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Abstract

In this paper, state operators on hyper BE-algebras (corre-
spondingly, state hyper BE-algebras) are introduced and stud-
ied. State hyper filters are introduced and generated state
hyper filters are represented in state hyper BE-algebras. Also,
maximal (prime) state hyper filters are characterised and the
relations between state maximal hyper filters and state prime
hyper filters are discussed. Moreover, some related results of
state (compatible) hyper congruence are obtained. Especially,
it follows that there is an isotone bijection between all state
strong regular ◦-reflexive hyper filter Fs(H, ξ) and all state
compatible hyper congruence Cs(H, ξ) on state commutative
transitive RD-hyper BE-algebra (H, ξ).
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A Title

1 Introduction

The hyper structure theory was introduced by Marty [16] at the 8th Congress of Scandinavian Mathemati-
cians. In an algebraic hyper structure, the composition of two elements is not an element but a set. Since
then many hyper algebraic structures have been extensively researched such as hyper BCK-algebras [15], hy-
per MV-algebras [13], hyper EQ-algebras [3, 7] and hyper equality algebras [4], etc. Also, in 2020, Borzooei,
Aaly [1] and Davvaz [10] gave comprehensive overviews of hyper logical algebras, respectively. Now, hyper
structure theory has been applied to many disciplines such as geometry, graphs, automata, cryptography,
artificial intelligence, probability theory, dismutation reactions and inheritance, etc (see [9, 11]). Recently,
Radfar, Rezaei and Saeid [18] introduced the notion of hyper BE-algebras as a generalization of BE-algebras
where some types of hyper BE-algebras and hyper filters were given. Then they investigated commutative
hyper BE-algebras in [19]. Cheng and Xin [4] systematically studied the filter theory of hyper BE-algebras
and they also constructed quotient hyper BE-algebras via normal hyper filters.

The notion of states on MV-algebras was introduced by Mundici [17] in 1995 with the intent of capturing
the notion of average degree of truth of a proposition in  Lukasiewicz logic, and so the states have been used
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as a semantical interpretation of the probability of fuzzy events a. That is, if s is a state and a is a
fuzzy event, then s(a) is presented as averaging of appearing the event a. State operators on MV-algebras
(correspondingly, state MV-algebras) were introduced by Flaminio [12] in order to preserve some basic
properties of the states on MV-algebras. In fact, state operators on logical algebras [2, 5, 8, 14] are able to
cope with states in an universal algebraic setting. With the intent of representing the average of the true
values of more fuzzy events in the logic, states on hyper MV-algebras [21] were introduced by Xin and Wang
as a generalization of the states on MV-algebras. Then Xin and Davvaz [20, 22] applied the state theory
to hyper BCK-algebras and introduced and systematically studied the states and state operators on hyper
BCK-algebras. The above are our motivation to study state hyper BE-algebras.

This paper is organized as follows: In Section 2, we review some basic concepts and results on hyper
BE-algebras. In Section 3, we introduce state operators (correspondingly, state hyper BE-algebras) and in-
vestigate some related properties of them. In Section 4, we introduce state hyper filters of hyper BE-algebras
and give some representations of generated state hyper filters. Also, we present some characterizations of
maximal (prime) state hyper filters and discuss the relationships between them. In Section 5, we introduce
the concepts of state (compatible) hyper congruences and find some conditions that there is an isotone
bijection between all state strong regular ◦-reflexive hyper filter Fs(H, ξ) and all state compatible hyper
congruence Cs(H, ξ) on hyper BE-algebra (H, ξ).

2 Preliminaries

Definition 2.1. [18] Let H be a nonempty set and ◦ : H×H → P ∗(H) be a hyperoperation. Then (H, ◦, 1)
is called a hyper BE-algebra provided it satisfies the following axioms:
(HBE1) x ≪ 1 and x ≪ x;
(HBE2) x ◦ (y ◦ z) = y ◦ (x ◦ z);
(HBE3) x ∈ 1 ◦ x;
(HBE4) 1 ≪ x implies x = 1,
for all x, y ∈ H, where the relation ≪ is defined by x ≪ y ⇔ 1 ∈ x ◦ y. For any two nonempty subsets A
and B of H, A ≪ B means that there exist a ∈ A, b ∈ B such that a ≪ b.

Notice that in any hyper BE-algebra, A◦B =
∪

a∈A,b∈B

a ◦ b and A ≤ B means for any a ∈ A, there exists

b ∈ B such that a ≪ b.

Example 2.2. [18] Let H = {a, b, 1}. Define operations ◦1, ◦2 on H as follows:

◦1 1 a b
1 {1} {a, b} {b}
a {1} {1, a, b} {b}
b {1, b} {1, a, b} {1, a, b}

◦2 1 a b
1 {1} {a} {b}
a {1, a, b} {1} {a, b}
b {1, a, b} {1, a, b} {1}

Then (H, ◦1, 1) and (H, ◦2, 1) are two hyper BE-algebras.

Proposition 2.3. [4, 18] Let (H, ◦, 1) be a hyper BE-algebra. Then for any x, y ∈ H,A,B ⊆ H:
(P1) y ∈ 1 ◦ x implies y ≪ x;
(P2) x ≪ y ◦ x and A ≤ B ◦A;
(P3) x ≪ (x ◦ y) ◦ y and A ≤ (A ◦B) ◦B;
(P4) A ≤ B and B ≤ C imply A ≤ C;
(P5) A ≤ B and 1 ∈ A imply 1 ∈ B;
(P6) A ≪ B implies 1 ∈ A ◦B.

Definition 2.4. [4, 18] A hyper BE-algebra is said to be a/an
(1) R-hyper BE-algebra if 1 ◦ x = {x}, for all x ∈ H;
(2) D-hyper BE-algebra if x ◦ x = {1}, for all x ∈ H;
(3) RD-hyper BE-algebra if it is both an R-hyper BE-algebra and a D-hyper BE-algebra;
(4) Transitive hyper BE-algebra if y ◦ z ≤ (x ◦ y) ◦ (x ◦ z) and x ◦ y ≤ (y ◦ z) ◦ (x ◦ z), for all x, y, z ∈ H.
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Definition 2.5. [18] Let H be a hyper BE-algebra. A nonempty subset F of H is said to be a hyper filter
if it satisfies:
(1) 1 ∈ F ;
(2) x ◦ y ∩ F ̸= ∅ and x ∈ F imply y ∈ F , for all x, y ∈ H.

Lemma 2.6. [4] Let F be a hyper filter of a hyper BE-algebra (H, ◦, 1). Then for any nonempty subset
A,B of H, A ∩ F ̸= ∅ and A ≤ B imply B ∩ F ̸= ∅.

Definition 2.7. [4] Let H be a hyper BE-algebra and θ be an equivalence relation on H. Then
(1) for any A,B ⊆ H, AθB means for all a ∈ A there exists b ∈ B such that aθb and for all b ∈ B there
exists a ∈ A such that aθb;
(2) θ is called a hyper congruence relation if for all x, y, u, v ∈ H, xθy and uθv imply (x ◦ u)θ(y ◦ v).

