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Abstract

Fundamental relations are one of the main tools in
connection relation between hyperstructures theory and
structures theory. In this paper, we introduce a general
fundamental relation on any hypergroup in such a way
that all fundamental relations are a special case of this
relation. Also, this study considered the notation of the
relation on the derivation of k-nilpotent groups from any
hypergroups.
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A Title

1 Introduction

Let G be a group and k, n ∈ N. Then the lower k-central series of G is defined by G = γk0 (G) ⊇
γk1 (G) ⊇ . . ., where

γkn+1(G) = ⟨{[x, y] | x ∈ γkn(G), y ∈ Gk = {gk | g ∈ G}}⟩.

A group G is called a k-nilpotent group, if for some n ∈ N we have γkn(G) = {1}, in particular for
k = 1 it is a nilpotent group.

The hyperstructure theory was first introduced, by Marty at the 8th congress of Scandinavian
Mathematicians in 1934 [7]. Marty introduced the concept of hypergroups as a generalization
of groups and used it in different contexts like algebraic functions, rational fractions, and non-
commutative groups. In classical algebraic structures, the synthetic result of two elements is an
element, while in the hyper algebraic system, the synthetic result of two elements is a set of
elements, therefore it can be said that the notion of hyperstructures is a generalization of classical
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algebraic structures, from this point of view. Hyperstructures have many applications to several
sectors of both pure and applied sciences as geometry, graphs and hypergraphs, fuzzy sets and
rough sets, automata, cryptography, codes, relation algebras, C–algebras, artificial intelligence,
probabilities, chemistry, physics, especially in atomic physics and in the harmonic analysis [3, 4].

In this paper, we introduce a strongly regular relation as extended fundamental relation on any
hypergroup in such a way that some fundamental relations are a special case of this relation. The
motivation of this relation is obtained from the connection between hypergroups and groups. This
study introduces the concept of relation–part and investigates some properties of relation–part.
Indeed, we apply the extended fundamental relation to constructing of relation–part. The main
result of this paper is the derivation of the class of k–nilpotent groups from hypergroup.

2 Preliminaries

In this section, we review some definitions and results from [6], which we need in what follows.
Let H be a non-empty set and P ∗(H) be the family of all non-empty subsets of H. Every

function ·i : H ×H −→ P ∗(H) where i ∈ {1, 2, . . . , n} and n ∈ N is called a hyperoperation. For
all x, y of H, ·i(x, y) is called a hyperproduct of x, y. An algebraic system (H, ·1, ·2, . . . , ·n) is
called a hyperstructure and binary structure (H, ·) endowed with only hyperoperation is called a

hypergroupoid. For every two non-empty subsets A and B of H,A · B means
∪

a∈A,b∈B
a · b. Recall

that a hypergroupoid (H, ·) is called a semihypergroup if for any x, y, z ∈ H, (x · y) · z = x · (y · z)
and a semihypergroup (H, ·) is called a hypergroup if satisfies in the reproduction axiom, i. e. for
any x ∈ H,x ·H = H · x = H. A semihypergroup (H, ·) is called a polygroup, provided that (i)
it has a scalar identity e (i.e., e · x = x · e = {x}, for every x ∈ H), (ii) x ∈ y · z implies y ∈
x · z−1 and z ∈ y−1 · x, where −1 is a unitary operation on H(it follows that every element x of
H has a unique inverse x−1 in H i.e e ∈ (x · x−1) ∩ (x−1 · x), e−1 = e, (x−1)−1 = x) and we will
denote it by (H, ·, e,−1 ). A non-empty subset K of H is said to be a sub-polygroup of H, if for
any x, y ∈ K,x · y−1 ⊆ K and is denoted by K ≤ H. Let X be a non-empty subset of a polygroup
H define the sub-polygroup generated by X, ⟨X⟩ to be the intersection of all sub-polygroups of
H which contain X.

In every hypergroup H, a commutator of x, y ∈ H is denoted by [x, y] = {h ∈ H | x · y ∩ h ·
y · x ̸= ∅} and H = L0(H) ⊇ L1(H) ⊇ · · · is called a lower series of H, where for all n ∈ N∗,
Ln+1(H) = {h ∈ [x, y] | x ∈ Ln(H), y ∈ H}. Also, H = Γ0(H) ⊇ Γ1(H) ⊇ · · · is called a derived
series of H, where for all n ∈ N∗, Γn+1(H) = {h ∈ [x, y] | x, y ∈ Γn(H)}.

