A graph associated to a polygroup with respect to an automorphism

Document Type : Original Article


Department of Mathematics, Faculty of Science, Payame Noor University, Tehran, Iran


In this paper, we introduce and study, $\zeta^\alpha(P)$, the $\alpha$-center of a polygroup $(P, \cdot )$ with respect to an automorphism $\alpha$. Then we associate to $P$ a graph $\Gamma^\alpha_{P}$, whose vertices are elements of $P \setminus \zeta^\alpha(P)$ and $x$ connected to $y$ by an edge in case $x \cdot y \cdot \omega \neq y \cdot x^\alpha \cdot \omega $ or $y \cdot x \cdot \omega \neq x \cdot y^\alpha \cdot \omega$, where $\omega $ is the heart of $P$. We obtain some basic properties of this graph. In particular, we prove that if $\zeta^\alpha(P) \neq P$, then $dim(\Gamma^\alpha _{P})=2$. Moreover, we define a weak $\alpha$-commutative polygroup to state that if $\Gamma^\alpha_{H} \cong \Gamma^\beta_{K}$ and $H$ is a weak $\alpha$-commutative, then $ K$ is a weak $\beta $-commutative. Also, we show that if $H$ and $K$ are two polygroups such that $\Gamma^\alpha_{H} \cong \Gamma^\beta_{K}$, then for some automorphisms $\eta$ and $\lambda$, $\Gamma^\eta_{H \times A} \cong \Gamma^\lambda_{K \times B}$, where $A$ and $B$ are two weak commutative polygroups.


[1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, Journal of Algebra,
298 (2006), 468{492.
[2] R. Ameri, On categories of hypergroups and hypermodules, Journal of Discrete Mathematical
Sciences and Cryptography, 6 (2003), 121{132.
[3] R. Barzegar, A. Erfanian, Nilpotency and solubility of groups relative to an automorphism,
Caspian Journal of Mathematics Sciety, 4(2) (2015), 271{283.
[4] I. Beck, Coloring of commutative rings, Journal of Algebra, 116 (1998), 208{226.
[5] E.A. Bertram, Some applications of graph theory to  nite groups, Discrete Mathematics, 44
(1983), 31{43.
[6] P. Bonansinga, P. Corsini, Sugli omomr smi di semi-ipergruppi e di ipergruppi, Bollettino
della Unione Matematica Italiana, 6(1B) (1982), 717{727.
[7] S.D. Comer, Hyperstructures associated with character algebra and color schemes, in: New
Frontiers in Hyperstructures, Palm Harbor, (1996), 49{66.
[8] P. Corsini, Prolegomena of hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[9] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers,
Dordrecht, 2003.
[10] B. Davvaz, Polygroup theory and related systems, World Scienti c, 2013.
[11] M. Farshi, B. Davvaz, S. Mirvakili, Hypergraphs and hypergroups based on special elements,
Communications in Algebra, 42 (2014), 3395{3406.
[12] J. Jantosciak, Transposition hypergroups: Non-commutative join spaces, Journal of Algebra,
187 (1997), 97{119.
[13] F. Marty, Sur une generalization de la notion de groupe, in: 8th Congress Mathematics
Scandenaves, Stockholm, Sweden, (1934), 45{49.
[14] S. Mirvakili, H. Naraghi, Connected between reversible regular hypergroups, t-fuzzy subgroups
and t-fuzzy graphs, Journal of Algebraic Hyperstructures and Logical Algebras, 1(4) (2020),
[15] A. R. Moghaddamfar, About noncommuting graphs, Siberian Mathematical Journal, 47(5)
(2006), 911{914.
[16] J.N. Mordeson, S. Mathew, Sustainable goals in combating human tracking: Analysis by
mathematics of uncertainty, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1)
(2020), 40{59.
[17] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi, On the noncommuting graph
associated with a nite group, Siberian Mathematical Journal, 46(2) (2005), 325{332.
[18] M. Suzuki, Group theory I, Springer-verlag, New York, 1982.