Lemma 2.8. Let θ be a hyper congruence on a hyper BE-algebra H. Then AθB and BθC imply AθC.

Proof. The proof is clear.

One can easily prove that an equivalence relation on H is a hyper congruence relation if and only if xθy
implies (x ◦ u)θ(y ◦ u) and (u ◦ x)θ(u ◦ y), for all u ∈ H.

Let θ be a hyper congruence relation on a hyper BE-algebra H. Denote H/θ = {[x]θ : x ∈ H} where
[x]θ = {y ∈ H : yθx}. We define ◦ by [x]θ◦[y]θ = {[a]θ : a ∈ x ◦ y}, and define ≪θ on H/θ by [x]θ ≪θ [y]θ
iff [1]θ ∈ [x]θ◦[y]θ for any [x]θ, [y]θ ∈ H/θ, where [1]θ is said to be the kernel of θ and is denoted by Ker(θ).
Clearly, x ≪ y implies that [x]θ ≪θ [y]θ. Moreover, for A,B ∈ H/θ,A ≤θ B means that for any [x]θ ∈ A,
there exists [y]θ ∈ B such that [x]θ ≪θ [y]θ.

Theorem 2.9. [4] Let (H, ◦, 1) be a hyper BE-algebra and θ be a hyper congruence on H. Then (H/θ; ◦, [1]θ)
is a hyper BE-algebra, which is called as a quotient hyper BE-algebra with respect to θ.

3 State hyper BE-algebras

In this section, we introduce state operators on hyper BE-algebras and investigate some related properties
of them. By H denote a hyper BE-algebra (H, ◦, 1), unless otherwise specified.

Definition 3.1. A map ξ : H → H is said to be a state operator on H, if for all x, y ∈ H, it satisfies the
following conditions:
(S1) ξ(1) = 1;
(S2) ξ(ξ(x)) = ξ(x);
(S3) x ≪ y implies ξ(x) ≪ ξ(y);
(S4) ξ(x ◦ y) ≤ ξ((x ◦ y) ◦ y) ◦ ξ(y);
(S5) ξ(ξ(x) ◦ ξ(y)) = ξ(x) ◦ ξ(y).
Meanwhile, the pair (H, ξ) is said to be a state hyper BE-algebra.

Remark 3.2. (1) A state BE-algebra is a state hyper BE-algebra.
(2) By (P2), it is easy to see that (H, IdH) is a state hyper BE-algebra, where IdH : H → H is the identity
map. Therefore a hyper BE-algebra can be seen as a state hyper BE-algebra.

Example 3.3. Let H = {a, b, 1}. Define an operation ◦ on H as follows:

◦ 1 a b
1 {1} {a} {b}
a {1} {1, a, b} {b}
b {1} {a, b} {1, b}

Then (H, ◦, 1) is a hyper BE-algebras [18]. Consider the map ξ : H → H:

ξ(x) =

{
b, x = a, b,

1, x = 1.
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One can check that (H, ξ) is a state hyper BE-algebra.

Definition 3.4. A state hyper BE-algebra (H, ξ) is called:
• s-positively ordered if ξ(x) ≪ ξ(y) implies ξ(z) ◦ ξ(x) ≤ ξ(z) ◦ ξ(y);
• s-negatively ordered if ξ(x) ≪ ξ(y) implies ξ(y) ◦ ξ(z) ≤ ξ(x) ◦ ξ(z);
• s-ordered if (H, ξ) is both s-positively ordered and s-negatively ordered,
for all x, y, z ∈ H.

Definition 3.5. A hyper BE-algebra H is called:
• positively ordered if x ≪ y implies z ◦ x ≤ z ◦ y;
• negatively ordered if x ≪ y implies y ◦ z ≤ x ◦ z;
• ordered if H is both positively ordered and negatively ordered,
for all x, y, z ∈ H. In particular, if ξ is a state operator on H, we call the state hyper BE-algebra (H, ξ)
positively ordered (negatively ordered, ordered).

It is evident that if (H, ξ) is positively ordered (negatively ordered, ordered), then it is s-positively
ordered (s-negatively ordered, s-ordered).

Example 3.6. In Example 3.3, we can check that the state hyper BE-algebra (H, ξ) is both s-positively
ordered (s-negatively ordered, s-ordered) and positively-ordered (negatively ordered, ordered).

Proposition 3.7. Given a state hyper BE-algebra (H, ξ) and x, y ∈ H, we have:
(SP1) ξ(H) is a subalgebra of H;
(SP2) ξ(H) ∩ Ker(ξ) = {1};
(SP3) ξ(H) = Fixξ(H), where Fixξ(H) = {x ∈ H : ξ(x) = x};
(SP4) If (H, ξ) is s-negatively ordered, then ξ(x ◦ y) ≤ ξ(x) ◦ ξ(y). More generally, if (H, ξ) is ordered, then

ξ(xn ◦ (· · · ◦ (x2 ◦ (x1 ◦ x)) · · · )) ≤ ξ(xn) ◦ (· · · ◦ ((ξ(x2) ◦ (ξ(x1) ◦ ξ(x))) · · · ).

Proof. (SP1) and (SP2) are obvious.
(SP3) If x ∈ ξ(H), then there exists a ∈ H such that ξ(a) = x. Hence ξ(x) = ξ(ξ(a)) = ξ(a) = x, and

so x ∈ Fixξ(H). Conversely, if x ∈ Fixξ(H), then ξ(x) = x and so x ∈ ξ(H).
(SP4) Since x ≪ (x ◦ y) ◦ y, we get ξ(x) ≪ ξ((x ◦ y) ◦ y). Considering (H, ξ) is s-negatively ordered, it

follows that ξ(x ◦ y) ≤ ξ((x ◦ y) ◦ y) ◦ ξ(y) ≤ ξ(x) ◦ ξ(y). Therefore, ξ(x ◦ y) ≤ ξ(x) ◦ ξ(y). The second part
can be easily seen.

4 State hyper filters of state hyper BE-algebras

In this section, we introduce state hyper filters in state hyper BE-algebras. We focus on giving the generated
representations of state hyper filters and investigating maximal (prime) state hyper filters in state hyper
BE-algebras.

Definition 4.1. Let (H, ξ) be a state hyper BE-algebra. A hyper filter F of H is said to be a state hyper
filter of (H, ξ) if x ∈ F implies ξ(x) ∈ F , for any x ∈ H.

Example 4.2. Consider the hyper BE-algebra (H, ◦1, 1) from Example 2.2. Define a map ξ : H → H,
where ξ(b) = b, ξ(a) = ξ(1) = 1, then it can be calculated that (H, ξ) is a state hyper BE-algebra, and
F = {a, 1} is a state hyper filter of (H, ξ).