The polygroup (H, ·, e,−1 ) is called a nilpotent polygroup, if for some integer n ∈ N, ln(H)·wH =
wH , where ln+1(H) = ⟨{h ∈ [x, y] | x ∈ ln(H), y ∈ H}⟩ and l0(H) = H (if there exists the smallest
integer c in such a way that lc(H) · wH = wH , then c is called the nilpotency class for H). Also
for all n ∈ N, we have H ′ = H(1) = ⟨Γ1(H)⟩ and H(n+1) = (H(n))′.

Let (H, ·) be a hypergroup and ρ be an equivalence relation on H. Letting H
ρ = {ρ(g) | g ∈ H},

be the set of all equivalence classes of H with respect ρ. Define a hyper operation ∗ by ρ(a)∗ρ(b) =
{ρ(c) | c ∈ ρ(a) · ρ(b)}. In [5] it was proved that (Hρ , ∗) is a hypergroup if and only if ρ is a regular

equivalence relation. Moreover, (Hρ , ∗) is a group if and only if ρ is a strongly regular equivalence

relation([5]). Let U(H) denote the set of all finite product of elements of H. Define relation β on H
by aβb ⇐⇒ ∃ u ∈ U(H) such that {a, b} ⊆ u. In [5] it was proved that β∗ is the transitive closure
of β (the smallest transitive relation such that contains β ), and ( H

β∗ , ∗) is called the fundamental
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group of (H, ·). In [5] it was rewritten the definition of β∗ on H as follows:

aβ∗b ⇐⇒ ∃z1 = a, z2, ..., zn+1 = b ∈ H,u1, u2, · · · , un ∈ U s.t {zi, zi+1} ⊆ ui, ∀ 1 ≤ i ≤ n.

Also, Freni, introduced a strongly regular relation γ on hypergroup H as follows: γ1 = {(x, x) | x ∈
H} and for all n ≥ 2, (x, y) ∈ γn if and only if there exist z1, z2, . . . , zn ∈ H, σ ∈ Sn such that

x ∈
n∏

i=1

zi, y ∈
n∏

i=1

zσ(i) and γ =
∪
n≥1

γn, in addition, it was proved that G/γ∗ is an abelian group

[5].

Davvaz et. al introduced the relation νn =
∪
m≥1

νm,n, where ν1,n = γ1 and for every m > 1, νm,n

is defined by, (a, b) ∈ νm,n ⇔ ∃ u =

m∏
i=1

zi ∈ U , ∃σ ∈ Sm such that σ(i) = i if zi /∈ Ln(H)

and a ∈ u, b ∈ uσ, in addition, it was proved that G/γ∗ is a nilpotent group. Also τn =
∪
m≥1

τm,n,

where τ1,n = {(x, x) | x ∈ H} and for every m > 1, τm,n is defined by, (a, b) ∈ τm,n ⇔ ∃ u =∏m
i=1 zi , ∃σ ∈ Sm : σ(i) = i if zi /∈ Γn(H) and a ∈ u, b ∈ uσ, in addition, it was proved that G/γ∗

is a solvable group [1, 2].
The map f : H1 → H2 is called a homomorphism of hypergroups if for all x, y ∈ H1, we have

f(x · y) = f(x) · f(y). A homomorphism f is called an isomorphism if f is a one-to-one and
onto a map, also we define Aut(H) = {f : H → H | f is an isomorphism on hypergroup H}. Let
φ : H −→ H/β∗ by φ(x) = β∗(x) be the canonical homomorphism. Then wH = {x ∈ H | φ(x) = 1}
is called heart of H.

3 Relation-part in hypergroups

In this section, we introduce a fundamental relation on hypergroups such that it is a generalization
of fundamental relations such as β∗ and γ∗. Also, the concept of relation-part in hypergroups is
defined and is obtained some relation-part with respect to this extended fundamental relation on
hypergroups.

