there is 0 ̸= y ∈ H such that x ∧ y = 0. Thus by Corollary 3.9(ii), there is P ∈ Min(H) such
that y /∈ P . Since P ∈ Spec(H) and x ∧ y = 0 ∈ P , we have x ∈ P . Hence, ZH ⊆

∪
P∈Min(H)

P .

Therefore, ZH is a union of all minimal prime ideals of H.

Note. Define Pb =
∩
{P | P ∈ Min(H) and b ∈ P} and Mb =

∩
{M | M ∈ Max(H) and b ∈ M}.

Theorem 3.21. Let H be a ⊔-hoop with (DNP). If x, y ∈ H such that y ∈ (x]⊥, then (x]⊥ ⊆ Py

if and only if x⊖ y /∈ ZH.

Proof. (⇒) Let x, y ∈ H such that x⊖y ∈ ZH. Then by Proposition 3.20, there exists P ∈ Min(H)
such that x ⊖ y ∈ P . Since y ≤ x ⊖ y, we get y ∈ P . Thus Py ⊆ P . In addition, x ≤ x ⊖ y, and
so x ∈ P . By assumption, (x]⊥ ⊆ P and by Theorem 3.13, (x] * P and so x /∈ P , which is a
contradiction. Hence, x⊖ y /∈ ZH.
(⇐) Suppose (x]⊥ * Py. Then there is a ∈ (x]⊥ such that a /∈ Py. Thus there is P ∈ Min(H) such
that y ∈ P and a /∈ P . Also, by Theorem 3.13, since (x]⊥ * Py, we have (x] ⊆ P . Thus x, y ∈ P
and since P is ideal, we have x ⊖ y ∈ P . By Corollary 3.18, since P ⊆ ZH, we get x ⊖ y ∈ ZH
which is a contradiction. Hence (x]⊥ ⊆ Py.
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Theorem 3.22. Let H be a ⊔-hoop with (DNP) and x ∈ H. Then Px = {y ∈ H | x⊥ ⊆ y⊥}.

Proof. Suppose B = {y ∈ H | x⊥ ⊆ y⊥}. Let z ∈ Px such that z /∈ B. Since z /∈ B, we get
x⊥ * z⊥. Then there exists u ∈ x⊥ such that u /∈ z⊥. Thus u ∧ z ̸= 0. By Corollary 3.9, there
exists Q ∈ Min(H) such that u ∧ z /∈ Q, and so u /∈ Q and z /∈ Q. In addition, since u ∈ x⊥, we
have u ∧ x = 0 ∈ Q, and so x ∈ Q. Hence, we find Q ∈ Min(H) such that x ∈ Q and z /∈ Q.
Thus z /∈ Px, which is a contradiction. Therefore, Px ⊆ B. Conversely, suppose y ∈ B such that
y /∈ Px. Since y ∈ B, we have x⊥ ⊆ y⊥. From y /∈ Px we get that there is Q ∈ Min(H) such that
x ∈ Q and y /∈ Q. Thus (y] * Q. By Theorem 3.13, since (y] is finite generated, y⊥ ⊆ Q. Also,
from x ∈ Q, we have (x] ⊆ Q and by Theorem 3.13, x⊥ * Q. Thus there exists u ∈ x⊥ such that
u /∈ Q. Since y⊥ ⊆ Q, we get u /∈ y⊥, and so x⊥ * y⊥, which is a contradiction. Hence, B ⊆ Px.
Therefore, Px = {y ∈ H | x⊥ ⊆ y⊥}.

Definition 3.23. (i) Let I be a proper ideal of H. Then I is called a p-ideal of H if Px ⊆ I, for
any x ∈ I.
(ii) Let I be a proper ideal of H. Then I is called an m-ideal of H if Mx ⊆ I, for any x ∈ I.

Example 3.24. (i) Let H be the hoop as in Example 3.8. Then {0} is a p-ideal of H.
(ii) Let H = {0, a, b, c, d, e, f, 1}. Define two operations ⊙ and → on H as follows,

s

s
s ss ss s
@@ ��

�� @@

������ f

eb

0

1

a

c

d

Figure 1: The Hasse diagram of H

→ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1
a d 1 1 1 d 1 1 1
b d f 1 1 d f 1 1
c d e f 1 d e f 1
d c c c c 1 1 1 1
e 0 c c c d 1 1 1
f 0 b c c d f 1 1
1 0 a b c d e f 1

⊙ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0
a 0 a a a 0 a a a
b 0 a a b 0 a a b
c 0 a b c 0 a b c
d 0 0 0 0 d d d d
e 0 a a a d e e e
f 0 a a b d e e f
1 0 a b c d e f 1

Then (H,⊙,→, 0, 1) is a bounded hoop. Then Id(H) = {{0}, {0, d}, {0, a, b, c},H} and Min(H) =
{{0, d}, {0, a, b, c}}. Clearly, {0, d} and {0, a, b, c} are p-ideal and m-ideal of H. Also, Pa =
{0, a, b, c} and Pe = ∅.