Proposition 4.3. Let (H, ξ) be an s-negatively ordered state hyper BE-algebra. Then Ker(ξ) is a state
hyper filter of (H, ξ).

Proof. Clearly, 1 ∈ Ker(ξ). Let x, y ∈ H such that (x ◦ y) ∩Ker(ξ) ̸= ∅ and x ∈ Ker(ξ). Then ξ(x) = 1
and 1 ∈ ξ(x ◦ y). Hence ξ(x ◦ y) ≤ ξ(x) ◦ ξ(y) = 1 ◦ ξ(y) and so 1 ∈ 1 ◦ ξ(y), which implies 1 ≪ ξ(y). This
results in ξ(y) = 1, that is, y ∈ Ker(ξ). Therefore, Ker(ξ) is a state hyper filter of (H, ξ).

Proposition 4.4. Let (H, ξ) be an s-negatively ordered state hyper BE-algebra. If F in ξ(H) is a state
hyper filter, then ξ−1(F ) in H is also a state hyper filter.
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Proof. Clearly, 1 ∈ ξ−1(F ) from ξ(1) = 1. Let x ∈ F and (x ◦ y) ∩ F ̸= ∅. Hence ξ(x) ∈ F and
ξ(x ◦ y)∩F ̸= ∅. Since (H, ξ) is s-negatively ordered, we have ξ(x ◦ y) ≤ ξ(x) ◦ ξ(y). It follows from Lemma
2.6 that (ξ(x) ◦ ξ(y))∩F ̸= ∅ and so ξ(y) ∈ F . Therefore y ∈ ξ−1(F ), which implies that ξ−1(F ) is a hyper
filter of H. Let x ∈ ξ−1F . Then ξ(x) ∈ F . Since F is a state hyper filter, we have ξ(ξ(x)) ∈ F and so
ξ(x) ∈ ξ−1(F ). It shows that ξ−1(F ) is a state hyper filter of (H, ξ).

Let (H, ξ) be a state hyper BE-algebra and A be a nonempty subset of H. Denote by [A)s the least
state hyper filter containing A of (H, ξ), and call the state hyper filter generated by A. In particular, if
A = {a}, then we write [{a})s = [a)s. In addition, we denote by [F ∪ {a})s the generated state hyper filter
by F and a, where a ∈ H \F . In the following, we give some generated representation of state hyper filters
in state hyper BE-algebras.

Theorem 4.5. Given a state hyper BE-algebra (H, ξ) and ∅ ̸= A ⊆ H. Then, we have

[A)s = {x ∈ H : 1 ∈ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · )), for some a1 · · · , an, b1, · · · , bm ∈ A,n,m ≥ 1}.

Proof. Denote the right side by B. Firstly, B ⊆ [A)s. In fact, if x ∈ B, then there are a1 · · · , an, b1, · · · , bm ∈
A such that 1 ∈ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · )). Hence

a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · )) ∩ [A)s ̸= ∅.

Since a1 ∈ A ⊆ [A]s and [A]s is a state hyper filter of H, we have

a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · )) ∩ [A)s ̸= ∅.

Considering ξ(bi) ∈ [A]s, for all i and repeating the above process, we obtain x ∈ [A)s.

Theorem 4.6. Given an ordered state hyper BE-algebra (H, ξ) and ∅ ≠ A ⊆ H. Then, we have

[A)s = {x ∈ H : 1 ∈ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · )) for some a1 · · · , an, b1, · · · , bm ∈ A,n,m ≥ 1}.

Proof. Denote the right side by B. Firstly, B ⊆ [A)s. Next, we prove [A)s ⊆ B, namely, B is a state hyper
filter including A of H. To do this, we need have the following steps.

Step 1: 1 ∈ B and A ⊆ B, since 1 ∈ a ◦ 1 and 1 ∈ x ◦ x, for any a, x ∈ A.
Step 2: We show that B is a state hyper filter of H.
Let x ∈ B and (x◦y)∩B ̸= ∅. Then there are a1, a2, · · · , an, b1, b2, · · · , bm, c1, c2, · · · , cp, d1, d2, · · · , dq ∈

A such that

1 ∈ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1)◦ (· · · (ξ(bm)◦x) · · · )) and 1 ∈ c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1)◦ (· · · (ξ(dq)◦ (x◦y) · · · )).

Hence using (HBE2) repeatedly, we get

c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ (x ◦ y) · · · ) = x ◦ (c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ y) · · · )).

This implies 1 ∈ x ◦ (c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ y) · · · )), and so

x ≪ c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ y) · · · )).

Since H is ordered, we have

a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · ))
≤ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ (c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ y) · · · )).

It implies that

1 ∈ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ (c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ y) · · · ))
= a1 ◦ (a2 ◦ (· · · (an ◦ (c1 ◦ (c2 ◦ (· · · (cp ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ (ξ(d1) ◦ (· · · (ξ(dq) ◦ y) · · · )),

which shows y ∈ B.
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Step 3: We prove that x ∈ B implies ξ(x) ∈ B.
By x ∈ B, there are e1, e2, · · · , er, f1, · · · , ft ∈ A such that

1 ∈ e1 ◦ (e2 ◦ (· · · (en ◦ (ξ(f1) ◦ (· · · (ξ(fm) ◦ x) · · · )).

It follows from (S1),(SP2) and (SP3) that

1 ∈ ξ(e1 ◦ (e2 ◦ (· · · (en ◦ (ξ(f1) ◦ (· · · (ξ(fm) ◦ x) · · · ))
≤ ξ(e1) ◦ (ξ(e2) ◦ (· · · (ξ(en) ◦ (ξ(ξ(f1)) ◦ (· · · (ξ(ξ(fm)) ◦ ξ(x)) · · · ))
= ξ(e1) ◦ (ξ(e2) ◦ (· · · (ξ(en) ◦ (ξ(f1) ◦ (· · · (ξ(fm) ◦ ξ(x)) · · · )).

This shows 1 ∈ ξ(e1) ◦ (ξ(e2) ◦ (· · · (ξ(en) ◦ (ξ(f1) ◦ (· · · (ξ(fm) ◦ ξ(x)) · · · )) and so ξ(x) ∈ B.

Corollary 4.7. Given an ordered state hyper BE-algebra (H, ξ) and a ∈ H,

[a)s = {x ∈ H : 1 ∈ an ◦ (ξ(a)m ◦ x), n,m ≥ 1}.

Theorem 4.8. Given an ordered state hyper BE-algebra (H, ξ),

[F ∪ {a})s = {x ∈ H : an ◦ (ξ(a)m ◦ x) ∩ F ̸= ∅,m, n ≥ 1},

where F is a state hyper filter of H and a ∈ H \ F .