Definition 3.1. Let H be a hypergroup and K ⊆ H. Define R1,K = {(x, x) | x ∈ H} and for all
2 ≤ n ∈ N:

(x, y) ∈ Rn,K ⇔ ∃ (z1, . . . , zn) ∈ Hn, u =
n∏

i=1

zi, ∃ σ ∈ Sn, such that x ∈ u, y ∈ uσ

and for all 1 ≤ i ≤ n, zi ∈ K implies that σ(i) = i, where uσ =

n∏
i=1

zσ(i).

Obviously, RK =
∪
n≥1

Rn,K is a reflexive and symmetric relation. Let R∗
K be the transitive closure

of RK ( the smallest transitive relation in such a way that contains RK), then we have the following
results.

Example 3.2. Let H = {a, b, c}. Consider the hypergroup (H, ·) as follows:

· a b c

a {b, c} {a} {a}
b {a} {b} {c}
c {a} {b, c} {b, c}

.
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If K = {a, b}, then RK = R1,K ∪ {(b, c), (c, b)} = R∗
K = β∗.

Theorem 3.3. Let H be a hypergroup and K ⊆ H. Then R∗
K is a strongly regular relation on H.

Proof. Let (x, y) ∈ RK and z ∈ H. Then there exist (z1, . . . , zn) ∈ Hn, u =

n∏
i=1

zi and σ ∈ Sn in

such a way that x ∈ u, y ∈ uσ and for all 1 ≤ i ≤ n, zi ∈ K implies σ(i) = i. So we have x ·z ⊆ u ·z,
y ·z ⊆ uσ ·z and zi ∈ K implies that σ(i) = i. Consider zn+1 = z, α(i) = σ(i), where i ∈ {1, . . . , n}

and α(n+ 1) = n+ 1. Thus x · z ⊆
n+1∏
i=1

zi = v and y · z ⊆ vα such that zi ∈ K implies α(i) = i. It

follows that (x · z) R∗
K (y · z). In a similar way, we have (z · x) R∗

K (z · y). Hence R∗
K is a strongly

regular relation on H.

Theorem 3.4. Let H be a hypergroup. Then
H

R∗
K

is a group.

Example 3.5. Let H be a hypergroup and n ∈ N. Then

(i) if H is a commutative hypergroup, then RK = β = γ = τn = νn;

(ii) if K = H, then RK = β;

(iii) if K = ∅, then RK = γ;

(iv) if K = H \ Γn(H), then RK = τn;

(v) if K = H \ Ln(H), then RK = νn;

(vi) if K = {x ∈ H | x · h = h · x,∀h ∈ H}, then H/R∗
K is an abelian group.

Definition 3.6. Let H be a hypergroup, A ⊆ H and R be a strongly regular relation on H. We
say that A is an R-complete part of H (or simply R-part) if for every x ∈ A and y ∈ H, (x, y) ∈ R
implies that y ∈ A and it will be denoted by A ⊑R H. Clearly H ⊑R H.

Consider the hypergroup as in Example 3.2 and R = β. Then {a} ⊑β H.

Theorem 3.7. Let H be a hypergroup, and R be a strongly regular relation on H. If A,B ⊑ H,

and ARB, then A = B.

Theorem 3.8. Let H be a hypergroup and ∅ ̸= M ⊆ H and K ⊆ H. Then M is called an RK-part
of H if for any n ∈ N, z1, . . . , zn ∈ H and σ ∈ Sn such that zi ∈ K implies that σ(i) = i, then
n∏

i=1

zi ∩M ̸= ∅ implies

n∏
i=1

zσ(i) ⊆ M.

Corollary 3.9. Let H be a hypergroup and A ⊆ H. Then

(i) A ⊑RH
H if and only if for all u ∈ U , u ∩A ̸= ∅ implies u ⊆ A.

(ii) A ⊑R∅ H if and only if for all n ∈ N and u =
n∏

i=1

zi ∈ U , u ∩ A ̸= ∅ implies for all σ ∈ Sn,

uσ ⊆ A.
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Theorem 3.10. Let H be a hypergroup, A ⊆ H and R1, R2 be strongly regular relations on H.
Then

(i) If R1 ⊆ R2 and A is an R2-part of H, then A is an R1-part;

(ii) If A is an R1-part or R2-part, then A is an (R1 ∩R2)-part;

(iii) If A is an R1-part and R2-part, then A is an (R1 ∪R2)-part.