Clearly, any arbitrary intersection of p-ideals of H is a p-ideal of H.

Theorem 3.25. Let H be a ⊔-hoop with (DNP). If I is a proper ideal of H, then I⊥ is a p-ideal
of H.
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Proof. Let x ∈ I⊥ and u ∈ Px. Then by Theorem 3.22, u ∈ {y ∈ H | x⊥ ⊆ y⊥}. Thus x⊥ ⊆ u⊥.
If u /∈ I⊥, then u ∧ I ̸= 0, and so I * u⊥. Since x⊥ ⊆ u⊥, we get I * x⊥. Hence, x /∈ I⊥, which is
a contradiction. Thus, Px ⊆ I⊥, for any x ∈ I⊥. Therefore, I⊥ is a p-ideal of H.

Corollary 3.26. Let H be a ⊔-hoop with (DNP). If I ∈ Id(H), then I⊥⊥ is a p-ideal of H.

Proof. By Proposition 2.10, I⊥ is a proper ideal ofH. Then by Theorem 3.25, the proof is clear.

Theorem 3.27. Let H be a ⊔-hoop with (DNP). If I is a p-ideal of H, then every element of I is
zero divisor.

Proof. Suppose x ∈ I. By assumption, Px ⊆ I. Since Px =
∩
{P | P ∈ Min(H) such that x ∈ P},

there is P ∈ Min(H) such that x ∈ P . By Corollary 3.18, we get x is zero divisor.

Proposition 3.28. Let H be a ⊔-hoop with (DNP). Then for any x ∈ H, Px = ((x]⊥)⊥.

Proof. Suppose y ∈ ((x]⊥)⊥ such that y /∈ Px. Thus there is P ∈ Min(H) such that x ∈ P and
y /∈ P . Since x ∈ P , we have (x] ⊆ P and by Theorem 3.13, (x]⊥ * P . Also, from y /∈ P , we get
(y] * P and by Theorem 3.13, (y]⊥ ⊆ P . Moreover, since y ∈ ((x]⊥)⊥, we get y ∧ (x]⊥ = 0 ∈ P .
Since P ∈ Min(H), we get y ∈ P or (x]⊥ ⊆ P , which is contradiction in bouth cases. Hence,
((x]⊥)⊥ ⊆ Px. Conversely, suppose y ∈ Px such that y /∈ ((x]⊥)⊥. Since y ∈ Px, we have for any
P ∈ Min(H) such that x ∈ P , we have y ∈ P . From y /∈ ((x]⊥)⊥, we have y ∧ (x]⊥ ̸= 0. By
Corollary 3.9(ii), there exists P ∈ Min(H) such that y ∧ (x]⊥ /∈ P . Thus y /∈ P and (x]⊥ * P .
Since (x] is finite generated, by Theorem 3.13 we have (x] ⊆ P , and so x ∈ P . Hence, we find
P ∈ Min(H) such that x ∈ P and y /∈ P , which is a contradiction. Thus P ⊆ (x⊥)⊥. Therefore,
Px = ((x]⊥)⊥.

Proposition 3.29. Let H be a ⊔-hoop with (DNP). We have:
(i) If I is a p-ideal of H, then every element of I is a zero divisor.
(ii) {0} is a p-ideal of H.
(iii) Every P ∈ Min(H) is a p-ideal of H.

Proof. (i) Since I is a p-ideal of H, for any x ∈ I, we have Px ⊆ I. Also, by definition of Px,
x ∈ Px and there is P ∈ Min(H) such that x ∈ P . Also, by Corollary 3.18, x is a zero divisor.
Hence, every element of I is a zero divisor.
(ii) By Corollary 3.9, the proof is straightforward.
(iii) Since P ∈ Min(H), we know P ∈ Spec(H). Let x ∈ P . By definition of Px we have Px ⊆ P .
Hence, P is a p-ideal of H.

Proposition 3.30. Let H be a ⊔-hoop with (DNP). Suppose I ∈ Id(H) such that every element
of I is a zero divisor. Then there is a p-ideal of H containing I.

Proof. Let x ∈ I. Then by assumption, x is a zero divisor element. Thus by Proposition 3.20,
x ∈

∪
Pi∈Min(H)

Pi. So, there exists Pi ∈ Min(H) such that x ∈ Pi. Thus, for any x ∈ I, there

exists Pi ∈ Min(H) such that x ∈ Pi. Hence, I ⊆
∪

Pi∈Min(H)

Pi. By Theorem 3.4, there exists

Pi ∈ Min(H) such that I ⊆ Pi. Also, by Proposition 3.29(iii), Pi is a p-ideal of H. Therefore,
there is a p-ideal of H containing I.