Proof. Set B = {x ∈ H : an ◦ (ξ(a)m ◦ x) ∩ F ̸= ∅, n,m ≥ 1}. Firstly, B ⊆ [F ∪ {a})s. If x ∈ H, then
an ◦ (ξ(a)m ◦ x)∩F ̸= ∅ and so an ◦ (ξ(a)m ◦ x)∩ [F ∪ {a})s ̸= ∅. Since a ∈ [F ∪ {a}), ξ(a) ∈ [F ∪ {a})s and
[F ∪ {a})s is a state hyper filter of H, we get x ∈ [F ∪ {a})s.

Conversely, we show [F ∪{a})s ⊆ B. By (a◦1)∩F ̸= ∅ and (a◦a)∩F ̸= ∅, we have 1 ∈ B and a ∈ B. Let
x ∈ F . It follows from x ≪ ξ(a)◦x that (ξ(a)◦x)∩F ̸= ∅. By using ξ(a)◦x ≤ ξ(a)◦(ξ(a)◦x) = ξ(a)2◦x, we
get ξ(a)2◦x∩F ̸= ∅. Repeating the above process, an◦(ξ(a)m◦x)∩F ̸= ∅, which shows x ∈ B and so F ⊆ B.
Next let x ∈ [F ∪{a}]s. Then according to Theorem 4.6, there are a1, a2, · · · , an, b1, · · · , bm ∈ F ∪{a} such
that 1 ∈ a1 ◦ (a2 ◦ (· · · (an ◦ (ξ(b1) ◦ (· · · (ξ(bm) ◦ x) · · · )).

Case 1. If there are some i, j such that ai = a, bj = a, then 1 ∈ a1 ◦ (a2 ◦ (· · · (ar ◦ (ξ(a)t ◦ x) · · · )).
Since ap, ξ(bq) ∈ F (p ̸= i, q ̸= j) and F is a state hyper filter of H, we have ar ◦ (ξ(a)t ◦ x) ∩ F ̸= ∅, which
implies x ∈ B.

Case 2. If ai, bj ̸= a for all i, j, then ai, ξ(bj) ∈ F . Since F is a state hyper filter of H, we get x ∈ F
and so x ∈ B.

A state hyper filter F of a state hyper BE-algebra (H, ξ) is said to be proper if F ̸= H. In the following,
we introduce maximal (prime) state hyper filters in state hyper BE-algebras.

Definition 4.9. Let (H, ξ) be a state hyper BE-algebra. A proper state hyper filter F is of (H, ξ) is called
• maximal provided that H = [F ∪ {a})s for any a ∈ H \ F .
• prime provided that F1 ∩F2 ⊆ F implies F1 ⊆ F or F2 ⊆ F for any state hyper filters F1, F2 of (H, ξ).

In the following, we investigate characterizations of maximal (prime) state hyper filters in a state hyper
BE-algebra.

Theorem 4.10. Let (H, ξ) be a state hyper BE-algebra and P is a proper state hyper filter of (H, ξ). Then
F is maximal if and only if M ⊆ F ⊆ H implies M = F or F = H for any state hyper filter of (H, ξ).

Proof. Assume that M is a maximal state hyper filter and F is a state hyper filter of (H, ξ) such that
M ⊆ F ⊆ H. If M ̸= F , then M ⊂ F and there exists a ∈ F but a /∈ M . Since M is maximal, we
have [M ∪ {a})s = H. Hence for any x ∈ H, x ∈ [M ∪ {a})s, that is, there is m,n ∈ N such that
an ◦ (ξ(a)m ◦ x) ∩M ̸= ∅ and thus an ◦ (ξ(a)m ◦ x) ∩ F ̸= ∅. Since a ∈ F and F is a state hyper filter of H,
we get ξ(a) ∈ F . According to the definition of the hyper filter of H, we obtain x ∈ F and so H ⊆ F . It
follows that F = H.

Conversely, assume that the condition is true and M is a proper state hyper filter of (H, ξ). Let a ∈ H\M .
If [M ∪ {a})s ̸= H, then there exists x ∈ H such that x /∈ [M ∪ {a})s. Hence M ⊆ [M ∪ {a})s ⊂ H and
thus M = [M ∪ {a})s. Therefore, a ∈ M , a contradiction. This shows that [M ∪ {a})s = H, namely, M is
a maximal state hyper filter of (H, ξ).
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Theorem 4.11. Let (H, ξ) be a state hyper BE-algebra and P be a proper state hyper filter of (H, ξ). Then
P is prime if and only if [x)s ∩ [y)s ⊆ P implies x ∈ P or y ∈ P , for all x, y ∈ H.

Proof. Assume that P is a prime state hyper filter of (H, ξ). Set [x)s ∩ [y)s ⊆ P for x, y ∈ H. Then
x ∈ [x)s ⊆ P or y ∈ [y)s ⊆ P . Conversely, if F1 and F2 are two state hyper filters of (H, ξ) such that
F1 ∩ F2 ⊆ P . Let x ∈ F1 and y ∈ F2. Then [x)s ⊆ F1 and [y)s ⊆ F2. Hence [x)s ∩ [y)s ⊆ F1 ∩ F2 ⊆ P and
so x ∈ P or y ∈ P . Therefore, F1 ⊆ P or F2 ⊆ P .

Next, we deduce some properties about maximal (prime) state hyper filters in a state hyper BE-algebra.

Proposition 4.12. Suppose that (H, ξ) is an ordered state hyper BE-algebra. If ξ−1(F ) in H and F in
ξ(H) are two state hyper filters, then ξ−1(F ) is maximal implies F is maximal.

Proof. Assume that ξ−1(F ) is a maximal state hyper filter of H. Then for any x ∈ H and a ∈ H \F , there
are n,m ≥ 1 such that an ◦ (ξ(a)m ◦ x)∩ ξ−1(F ) ̸= ∅. Hence it follows from (SP4) that there is y ∈ ξ−1(F ),
i.e., ξ(y) ∈ F such that ξ(y) ∈ ξ(an ◦ (ξ(a)m ◦ x)) ≤ ξ(a)n ◦ (ξ(ξ(a))m ◦ ξ(x)). Since ξ(y) ∈ F and F is a
state hyper filter of H, we get ξ(a)n ◦ (ξ(ξ(a))m ◦ ξ(x)) ∩ F ̸= ∅. This shows ξ(H) = [F ∪ {ξ(a)})s for any
ξ(a) ∈ ξ(H) \ ξ(F ).

Theorem 4.13. Let F be a state hyper filter of a state hyper BE-algebra (H, ξ). Then for any a, b ∈
H, [a)s ∩ [b)s ⊆ F if and only if [F ∪ {a})s ∩ [F ∪ {b})s = F .

Proof. Assume that [F ∪ {a})s ∩ [F ∪ {b})s = F . Since a ∈ [a)s and b ∈ [b)s, we have [a)s ⊆ [F ∪ {a})s and
[b)s ⊆ [F ∪ {b})s. Hence [a)s ∩ [b)s ⊆ [F ∪ {a})s ∩ [F ∪ {b})s = F .