Theorem 3.11. Let H be a hypergroup and R be a strongly regular relation on H.

(i) If K1,K2 ⊑R H, then K1 ∩K2 ⊑R H.

(ii) If K1,K2 ⊑R H, then K1 ∪K2 ⊑R H.

(ii) For all a ∈ H, R(a) ⊑R H.

Definition 3.12. Let H be a hypergroup and A ⊆ H. The intersection of all R-complete parts of
H which contains A is called an R-closure of A in H and it will be denoted by CR(A). Consider
T1(A) = A and for every n ∈ N,

Tn+1(A) = {x ∈ H | ∃ y ∈ Tn(A) s.t (x, y) ∈ R} and T (A) =
∪
n≥1

Tn(A).

Example 3.13. Let H = {e, a, b}. Consider the polygroup (H, ·) as follows:

· e a b

e e a b
a a {e, b} {a, b}
b b {b, a} {e, a}

.

For R = H ×H, A = {e, a} and for all n ≥ 1, we have Tn(A) = H.

From now on, we consider R is a strongly regular relation on hypergroup H and ⊑R will by ⊑.

Theorem 3.14. Let H be a hypergroup and ∅ ̸= A ⊆ H. Then

(i) CR(A) = T (A);

(ii) CR(A) =
∪
a∈A

CR(a).

Proof. (i) Let x ∈ T (A) and y ∈ H. Then (x, y) ∈ R implies that there exists n ∈ N such that
x ∈ Tn(A). So we have y ∈ Tn+1(A). In addition, if A ⊆ B and B ⊑ H, then by induction we
show that T (A) ⊆ B. Clearly T1(A) = A ⊆ B. Suppose Tn(A) ⊆ B. Thus for every x ∈ Tn+1(A),
there exists y ∈ Tn(A) such that (x, y) ∈ R. Since B ⊑ H, we get x ∈ B.

(ii) By induction, we have Tn(A) ⊆
∪
a∈A

Tn(a). Hence CR(A) =
∪
a∈A

CR(a).

Lemma 3.15. Let H be a hypergroup, x ∈ H and n ∈ N. Then

(i) Tn(T2(x)) = Tn+1(x);

(ii) for all x, y ∈ H and n ∈ N, x ∈ Tn(y) if and only if y ∈ Tn(x).
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Proof. By definition, T1(T2(x)) = T2(x). If Tn−1(T2(x)) = Tn(x), then by induction,

Tn(T2(x)) = {x | ∃ y ∈ Tn−1(T2(x)) and (x, y) ∈ R}
= {x | ∃ y ∈ Tn(x) and (x, y) ∈ R} = Tn+1(x)

(ii) It is clear that x ∈ T1(y) ⇔ y ∈ T1(x). Let for every x, y ∈ H, x ∈ Tn−1(y) if and only if
y ∈ Tn−1(x). If x ∈ Tn(y), then there exists z ∈ Tn−1(y) such that (x, z) ∈ R. Using hypotheses of
induction, we conclude that y ∈ Tn−1(z). Moreover, x ∈ T1(x), and (x, z) ∈ R implies z ∈ T2(x).
Hence y ∈ Tn−1(z) ⊆ Tn−1(T2(x)) = Tn(x).

Theorem 3.16. Let H be a hypergroup and S = {(x, y) | x ∈ T (y)}. Then S = R.

Proof. Let x, y ∈ H. Since (x, y) ∈ S we have x ∈ T (y), then there exists n ∈ N such that x ∈
Tn(y). Thus, z1 ∈ Tn−1(y) such that (x, z1) ∈ R Hence, there is z2 ∈ Tn−2(y) such that (z1, z2) ∈
R. Then there exists zn−1 ∈ T1(y) = {y} such that (zn−2, zn−1) ∈ R. So (x, y) ∈ R.

Conversely

(x, y) ∈ R ⇒ y ∈ T1(y) and (x, y) ∈ R ⇒ x ∈ T2(y) ⇒ (x, y) ∈ S.

Theorem 3.17. Let H be a hypergroup and ∅ ̸= A ⊆ H. Then CR(A) =
∪
a∈A

R(a).

