Volume 2, Number 1, (2021), pp. 69-81

Commutative MBJ-neutrosophic ideals of $B C K$-algebras

Y.B. Jun ${ }^{1}$ and M. Mohseni Takallo ${ }^{2}$
${ }^{1}$ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
${ }^{2}$ Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
skywine@gmail.com, mohammad.mohseni1122@gmail.com

Abstract

The notion of commutative MBJ-neutrosophic ideal is introduced, and several properties are investigated. Relations between MBJ-neutrosophic ideal and commutative MBJ-neutrosophic ideal are considered. Characterizations of commutative MBJ-neutrosophic ideal are discussed.

Article Information

Corresponding Author:
Y.B. Jun;

Received: February 2021;
Accepted: Invited paper;
Papertype: Original.

Keywords:

MBJ-neutrosophic set, commutative MBJ-neutrosophic ideal, MBJ-neutrosophic ideal.

1 Introduction

The fuzzy set was introduced by L.A. Zadeh [21] in 1965 for dealing with uncertainties in many real applications. As a generalization of Zadeh's fuzzy set, K. Atanassov introdued the notion of intuitionistic fuzzy set (see [1]. As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is initiated by Smarandache ([16], [17] and [18]). Neutrosophic algebraic structures in $B C K / B C I$ algebras are discussed in the papers [2], [4], [5], [7], [8], [9], [14], [15], [19] and [20]. In [12], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic set, it is applied to $B C K / B C I$-algebras. Mohseni et al. [12] introduced the concept of MBJ-neutrosophic subalgebras in $B C K / B C I$-algebras, and investigated related properties. They gave a characterization of MBJ-neutrosophic subalgebra, and established a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a BCI-algebra. They considered the homomorphic
inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra. Jun and Roh [6] applied the notion of MBJ-neutrosophic sets to ideals of $B C K / B I$ algebras, and introduce the concept of MBJ-neutrosophic ideals in $B C K / B C I$-algebras. They provided a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a $B C K$-algebra, and considered conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal in a $B C K / B C I$-algebra. They discussed relations between MBJ-neutrosophic subalgebras, MBJ-neutrosophic o-subalgebras and MBJ-neutrosophic ideals. In a $B C I$-algebra, they provided conditions for an MBJ-neutrosophic ideal to be an MBJ-neutrosophic subalgebra, and considered a characterization of an MBJ-neutrosophic ideal in an (S) - $B C K$-algebra.

In this article, we introduce the notion of commutative MBJ-neutrosophic ideal, and investigate several properties. We discuss relations between MBJ-neutrosophic ideal and commutative MBJneutrosophic ideal. We provide characterizations of commutative MBJ-neutrosophic ideal.

2 Preliminaries

By a $B C I$-algebra, we mean a set X with a binary operation $*$ and a special element 0 that satisfies the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $x * y=0, y * x=0 \Rightarrow x=y$,
for all $x, y, z \in X$. If a $B C I$-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra.
Every $B C K / B C I$-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)(x * 0=x), \tag{2.1}\\
& (\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x), \tag{2.2}\\
& (\forall x, y, z \in X)((x * y) * z=(x * z) * y), \tag{2.3}\\
& (\forall x, y, z \in X)((x * z) *(y * z) \leq x * y), \tag{2.4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$.
A $B C K$-algebra X is said to be commutative if the following assertion is valid.

$$
\begin{equation*}
(\forall x, y \in X)(x *(x * y)=y *(y * x)) . \tag{2.5}
\end{equation*}
$$

A non-empty subset S of a $B C K / B C I$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a $B C K / B C I$-algebra X is called an ideal of X if it satisfies:

$$
\begin{align*}
& 0 \in I, \tag{2.6}\\
& (\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in I) . \tag{2.7}
\end{align*}
$$

A subset I of a $B C K$-algebra X is called a commutative ideal of X if it satisfies (2.6) and

$$
\begin{equation*}
(\forall x, y \in X)(\forall z \in I)((x * y) * z \in I \Rightarrow x *(y *(y * x)) \in I) . \tag{2.8}
\end{equation*}
$$

Observe that every commutative ideal is an ideal, but the converse is not true (see [10]).
By an interval number we mean a closed subinterval $\tilde{a}=\left[a^{-}, a^{+}\right]$of I, where $0 \leq a^{-} \leq a^{+} \leq 1$. Denote by $[I]$ the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in $[I]$. We also define the symbols " \succeq ", " \preceq ", " $=$ " in case of two elements in $[I]$. Consider two interval numbers $\tilde{a}_{1}:=\left[a_{1}^{-}, a_{1}^{+}\right]$ and $\tilde{a}_{2}:=\left[a_{2}^{-}, a_{2}^{+}\right]$. Then

$$
\begin{aligned}
& \operatorname{rmin}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\min \left\{a_{1}^{-}, a_{2}^{-}\right\}, \min \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \operatorname{rmax}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\max \left\{a_{1}^{-}, a_{2}^{-}\right\}, \max \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow a_{1}^{-} \geq a_{2}^{-}, a_{1}^{+} \geq a_{2}^{+},
\end{aligned}
$$

and similarly we may have $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1}=\tilde{a}_{2}$. To say $\tilde{a}_{1} \succ \tilde{a}_{2}\left(\right.$ resp. $\left.\tilde{a}_{1} \prec \tilde{a}_{2}\right)$ we mean $\tilde{a}_{1} \succeq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}\left(\operatorname{resp} . \tilde{a}_{1} \preceq \tilde{a}_{2}\right.$ and $\left.\tilde{a}_{1} \neq \tilde{a}_{2}\right)$. Let $\tilde{a}_{i} \in[I]$ where $i \in \Lambda$. We define

$$
\operatorname{rinf}_{i \in \Lambda} \tilde{a}_{i}=\left[\inf _{i \in \Lambda} a_{i}^{-}, \inf _{i \in \Lambda} a_{i}^{+}\right] \quad \text { and } \operatorname{rsup}_{i \in \Lambda} \tilde{a}_{i}=\left[\sup _{i \in \Lambda} a_{i}^{-}, \sup _{i \in \Lambda} a_{i}^{+}\right] .
$$