Conversely, assume that [a)s ∩ [b)s ⊆ F for a, b ∈ H. Clearly, F ⊆ [F ∪ {a})s ∩ [F ∪ {b})s. Now,
set x ∈ [F ∪ {a})s ∩ [F ∪ {b})s. Then there are m,n, r, t ∈ N such that an ◦ (ξ(a)m ◦ x) ∩ M ̸= ∅ and
br ◦ (ξ(b)t ◦ x) ∩M ̸= ∅. Hence there exist p, q ∈ F such that p ∈ an ◦ (ξ(a)m ◦ x) and q ∈ br ◦ (ξ(b)t ◦ x).
Thus

1 ∈ p ◦ p ⊆ p ◦ (an ◦ (ξ(a)m ◦ x)) = an ◦ (ξ(a)m ◦ (p ◦ x)),

and so an ◦ (ξ(a)m ◦ (p ◦ x)) ∩ [a)s ̸= ∅. Since [a)s is a state hyper filter of H and a ∈ [a)s, we get
(p ◦ x) ∩ [a)s ̸= ∅. By the similar way, (q ◦ x) ∩ [b)s ̸= ∅. Also p ◦ x ≤ q ◦ (p ◦ x) = p ◦ (q ◦ x) and
q ◦ x ≤ p ◦ (q ◦ x). It follows from Lemma 2.6 that p ◦ (q ◦ x) ∩ [a)s ̸= ∅ and p ◦ (q ◦ x) ∩ [b)s ̸= ∅. Thus
p ◦ (q ◦ x) ∩ ([a)s ∩ [b)s) ̸= ∅, which implies F ∩ (p ◦ (q ◦ x)) ̸= ∅. Considering p, q ∈ F , we have x ∈ F . This
shows that [F ∪ {a})s ∩ [F ∪ {b})s ⊆ F .

Theorem 4.14. Let (H, ξ) be an s-negatively ordered state hyper BE-algebra with ξ(x)n+m ◦ ξ(a) ≤ xn ◦
(ξ(x)m ◦ a) for all m,n ∈ N, a, x ∈ H, and ξ(H) be a state hyper filter of H. If F in ξ(H) is a prime state
hyper filter and ξ−1(F ) ̸= H, then ξ−1(F ) in H is also a prime state hyper filter.

Proof. By Proposition 4.4, ξ−1(F ) in H is a state hyper filter. Now, let [x)s ∩ [y)s ⊆ ξ−1(F ), x, y ∈ H and
p ∈ [ξ(x))s ∩ [ξ(y))s. Then there exist m,n, r, t ∈ N such that

1 = ξ(1) ∈ ξ(x)n ◦ (ξ(ξ(x))m ◦ p) = ξ(x)n ◦ (ξ(x)m ◦ p) = ξ(x)n+m ◦ p

and
1 = ξ(1) ∈ ξ(y)r ◦ (ξ(ξ(y))t ◦ p) = ξ(y)t ◦ (ξ(y)r ◦ p) = ξ(y)t+r ◦ p.

Hence ξ(x)n+m ◦ p ∩ ξ(H) ̸= ∅. Since ξ(x) ∈ ξ(H) and ξ(H) is a hyper filter, we have p ∈ ξ(H). Thus
there is a ∈ H such that p = ξ(a) and so 1 ∈ ξ(x)n+m ◦ p = ξ(x)n+m ◦ ξ(a) ≤ xn ◦ (ξ(x)m ◦ a). It implies
that xn ◦ (ξ(x)m ◦ a) ∩ ξ−1(F ) ̸= ∅ and hence a ∈ [ξ−1(F ) ∪ {x})s. Similarly, a ∈ [ξ−1(F ) ∪ {y})s. This
shows a ∈ [ξ−1(F ) ∪ {y})s ∩ [ξ−1(F ) ∪ {y})s. Considering [x)s ∩ [y)s ⊆ ξ−1(F ) and Theorem 4.13, we get
a ∈ [ξ−1(F )∪{y})s∩[ξ−1(F )∪{y})s = ξ−1(F ). Therefore, p = ξ(a) ∈ F , which implies [ξ(x))s∩[ξ(y))s ⊆ F .
Since F in ξ(H) is a prime state hyper filter, we obtain ξ(x) ∈ F or ξ(y) ∈ F . It follows from Theorem 4.11
that ξ−1(F ) in H is a prime state hyper filter.

The following theorem delivers the relationship between maximal state hyper filters and prime state
hyper filters in a state hyper BE-algebra.
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Theorem 4.15. Every maximal state hyper filter of a state hyper BE-algebra (H, ξ) is a prime state hyper
filter.

Proof. Let M be a maximal state hyper filter of (H, ξ) and [a)s∩ [b)s ⊆ M,a, b ∈ H. Assume that a, b /∈ M ,
we have [M ∪ {a})s = H, [M ∪ {b})s = H. Hence [M ∪ {a})s ∩ [M ∪ {b})s = H. By Theorem 4.13
[a)s ∩ [b)s * M , a contradiction. Therefore a ∈ M or b ∈ M and so M is a state prime hyper filter.

5 State hyper congruences on state hyper BE-algebras

In this section, we introduce the concept of state hyper congruences on state hyper BE-algebras.
Let H be a hyper BE-algebra and F be a hyper filter of H. Denote by θF the binary relation generated

by F . Define ∆F as follows: x∆F y iff (x ◦ y) ∩ F ̸= ∅ and (y ◦ x) ∩ F ̸= ∅. If ∆F is a hyper congruence,
then we denote the quotient algebra H/∆F by H/F = {[x]F : x ∈ H}. Thus (H/F, ◦, [1]F ) is a hyper
BE-algebra, where {[1]F } is a hyper filter of H/F .

Definition 5.1. A hyper congruence θ on a hyper BE-algebra H is called compatible if for all x, y ∈ H,
there exists z ∈ H such that x ◦ yθz.

Let θ be an equivalence relation on a hyper BE-algebra H and A,B,C ⊆ H. Then AθB is defined by
aθb for all a ∈ A and b ∈ B. Thus AθB and BθC imply AθC.

Lemma 5.2. Let (H, ◦, 1) be a hyper BE-algebra and θ be an equivalence relation on H. Then the following
are equivalent:
(1) θ is a compatible hyper congruence on H;
(2) θ satisfies: xθy and uθv imply x ◦ uθy ◦ v.

Proof. (1) ⇒ (2) Assume that θ is a compatible hyper congruence on H. Let xθF y. Then (x◦a)θ(y ◦a) and
(a ◦ x)θ(a ◦ y) for all a ∈ H. Hence for all t ∈ x ◦ a, there exists s ∈ y ◦ a such that sθt and for all m ∈ y ◦ a,
there exists n ∈ x ◦ a such that mθn. On the other hand, since θ is compatible, there are u, v ∈ H such
that (x ◦ a)θu and (y ◦ a)θv. Based on the two parts, we deduce tθFuθFnθFm. Thus for all t ∈ x ◦ a and
m ∈ y ◦ a, we have tθFm. That is, (x ◦ a)θ(y ◦ a), for all a ∈ H. Similarly, we can obtain (a ◦ x)θ(a ◦ y), for
all a ∈ H. It is not difficult to see that (x ◦ u)θ(y ◦ v).