Proof. Let x ∈ H. Then

x ∈ CR(A) ⇔ ∃ a ∈ A such that x ∈ CR(a)

⇔ ∃ a ∈ A such that (a, x) ∈ T

⇔ ∃ a ∈ A such that (a, x) ∈ R

⇔ ∃ a ∈ A : x ∈ R(a)

⇔ x ∈
∪
a∈A

R(a).

Let R be a strongly regular relation on a hypergroup H and π : H → H/R by π(x) = R(x) be
the canonical homomorphism and wR = {x ∈ H | π(x) = 1}. Then wR is called an R-heart of H.

Proposition 3.18. Let H be a hypergroup and ∅ ̸= A ⊆ H. Then

(i) wR = π−1(1H/R) is a sub-hypergroup of H;

(ii) π−1π(A) = wR ·A = A · wR.

Proof. (i) It is concluded immediately.
(ii) Suppose that x ∈ π−1π(A), then there is a ∈ A such that π(x) = π(a) and by the

reproduction axim there exists u ∈ H such that x ∈ a · u so R(x) = R(a) · R(u). It follows
R(u) = 1H/R, thus u ∈ wR and x ∈ A ·wR. Conversely, if x ∈ A ·wR then there are a ∈ A, w ∈ wR

such that x ∈ a · w so π(x) = R(x) = R(a) = π(a) and so x ∈ π−1π(A). In a similar way, we can
prove wR ·A = π−1π(A).

Theorem 3.19. Let H be a hypergroup and ∅ ̸= A ⊆ H. Then π−1π(A) = CR(A).



k-nilpotent groups based on hypergroups 67

Proof. Let x ∈ R. Then x ∈ π−1π(A) if and only if there is a ∈ A such that π(x) = π(a) if
and only if there exists a ∈ A such that R(x) = R(a) if and only if there exists a ∈ A such that
(x, a) ∈ R = T if and only if there exists a ∈ A, x ∈ CR(a) ⊆ CR(A) if and only if x ∈ CR(A).

Corollary 3.20. Let H be a hypergroup and ∅ ̸= A ⊆ H. Then

(i) CR(A) = π−1π(A) = wR ·A = A · wR;

(ii) if w ∈ wR then CR(w) = wR.

Corollary 3.21. Let H be a polygroup and ∅ ̸= A,B ⊆ H. If A is an R-part of H, then

(i) A is a complete part of H;

(ii) for every x ∈ H, we have x · x−1 ·A = A;

(iii) A−1 is a complete part of H;

(iv) for all x ∈ P , we have x ·A and A · x are complete parts of H;

(v) A ·B and B ·A are complete parts of H;

(vi) if for every i ∈ I, Ai is an R-part, then
∪
i∈I

Ai and
∩
i∈I

Ai are R-parts of H;

(ix) if H is a commutative polygroup and N ≤ H is an R-part, then N E H.

Theorem 3.22. Let H be a hypergroup and ∅ ̸= M,K ⊆ H. Then the following statements are
equivalent:

(i) M is an RK-part of H;

(ii) if x ∈ M and (x, y) ∈ RK , then y ∈ M ;

(iii) if x ∈ M and (x, y) ∈ R∗
K , then y ∈ M ;

Theorem 3.23. Let H be a hypergroup and K ⊆ H. Then the following conditions are equivalent:

(i) for all a ∈ H, RK(a) is an RK-part of H;

(ii) RK = R∗
K .

Remark 3.24. Consider K = H, then RH = β and every β-part is called the complete part of H.

Definition 3.25. Let H be a hypergroup and A ⊆ H. The intersection of all RK-parts which
contain A is called an RK-closure of A in H and it will be denoted by C(A). Consider K1(A) = A

and for every n ∈ N, Kn+1(A) = {x ∈ H | ∃ u =

m∏
i=1

zi, x ∈ u and ∃ σ ∈ Sm such that σ(i) =

i if zi ∈ K and uσ ∩Kn(A) ̸= ∅ and K(A) =
∪
n∈N

Kn(A).

Theorem 3.26. Let H be a hypergroup and A ⊆ H. Then

(i) C(A) = K(A);
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(ii) C(A) =
∪
a∈A

C(a).

Theorem 3.27. Let H be a hypergroup. Then for all x, y ∈ H and for all n ∈ N:

(i) Kn(K2(x)) = Kn+1(x);

(ii) x ∈ Kn(y) if and only if y ∈ Kn(x).

