# Minimal prime ideals in hoops

Document Type : Original Article

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University

2 Hatef University

Abstract

In this paper, we define the notion of minimal prime ideals of hoops and investigate some properties of them. Then by using the notion of annihilators, we study the relation between minimal prime ideals and annihilators. Also, we introduce the notion of zero divisors elements of hoops and prove that the set of all zero divisors of hoops is a union of all minimal prime ideals of hoop. Finally, by using the notions of minimal prime ideals and maximal ideals of hoop, we introduce two new ideals as p-ideal and m-ideal. Then we study some properties of them and investigate the relation between them and prove that every p-ideal of semi-simple hoop is an m-ideal of it.

Keywords

#### References

[1] M. Aaly Kologani, R.A. Borzooei, On ideal theory of hoop algebras, Mathematica Bohemica,
145(2) (2019), 1{22.
[2] M. Aaly Kologani, Y.B. Jun, X.L. Xin, E.H. Roh, R.A. Borzooei, On co-annihilators in hoops,
Journal of Intelligent and Fuzzy Systems, 37(4) (2019), 5471{5485.
[3] M. Aaly Kologani, X.L. Xin, R.A. Borzooei, Y.B. Jun, On annihilators in hoops, submitted.
[4] R.A. Borzooei, M. Aaly Kologani, Local and perfect semihoops, Journal of Intelligent and
Fuzzy Systems, 29 (2015), 223{234.
[5] R.A. Borzooei, M. Aaly Kologani, Results on hoops, Journal of Algebraic Hyperstructures
and Logical Algebras, 1(1) (2020), 61{77.
[6] B. Bosbach, Komplementare Halbgruppen. Axiomatik und Arithmetik, Fundamenta Mathematicae,
64 (1969), 257{287.
[7] B. Bosbach, Komplementare Halbgruppen. Kongruenzen und Quotienten, Fundamenta Mathematicae,
69 (1970), 1{14.
[8] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of Multiple-Valued logic and
Soft Computing, 11(1-2) (2005), 153{184.
[9] P. Hajek, Metamathematics of fuzzy logic, Springer Verlag, 4 (1998).
[10] A. Namdar, R.A. Borzooei, Special hoop algebras, Italian Journal of Pure and Applied Mathematics,
39 (2018), 334{349.
[11] A. Namdar, R.A. Borzooei, Nodal  lters in hoop algebras, Soft Computing, 22 (2018), 7119{
7128.
[12] A. Namdar, R.A. Borzooei, A. Borumand Saeid, M. Aaly Kologani, Some results in hoop
algebras, Journal of Intelligent and Fuzzy Systems, 32 (2017), 1805{1813.
[13] F. Xie, H. Liu, Ideals in pseudo-hoop algebras, Journal of Algebraic Hyperstructures and
Logical Algebras, 1(4) (2020), 39{53.