(2) ⇒ (1) Assume that the condition (2) holds. Then one can easily deduce that θ is a hyper congruence
on H. Moreover, it follows from xθx, yθy that (x ◦ y)θ(x ◦ y). This implies that there exists t ∈ x ◦ y ⊆ H
such that (x ◦ y)θt. Consequently, θ is a compatible hyper congruence on H.

Definition 5.3. Let (H, ◦, 1) be a hyper BE-algebra. For all x, y, u, v ∈ H, a hyper filter F of H is called
• ◦-reflexive if x ◦ y ∩ F ̸= ∅ implies x ◦ y ⊆ F ;
• regular if x∆F y and u∆F v imply (x ◦ u)∆F (y ◦ v);
• strong regular if x∆F y and u∆F v imply (x ◦ u)∆F (y ◦ v).

It is easy to see that, a hyper filter F of a hyper BE-algebra H is strong regular if and only if x∆F y
implies (x ◦ u)∆F (y ◦ u) and (u ◦ x)∆F (u ◦ y), for all u ∈ H.

Definition 5.4. Let (H, ξ) be a state hyper BE-algebra. A hyper congruence θ on H is said to be a state
hyper congruence on (H, ξ) if xθy implies ξ(x)θξ(y), for all x, y ∈ H.

Proposition 5.5. Let (H, ξ) be an s-negatively ordered state hyper BE-algebra and θ be a state hyper
congruence on (H, ξ). Then F is a state hyper filter on (H, ξ) if and only if F = {[x] : x ∈ F} is a state

hyper filter on (H/θ, ξ̂).

Proof. Assume that F is a state hyper filter on (H, ξ). Firstly, 1 ∈ F results in [1] ∈ F . Let [x] ∈ F and
[x]◦[y] ∩ F ̸= ∅. Then x ∈ F and there is [a] ∈ [x]◦[y] such that [a] ∈ a ∈ F , where a ∈ x ◦ y. Hence
(x ◦ y) ∩ F ̸= ∅. Since F is a hyper filter on H, we have y ∈ F and so [y] ∈ H/θ. Therefore, F is a hyper

filter on H/θ. Next let [x] ∈ F . Then x ∈ F and so ξ(x) ∈ F . Thus ξ̂([x]) = [ξ(x)] ∈ F . It shows that F is

a state hyper filter on (H/θ, ξ̂).
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Conversely, assume that F is a state hyper filter on (H/θ, ξ̂). Then [1] ∈ F implies 1 ∈ F . Let x ∈ F
and (x ◦ y) ∩ F ̸= ∅. Then [x] ∈ F and there is a ∈ x ◦ y such that a ∈ F . Hence, there is a ∈ x ◦ y such
that [a] ∈ F but [a] ∈ [x]◦[y]. It implies that that ([x]◦[y]) ∩ F ̸= ∅. Since F is a hyper filter on H/θ,
we get [y] ∈ F , which derives y ∈ F . Therefore, F is a state hyper filter on H. Now, let [x] ∈ F . Then

[ξ(x)] = ξ̂([x]) ∈ F . Hence ξ(x) ∈ F , which proves that F is a state hyper filter on (H, ξ).

Theorem 5.6. Let (H, ξ) be an s-negatively ordered state transitive hyper BE-algebra. If F is a state strong
regular ◦-reflexive hyper filter of (H, ξ), then ∆F is a state compatible hyper congruence on (H, ξ).

Proof. The reflexivity and the symmetry of ∆F are evident. Now, let x∆F y and yθF z. Then (x◦y)∩F ̸= ∅
and (y ◦x)∩F ̸= ∅. Since H is transitive, it follows from y ◦z ≤ (x◦y)◦ (x◦z) that ((x◦y)◦ (x◦z))∩F ̸= ∅.
Also, since F is ◦-reflexive, we have x ◦ y ⊆ F . Hence (x ◦ z) ∩ F ̸= ∅. Similarly, (z ◦ x) ∩ F ̸= ∅.
Consequently, x∆F z and so the transitivity holds. It shows that θF is an equivalence relation. Considering
that F is strong regular hyper filter, by Lemma 5.2 we deduce that ∆F is a compatible hyper congruence
on H. Next, let x∆F y. Then (x ◦ y) ∩ F ̸= ∅ and (y ◦ x) ∩ F ̸= ∅. Since F is state hyper filter, we get
ξ(x ◦ y) ∩ F ̸= ∅. Combining ξ(x ◦ y) ≤ ξ(x) ◦ ξ(y), it follows from Lemma 2.6 that (ξ(x) ◦ ξ(y)) ∩ F ̸= ∅.
Similarly, (ξ(y) ◦ ξ(x)) ∩ F ̸= ∅. Therefore, ξ(x)θξ(y), that is, ∆F is a state hyper congruence on (H, ξ).
Thus ∆F is a state compatible hyper congruence on (H, ξ). Combing the above arguments, we obtain ∆F

is a state compatible hyper congruence on (H, ξ).

Theorem 5.7. Let (H, ξ) be a state RD-hyper BE-algebra such that ξ(x ◦ y) ◦ ξ(y) = ξ(y ◦ x) ◦ ξ(x), for
any x, y ∈ H, and θ be a hyper congruence on H. Then θ is a state hyper congruence on (H, ξ) if and only
if 1θx implies 1θξ(x), for all x ∈ H.

Proof. The necessity is clear. Now, assume that the condition holds. Let xθy for any x, y ∈ H. Then
(x ◦ x)θ(x ◦ y) and hence 1θ(x ◦ y). Thus there exists b ∈ x ◦ y such that 1θb and for any c ∈ x ◦ y
such that cθ1. It follows from the condition that for the above b, c there exists ξ(b) ∈ ξ(x ◦ y) such that
1 ∈ ξ(b) and for any ξ(c) ∈ ξ(x ◦ y) such that 1 ∈ ξ(c). According to Definition 2.7, we get 1θξ(x ◦ y),
which shows 1 ◦ ξ(y)θξ(x ◦ y) ◦ ξ(y). That is, ξ(y)θξ(x ◦ y) ◦ ξ(y). Similarly, ξ(x)θξ(y ◦ x) ◦ ξ(x). Since
ξ(x ◦ y) ◦ ξ(y) = ξ(y ◦x) ◦ ξ(x), we obtain ξ(x)θξ(y). Therefore, θ is a state hyper congruence on (H, ξ).