Lemma 3.31. For any x, y ∈ H, Px ∪ Py ⊆ Px∧y.
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Proof. Let α ∈ Px ∪ Py. Then α ∈ Px or α ∈ Py. If α ∈ Px, then for any P ∈ Min(H) such that
x ∈ P we have α ∈ P . Since P ∈ Min(H), for any y ∈ H, x ∧ y ∈ P . Thus for any P ∈ Min(H),
x ∧ y ∈ P and so α ∈ Px∧y. The proof of other case is similar. Therefore, Px ∪ Py ⊆ Px∧y.

Theorem 3.32. Let H be a ⊔-hoop with (DNP). Suppose I is a p-ideal of H and S be a non-empty
set of H such that S * I. Then {x ∈ H | for any s ∈ S, x ∧ s ∈ I} is a p-ideal of H.

Proof. Let I be a p-ideal of H and B = {x ∈ H | for any s ∈ S, x ∧ s ∈ I}. Since S * I, there
exists s∗ ∈ S such that s∗ /∈ I. Suppose y ∈ B. Then for any s ∈ S, y ∧ s ∈ I. Thus, y ∧ s∗ ∈ I.
Since I is a p-ideal of H, we have Py∧s∗ ⊆ I. By Lemma 3.31, clearly Ps∗ ∩ Py ⊆ Ps∗∧y, and so
Ps∗ ∩ Py ⊆ I. Then by Theorem 2.8, Ps∗ ⊆ I or Py ⊆ I. If Ps∗ ⊆ I, since s∗ ∈ Ps∗ , we get s∗ ∈ I,
which is a contradiction. Thus Py ⊆ I. Also, for any z ∈ I and s ∈ S, we have z ∧ s ≤ z and so
z ∧ s ∈ I. Hence, I ⊆ B, and so Py ⊆ B. Therefore, {x ∈ H | for any s ∈ S, x∧ s ∈ I} is p-ideal.

Theorem 3.33. (i) If H has just one maximal ideal, then H has only one m-ideal.
(ii) Every chain hoop has only one m-ideal.

Proof. Clearly, every chain hoop has just one maximal ideal, and by (i), the proof is clear.

Proposition 3.34. Let H be a ⊔-hoop with (DNP). Then {0} is an m-ideal of H.

Proof. By Theorem 2.7, Max(H) ⊆ Spec(H). Then by Proposition 3.3, we have∩
{M | M ∈ Max(H)} ⊆

∩
{P | P ∈ Spec(H)} = {0}.

Thus
∩
{M | M ∈ Max(H)} = {0}. Clearly, M0 ⊆ {0} and so {0} is an m-ideal of H.

Theorem 3.35. Let H be a ⊔-hoop with (DNP). Suppose I is an m-ideal of H and S be a non-
empty set of H such that S * I. Then {x ∈ H | for any s ∈ S, x ∧ s ∈ I} is m-ideal.

Proof. The proof is similar to the proof of Theorem 3.32.

Definition 3.36. Let H is a hoop. Then H is called a semi-simple hoop if the intersection of all
maximal ideals of H is {0}.

Example 3.37. Let H be the hoop as in Example 3.8. Clearly, Max(H) = {{0, a}, {0, b}} and so
{0, a} ∩ {0, b} = {0}. Hence, H is semi-simple.

Theorem 3.38. Let H be a semisimple ⊔-hoop with (DNP). Then Mx ⊆ Px, for any x ∈ H.

Proof. Consider y ∈ Mx such that y /∈ Px. The there exists P ∈ Min(H) such that x ∈ P and
y /∈ P , and so (x] ⊆ P . By Theorem 3.13 we have (x]⊥ * P . Thus there is a ∈ (x]⊥ such that
a /∈ P . So x ∧ a = 0. Also, from y, a /∈ P , we get y ∧ a /∈ P which implies y ∧ a ̸= 0. Since H is
semisimple, there is M ∈ Max(H) such y ∧ a /∈ M , and so a, y /∈ M . Moreover, from x ∧ a = 0,
we have x ∈ M , which is a contradiction by y ∈ Mx. Therefore, Mx ⊆ Px, for any x ∈ H.

Corollary 3.39. Let H be a semisimple ⊔-hoop with (DNP). Then:
(i) If I is a p-ideal, then I is an m-ideal of H.
(ii) Every p-ideal of H is m-ideal.
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4 Conclusions and future works

In this paper, the notion of minimal prime ideals of hoops are defined and investigated some
properties of them. Then by using the notion of annihilators, the relation between minimal prime
ideals and annihilators is studied. Also, the notion of zero divisors elements of hoops are introduced
and proved that the set of all zero divisors of hoops is a union of all minimal prime ideals of hoop.
Finally, by using the notions of minimal prime ideals and maximal ideals of hoop, two new ideals
as p-ideal and m-ideal are defined. Then some properties of them are proved and the relation
between them is investigated and showed every p-ideal of semi-simple hoop is an m-ideal of it.
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