Let H be a hypergroup and T = {(x, y) | x ∈ K(y)}. Then T is an equivalence relation and
we have the following results.

Lemma 3.28. Let H be a hypergroup. Then R∗
K = T .

Proof. Let (x, y) ∈ RK . Then there exist u =

m∏
i=1

zi and σ ∈ Sm such that zi ∈ K implies σ(i) = i,

x ∈ u and y ∈ uσ. It follows that x ∈ u and y ∈ uσ ∩K1(y) , thus x ∈ K2(y). Then (x, y) ∈ T and
R∗

K ⊆ T ∗ = T .

Conversely, if (x, y) ∈ T , then x ∈ K(y) =
∪
n≥1

Kn(y) and so there is n ∈ N such that

x ∈ Kn+1(y) and by definition there are u1 =

n1∏
i=1

z1i and σ1 ∈ Sn1 with σ1(1i) = 1i if z1i ∈ K,

such that x ∈ u1 and u1σ1 ∩Kn(y) ̸= ∅. Hence there exists x1 ∈ u1σ1 ∩Kn(y) and so (x, x1) ∈ RK .

Now, x1 ∈ Kn(y) and by definition there are u2 =

n2∏
i=1

z2i , σ2 ∈ Sn2 with σ2(2i) = 2i if z2i ∈ K

and x1 ∈ u2, x2 ∈ u2σ2 ∩Kn−1(y) ̸= ∅. So x1 ∈ u2 and x2 ∈ u2σ2 . It implies that (x1, x2) ∈ RK

and by induction, there are un and σn and xn such that xn ∈ unσn
∩K1(y), (xn−1, xn) ∈ RK . In

addition, xn = y and (x, y) ∈ R∗
K , so T ⊆ R∗

K .

Let R be a strongly regular relation on a hypergroup H and π : H → H/R be the canonical
homomorphism. Then wK = π−1(1H/R) is a sub-hypergroup of H. If R = R∗

K , then π−1(1H/R) is
called an RK-heart.

Proposition 3.29. Let H be a hypergroup and A ⊆ H. Then π−1π(A) = wK ·A = A · wK .

Theorem 3.30. Let H be a hypergroup and A ⊆ H. Then π−1π(A) = C(A).

Corollary 3.31. Let H be a hypergroup and ∅ ̸= A ⊆ H. Then

(i) C(A) = π−1π(A) = wK ·A = A · wK ;

(ii) if w ∈ wK , then C(w) = wK .

Corollary 3.32. Let H be a polygroup, x ∈ H and A,B ⊆ H. If A is an RK-part of H, then

(i) A is a complete part of H;

(ii) x · x−1 ·A = A;

(iii) A−1 is a complete part of H;

(iv) x ·A and A · x are complete parts of H;
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(v) A ·B and B ·A are complete parts of H;

(vi) if for every i ∈ I, Ai is an RK-part, then
∪
i∈I

Ai and
∩
i∈I

Ai are complete parts of H;

(vii) if H is a commutative polygroup and N ≤ H is an RK-part of H, then N E H.

Theorem 3.33. Let H be a polygroup. Then R(wK) = {(x, y) | x · y−1 ∩ wK ̸= ∅} = R∗
K .

Proof. Let x, y ∈ H. Then we have

(x, y) ∈ R∗
K if and only if R∗

K(x) = R∗
K(y) if and only if R∗

K(x) ·R∗
K(y)−1 = 1

if and only if x · y−1 ∩ wK ̸= ∅.

Example 3.34. Consider the polygroup H = {1, 2, 3, 4, 5, 6, 7} as follows:

· 1 2 3 4 5 6 7

1 {1} {2} {3} {4} {5} {6} {7}
2 {2} {1, 2} {3} {4} {5} {6} {7}
3 {3} {3} {1, 2} {7} {6} {5} {4}
4 {4} {4} {6} {1, 2} {7} {3} {5}
5 {5} {5} {7} {6} {1, 2} {4} {3}
6 {6} {6} {4} {5} {3} {7} {1, 2}
7 {7} {7} {5} {3} {4} {1, 2} {6}

If K = {1, 6} and A = {7}, then it is easy to see that K(A) = {1, 2, 6, 7}. Also, wK = {1, 2, 6, 7}.
If A = {3}, then K(A) = {3, 4, 5} and by Corollary 3.31, C(3) = 3 · {1, 2, 6, 7} = {3, 4, 5}.