Theorem 5.8. Let (H, ξ) be an s-negatively ordered state hyper BE-algebra and θ be a state congruence

on (H, ξ). Then (H/θ, ξ̂) is a state hyper BE-algebra, where the map ξ̂ : H/θ → H/θ is defined by ξ̂([x]) =
[ξ(x)].

Proof. From Theorem 2.9 (H/θ, ◦, [1]) is a hyper BE-algebra. Let [x], [y] ∈ H/θ. Then ξ̂ is well defined. In

fact, if [x] = [y], we have xθy and hence ξ(x)θξ(y). This implies [ξ(x)] = [ξ(y)], namely, ξ̂([x]) = ξ̂([y]). In

the following, it suffice to prove that ξ̂ is a state operator on H/θ.

(S1) ξ̂([1]) = [ξ(1)] = [1].

(S2) ξ̂(ξ̂[x])) = ξ̂([ξ(x)]) = [ξ(ξ(x))] = [ξ(x)].
(S3) Let [x] ≪θ [y] for any x, y ∈ H. Then [1] ∈ [x]◦[y] and so [1] ∈ {[a] : a ∈ x ◦ y}. It implies that

1 ∈ x ◦ y and thus 1 = ξ(1) ∈ ξ(x ◦ y). Since ξ(x ◦ y) ≤ ξ(x) ◦ ξ(y), from (P5) we have 1 ∈ ξ(x) ◦ ξ(y),
which shows [1] ∈ {[ξ(a)] : ξ(a) ∈ ξ(x) ◦ ξ(y)}. That is, [1] ∈ [ξ(x)]◦[ξ(y)]. Therefore [ξ(x)] ≪θ [ξ(y)] and so

ξ̂([x]) ≪θ ξ̂([y]).

(S4) ξ̂([x]◦[y]) = {ξ̂([a]) : a ∈ x ◦ y} = {[ξ(a)] : ξ(a) ∈ ξ(x ◦ y)}, and

ξ̂(([x]◦[y])◦[y])◦ξ̂([y]) = ξ̂(([x]◦[y])◦[y])◦[ξ([y])]

= {[ξ(b)] : b ∈ (x ◦ y) ◦ y}◦[ξ(y)]

= {[ξ(c)] : c ∈ ((x ◦ y) ◦ y) ◦ y}
= {[ξ(c)] : ξ(c) ∈ ξ(((x ◦ y) ◦ y) ◦ y)}.

Denote A = {[ξ(a)] : ξ(a) ∈ ξ(x ◦ y)} and B = {[ξ(c)] : ξ(c) ∈ ξ((x ◦ y) ◦ y) ◦ y)}. By (P3) x ◦ y ≤
((x ◦ y) ◦ y) ◦ y, we have ξ(x ◦ y) ≤ ξ(((x ◦ y) ◦ y) ◦ y). Since ξ(a) ≪ ξ(c), we get [ξ(a)] ≪θ [ξ(c)]. Hence for
any [ξ(a)] ∈ A and ξ(a) ∈ ξ(x ◦ y), there is [ξ(c)] ∈ B and ξ(c) ∈ ξ((x ◦ y) ◦ y) ◦ y) such that [ξ(a)] ≪θ [ξ(c)].

That is, A ≤θ B, which shows ξ̂([x]◦[y]) ≤θ ξ̂(([x]◦[y])◦[y])◦ξ̂([y]).
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(S5)

ξ̂(ξ̂([x])◦ξ̂([y])) = ξ̂([ξ(x)]◦[ξ(y)])

= {ξ̂([ξ(a)]) : ξ(a) ∈ ξ(x) ◦ ξ(y)}
= {[ξ(ξ(a))]) : ξ(a) ∈ ξ(x) ◦ ξ(y)}
= {[ξ(a)] : ξ(a) ∈ ξ(x) ◦ ξ(y)}

= [ξ(x)]◦[ξ(y)]

= ξ̂([x])◦ξ̂([y])

In the following, we deliver characterizations of state strong regular ◦-reflexive hyper filters of a state
hyper BE-algebra. To do this, we first investigate a related result.

Lemma 5.9. Let H be a transitive hyper BE-algebra and F be a hyper filter of H. Then [1]F is a hyper
filter and Ker(∆F ) = [1]F = F .

Proof. Let x ∈ Ker(∆F ) = [1]F . Then x∆F 1 and so 1 ◦ x ∩ F ̸= ∅. Since F is a hyper filter, we have
x ∈ F , which implies that Ker(∆F ) ⊆ F . On the other hand, let x ∈ F . It follows from x ∈ 1 ◦ x that
(1 ◦x)∩F ̸= ∅. This together with (x ◦ 1)∩F ̸= ∅ imply xθF 1, namely, x ∈ [1]F = Ker(θF ). Consequently,
Ker(∆F ) = [1]F = F and [1]F is hyper filter.

Theorem 5.10. Let (H, ξ) be an s-negatively ordered state transitive hyper BE-algebra such that 1◦1 = {1}.
If F is a strong regular ◦-reflexive hyper filter of H, then the following are equivalent:
(1) F is a state strong regular ◦-reflexive hyper filter of (H, ξ);
(2) There exists a state compatible hyper congruence on (H, ξ) whose kernel is F ;
(3) x, y ∈ F implies ξ(x) ◦ ξ(y) ⊆ F .

Proof. (1) ⇒ (2) Assume that F is a state strong regular ◦-reflexive hyper filter of (H, ξ). Then from Theo-
rem 5.6, ∆F is a state compatible hyper congruence on (H, ξ) and moreover from Lemma 5.9, Ker(∆F ) = F .

(2) ⇒ (3) Assume that there exists a state compatible hyper congruence θ on (H, ξ) such that F =
Ker(θ). Let x, y ∈ F . Then we have xθ1 and yθ1 thus ξ(x)θ1 and ξ(y)θ1. Hence (ξ(x) ◦ ξ(y))θ(1 ◦ 1) = {1}.
This shows that for any a ∈ ξ(x) ◦ ξ(y), aθ1, namely, a ∈ Ker(θ) = F . Therefore, ξ(x) ◦ ξ(y) ⊆ F .

(3) ⇒ (1) Assume that the condition (3) holds. Let x ∈ F . Since x, 1 ∈ F , we derive ξ(x) ∈ 1 ◦ ξ(x) =
ξ(1) ◦ ξ(x) ⊆ F and so ξ(x) ∈ F . It shows that F is a state regular ◦-reflexive hyper filter of (H, ξ).

Lemma 5.11. Let (H, ξ) be a state R-hyper BE-algebra and θ is a state compatible hyper congruence on
(H, ξ). Then Ker(θ) = [1]θ is a state strong regular ◦-reflexive hyper filter of (H, ξ).

Proof. It is clear that 1 ∈ Ker(θ). Let x ∈ Ker(θ) and (x ◦ y) ∩ Ker(θ) ̸= ∅. Then xθ1 and there exists
a ∈ x◦y such that a ∈ Ker(θ). Since xθ1, we have (x◦y)θ(1◦y) = y. Hence for the above element a ∈ x◦y,
we get aθy, namely, a ∈ [y]θ. Thus [y]θ = [1]θ, which implies y ∈ Ker(θ). Therefore, Ker(θ) is a hyper
filter of H. Now, let x ∈ Ker(θ). Then xθ1. Taking into consideration that θ is a state hyper congruence,
we deduce that ξ(x)θξ(1) and so ξ(x)θ1. Consequently ξ(x) ∈ Ker(θ), proving that Ker(θ) is a state hyper
filter of (H, ξ).

Next we prove that Ker(θ) is ◦-reflexive. Let x, y ∈ H such that (x ◦ y) ∩ Ker(θ) ̸= ∅. Then there exists
a ∈ x ◦ y such that aθ1. Since θ is compatible, we have (x ◦ y)θt for some t ∈ H. Hence aθt and so 1θt. It
shows that x ◦ y ⊆ [1]θ = Ker(θ).

Finally, we shows that Ker(θ) = [1]θ is strong regular. Let x∆Ker(θ)y. Then (x ◦ y) ∩ [1]θ ̸= ∅. Since H
is transitive, we have x ◦ y ≤ (u ◦ x) ◦ (u ◦ y) and so (u ◦ x) ◦ (u ◦ y) ∩ [1]θ ̸= ∅. It follows that there exist
m ∈ u ◦ x, n ∈ u ◦ y such that m ◦ n∩ [1]θ ̸= ∅. Considering that [1]θ is ◦-reflexive, we get that m ◦ n ⊆ [1]θ,
that is, m ◦ nθ1. On the other hand, since θ is compatible, there exist p, q ∈ H such that u ◦ xθp, u ◦ yθq.
It implies that for all s ∈ u ◦ x, r ∈ u ◦ y, sθp, rθq and hence s ◦ rθp ◦ q. Also we can see that mθp, nθq
and thus m ◦ nθp ◦ q. So we have s ◦ rθp ◦ qθm ◦ nθ1. It deduce that s ◦ rθ1 and thus s ◦ r ∩ [1]θ ̸= ∅ for all
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s ∈ u ◦x, r ∈ u ◦ y. Also, it is similar that we can get the other part r ◦ s∩ [1]θ ̸= ∅ for all s ∈ u ◦x, r ∈ u ◦ y.
This implies (u ◦ x)∆Ker(θ)(u ◦ y). Meanwhile in a similar way, we can deliver that (x ◦ v)∆Ker(θ)(y ◦ v).
Therefore, Ker(θ) = [1]θ is strong regular.

Combing the above arguments, Ker(θ) = [1]θ is a state strong regular ◦-reflexive hyper filter of (H, ξ).

Corollary 5.12. Let (H, ξ) be a state transitive R-hyper BE-algebra and θ is a state compatible hyper
congruence on (H, ξ). Then
(1) ∆Ker(θ) is a compatible hyper congruence on H;

(2) H/Ker(θ), ξ̂) is a state hyper BE-algebra, where the map ξ̂ : H/θ → H/θ is defined by ξ̂([x]Ker(θ)) =
[ξ(x)]Ker(θ).

Proof. (1) According to Lemma 5.11, we know that Ker(θ) is a state strong regular ◦-reflexive hyper filter of
(H, ξ). It suffice to prove that ∆Ker(θ) is an equivalence relation on H. In fact, the reflexivity and symmetry
of ∆Ker(θ) are obvious. Let x, y, z ∈ H such that x∆Ker(θ)y and y∆Ker(θ)z. Then (x ◦ y) ∩ Ker(θ) ̸= ∅ and
(y ◦z)∩Ker(θ) ̸= ∅. Since H is transitive, we have x◦y ≤ (y ◦z)◦ (x◦z) and so (y ◦z)◦ (x◦z)∩Ker(θ) ̸= ∅.
Considering that Ker(θ) is ◦-reflexive, it follows from x ◦ y ⊆ Ker(θ) that (x ◦ z) ∩ Ker(θ) ̸= ∅. Similarly
(z ◦ x) ∩ Ker(θ) ̸= ∅. Therefore, x∆Ker(θ)z, which implies the transitivity is true. The proof is completed.

(2) It can be seen immediately according to Theorem 5.8.

Given a state hyper BE-algebra (H, ξ), denote by Cs(H, ξ) all state compatible hyper congruence on
(H, ξ) and denote by Fs(H, ξ) all state strong regular ◦-reflexive hyper filter of (H, ξ).

Theorem 5.13. Let (H, ξ) be a state commutative transitive RD-hyper BE-algebra. Then there is an isotone
bijection between Cs(H, ξ) and Fs(H, ξ).

Proof. Define Φ : Cs(H, ξ) → Fs(H, ξ) by Φ(θ) = Ker(θ). According to Lemma 5.11, Ker(θ) is a state strong
regular ◦-reflexive hyper filter, namely, Ker(θ) ∈ Fs(H, ξ). It is obvious that the map Φ is well-defined.

Assume that θ1, θ2 ∈ Cs(H, ξ) such that Φ(θ1) = Φ(θ2). Let xθ1y, x, y ∈ H. Then (x ◦ y)θ1(y ◦ y). This
together with y ◦ y = {1} implies that (x ◦ y)θ11. Hence x ◦ y ⊆ Ker(θ1) = Ker(θ2) and so (x ◦ y)θ21. Thus
(x ◦ y) ◦ yθ21 ◦ y. Combining 1 ◦ y = {y}, we have (x ◦ y) ◦ yθ2y. In a similar, we can get (y ◦ x) ◦ xθ2x.
It follows from (x ◦ y) ◦ y = (y ◦ x) ◦ x that xθ2y. Therefore, θ1 ⊆ θ2. Similarly, θ2 ⊆ θ1. It leads to Φ is
one-to-one.

Let F be a state strong regular ◦-reflexive hyper filter of (H, ξ). Then by Theorem 5.10, ∆F is a state
compatible hyper congruence on (H, ξ) and Ker(∆F ) = F . Therefore, Φ(∆F ) = Ker(∆F ) = F . This shows
that Φ is onto.

Finally, we prove Φ is isotone. Set θ1 ⊆ θ2, for θ1, θ1 ∈ Cs(H, ξ) and x ∈ Φ(θ1) = Ker(θ1). Then
(x, 1) ∈ θ1 ⊆ θ2, which implies x ∈ Ker(θ2) = Φ(θ2). It follows that Φ(θ1) ⊆ Φ(θ2).

Combing the above arguments, we deduce that there is an isotone bijection between Cs(H, ξ) and
Fs(H, ξ).

6 Conclusions

States play an important role in studying fuzzy logics and the related algebraic structures. In this paper,
we introduce Bosbach states on hyper BE-algebras and obtain some important results. In future work, we
shall further study state theory, especially on quotient hyper BE-algebras.
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