Example 3.35. Let H = {a, b, c} be a hypergroup as follows:

· a b c

a {b, c} a a
b a b c
c a {b, c} {b, c}

If K = {a, b}, then wK = {b, c} = K(b) = K(c), K(a) = {a}, C(a) = a · wK = {a} and
T = ∆ ∪ {(b, c), (c, b)}.

Example 3.36. Let H = {e, a, b, c, d, f, g} and (H, ◦) be a polygroup as follows:

◦ e a b c d f g

e e a b c d f g
a a b {e, g} f c d a
b b {e, g} a d f c b
c c d f {e, g} a b c
d d f c b {e, g} a d
f f c d a b {e, g} f
g g a b c d f e

.

If K = H and A = {a, c, d}, then wK = {e, g}, C(A) = A ◦ wK = {a, c, d} ◦ {e, g} = {a, c, d} and
T = ∆ ∪ {(e, g), (g, e)}.



70 A. Mosayebi Dorcheh

3.1 Transitivity conditions of RK

In this subsection, we show that for any hypergroup H and for all K ⊆ H, RK is a transitive
relation.

Definition 3.37. Let H be a hypergroup and x ∈ H. Then

(i) Un(x) = {u ∈ U(H) | x ∈ u =
∏n

i=1 zi, zi ∈ H},

(ii) U(x) = {u ∈ U(H) | ∃n ∈ N s.t, u ∈ Un(x)},

(iii) P (x) =
∪
{uσ | ∃n ∈ N, σ ∈ Sn, u =

∏n
i=1 zi ∈ Un(x), σ(i) = i, if zi ∈ K}.

Example 3.38. Consider the hypergroup H which is defined in (3.35) and K = H. Then U2(a) =
{ab, ba, ca, ac} and P (x) = {b, c}.

Lemma 3.39. Let H be a hypergroup and x ∈ H. Then P (x) = {y ∈ H | (x, y) ∈ RK}.

Proof. Let y ∈ H and (x, y) ∈ RK . Then there exist u =
∏n

i=1 zi ∈ Un(x) and σ ∈ Sn such that
σ(i) = i if zi ∈ K and y ∈ uσ so y ∈ P (x).

Theorem 3.40. Let H be a hypergroup. Then the following conditions are equivalent:

(i) RK = R∗
K ;

(ii) for all x ∈ H, R∗
K(x) = P (x);

(iii) for all x ∈ H, P (x) is an RK-part of H.

Proof. (i) ⇒ (ii) Let x, y ∈ H. Then

y ∈ R∗
K(x) ⇔ (x, y) ∈ R∗

K = RK ⇔ y ∈ P (x).

(ii) ⇒ (iii) Let u =

n∏
i=1

zi ∈ U(H) and a ∈ u ∩ P (x), then (a, x) ∈ RK . For every σ ∈ Sn such

that σ(i) = i if zi ∈ K and y ∈ uσ we have (a, y) ∈ RK so (x, y) ∈ R∗
K . Thus y ∈ R∗

K(x) = P (x)
and thus uσ ⊆ P (x).

(iii) ⇒ (i) Let (x, y) ∈ R∗
K . Then x ∈ P (x), (x, y) ∈ R∗

K and by Lemma 3.22, we conclude
that y ∈ P (x). Thus there exist u =

∏n
i=1 zi ∈ U(x) and σ ∈ Sn such that σ(i) = i if zi ∈ K and

y ∈ uσ so (x, y) ∈ RK .

Theorem 3.41. Let H be a hypergroup with an identity e (for all h ∈ H, e · h = h · e = h). Then
RK = R∗

K .

Proof. Let z ∈ H and u =
∏m

i=1 zi ∈ U(H) such that x ∈ u∩P (z). If x = z, then for every σ ∈ Sm

such that σ(i) = i if zi ∈ K and for every y ∈ uσ we have x = z, (x, y) ∈ RK and so y ∈ P (z). It
follows that uσ ⊆ P (z).

Let x ̸= z and σ ∈ Sm such that σ(i) = i if zi ∈ K. Then (x, z) ∈ RK \∆ and so there exist
wi ∈ H, i = 1, . . . , n and α ∈ Sn such that α(i) = i if wi ∈ K, z ∈

∏n
i=1wi and x ∈

∏n
i=1wα(i).

By the reproduction axiom, there exist a, b ∈ H such that z ∈ x · b and zm+1 = e ∈ a · z. Hence

z ∈ x · b ⊆
m∏
i=1

zi · b =
m∏
i=1

zi · zm+1 · b ⊆
m∏
i=1

zi · a · z · b ⊆
m∏
i=1

zi · a ·
n∏

i=1

wi · b = v ∈ Um+n+2(z).
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Moreover, if σ(m+ 1) = m+ 1, then

m∏
i=1

zσ(i) =

m∏
i=1

zσ(i) · zm+1 ⊆
m∏
i=1

zσ(i) · a · z ⊆
m∏
i=1

zσ(i) · a · x · b

⊆
m∏
i=1

zσ(i) · a ·
n∏

i=1

wα(i) · b ⊆ P (z).

So there exists δ ∈ Sm+n+2 such that vδ ⊆ P (z). In addition, since
∏m

i=1 zσ(i) ⊆ vδ and z ∈ v,
we get P (z) is an RK-part of H and by Theorem 3.40, the proof is complete.

4 k-nilpotent groups derived from hypergroups

In this section, we consider a hypergroup H, for any K ⊆ H, apply the relation RK and show that
H/R∗

K is a k-nilpotent group.

Definition 4.1. Let k ∈ N and H be a hypergroup. Define Lk
0(H) = H and for every n ≥ 0,

Lk
n+1(H) = {h ∈ [x, y] | x ∈ Lk

n(H), y ∈ Hk =
∪
h∈H

hk}. Clearly, for all n ∈ N, Lk
n+1(H) ⊆ Lk

n(H).

Lemma 4.2. Let H be a hypergroup. Then for every n ∈ N, Lk
n(H/R∗

K) = {h = R∗
K(h) | h ∈

Lk
n(H)}.

Theorem 4.3. Let H be a hypergroup and K = H \ Lk
n(H). Then G = H/R∗

K is a k-nilpotent
group.

Proof. Let h ∈ Lk
n+1(H). Then there exists x ∈ Lk

n(H) and y ∈ Hk such that h ∈ [x, y], so
x · y ∩ h · y · x ̸= ∅ and x, h ∈ Lk

n(H). By definition of R∗
K , we have x · y = h · y · x = x · y · h,

hence h = 1 and so Lk
n+1(G) = {1}. For i = 0, γki (G) ⊆ Lk

i (G). Let a ∈ γki+1(G). Without loss
generality, suppose that a = [x, y], where x ∈ γki (G) and y ∈ Gk. By the hypothesis of induction
we conclude that x ∈ Lk

i (G), thus a = [x, y] ∈ Lk
i+1(G). Now we have γkn+1(G) ⊆ Lk

n+1(G) = {1}
and so G is a k-nilpotent group of class at most n+ 1.

Example 4.4. Consider the hypergroup which is defined in Example 3.35. Let k ∈ N, then

Hk =

{
H, if k is odd,

{b, c}, if k is even,

and for every n ∈ N, Lk
n(H) = {b, c}. If K = {b, c}, then b = c and G = {a, b} is a k-nilpotent

group and we have the following tables:

◦ a b

a b a

b a b
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5 Conclusions

(i) The current paper introduced a fundamental relation as a generalization fundamental re-
lations on hypergroups in such a way that in particular is a generalization of β∗, γ∗, and
τ∗.

(ii) The concept of relation-part of hypergroups is introduced and is shown that the heart of
every hypergroup is a relation-part of hypergroup.

(iii) By using the concept of relation-part and fundamental relation on hypergroups, we obtain
some relation-part of hypergroup.

(iv) With respect to the concept of relation the concept of k–nilpotent groups are obtained.

(v) It is proved that this relation is on a hypergroup with an identity that is transitive.

We hope that these results are helpful for furthers studies in hypergroup. In our future studies,
we hope to obtain more results regarding polygroups, groups, and their applications.
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