Let X be a non-empty set. A function $A: X \rightarrow[I]$ is called an interval-valued fuzzy set (briefly, an IVF set) in X. Let $[I]^{X}$ stand for the set of all IVF sets in X. For every $A \in[I]^{X}$ and $x \in X$, $A(x)=\left[A^{-}(x), A^{+}(x)\right]$ is called the degree of membership of an element x to A, where $A^{-}: X \rightarrow I$ and $A^{+}: X \rightarrow I$ are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote $A=\left[A^{-}, A^{+}\right]$.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [17]) is a structure of the form:

$$
A:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\},
$$

where $A_{T}: X \rightarrow[0,1]$ is a truth membership function, $A_{I}: X \rightarrow[0,1]$ is an indeterminate membership function, and $A_{F}: X \rightarrow[0,1]$ is a false membership function.

We refer the reader to the books [3, 10] for further information regarding $B C K / B C I$-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an MBJ-neutrosophic set in X (see [12]), we mean a structure of the form:

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\}
$$

where M_{A} and J_{A} are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_{A} is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ for the MBJ-neutrosophic set

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\} .
$$

Let X be a $B C K / B C I$-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an MBJ-neutrosophic ideal of X (see [6]) if it satisfies:

$$
\begin{equation*}
(\forall x \in X)\left(M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x), J_{A}(0) \leq J_{A}(x)\right) \tag{2.9}
\end{equation*}
$$

and

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}(x * y), M_{A}(y)\right\} \tag{2.10}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x * y), \tilde{B}_{A}(y)\right\} \\
J_{A}(x) \leq \max \left\{J_{A}(x * y), J_{A}(y)\right\}
\end{array}\right) .
$$

3 Commutative MBJ-neutrosophic ideals of $B C K$-algebras

In what follows, let X be a $B C K$-algebra unless otherwise specified.
Definition 3.1. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called a commutative MBJ-neutrosophic ideal of X if it satisfies (2.9) and

$$
(\forall x, y, z \in X)\left(\begin{array}{l}
M_{A}(x *(y *(y * x))) \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\} \tag{3.1}\\
\tilde{B}_{A}(x *(y *(y * x))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\} \\
J_{A}(x *(y *(y * x))) \leq \max \left\{J_{A}((x * y) * z), J_{A}(z)\right\}
\end{array}\right) .
$$

Example 3.2. Consider a BCK-algebra $X=\{0,1,2,3,4\}$ with the binary operation $*$ which is given in Table 1.

Table 1: Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	2	0
3	3	1	3	0	3
4	4	4	4	4	0

Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 2 ,

Table 2: MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.7	$[0.4,0.9]$	0.2
1	0.2	$[0.3,0.6]$	0.6
2	0.5	$[0.3,0.7]$	0.5
3	0.2	$[0.3,0.6]$	0.6
4	0.3	$[0.2,0.5]$	0.8

It is routine to verify that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of X.
We consider a relation between a commutative MBJ-neutrosophic ideal and an MBJ-neutrosophic ideal.

Theorem 3.3. Every commutative MBJ-neutrosophic ideal is an MBJ-neutrosophic ideal.

Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be a commutative MBJ-neutrosophic ideal of X. It we take $y=0$ in (3.1) and use (2.1), then

$$
\begin{gathered}
M_{A}(x)=M_{A}(x *(0 *(0 * x))) \geq \min \left\{M_{A}((x * 0) * z), M_{A}(z)\right\}=\min \left\{M_{A}(x * z), M_{A}(z)\right\}, \\
\tilde{B}_{A}(x)=\tilde{B}_{A}(x *(0 *(0 * x))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * 0) * z), \tilde{B}_{A}(z)\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}(x * z), \tilde{B}_{A}(z)\right\},
\end{gathered}
$$

and

$$
J_{A}(x)=J_{A}(x *(0 *(0 * x))) \leq \max \left\{J_{A}((x * 0) * z), J_{A}(z)\right\}=\max \left\{J_{A}(x * z), J_{A}(z)\right\}
$$

for all $x, z \in X$. Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.
The converse of Theorem 3.3 is not true as seen in the following example.
Example 3.4. Consider a BCK-algebra $X=\{0,1,2,3,4\}$ with the binary operation $*$ which is given in Table 3 .

Table 3: Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	4	4	3	0

Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 4

Table 4: MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.66	$[0.4,0.9]$	0.25
1	0.55	$[0.3,0.5]$	0.35
2	0.33	$[0.3,0.7]$	0.65
3	0.33	$[0.2,0.4]$	0.65
4	0.33	$[0.2,0.4]$	0.65

It is routine to verify that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X. Since

$$
M_{A}(2 *(3 *(3 * 2)))=M_{A}(2)=0.33 \nsupseteq 0.66=\min \left\{M_{A}((2 * 3) * 0), M_{A}(0)\right\},
$$

and/or

$$
\tilde{B}_{A}(2 *(3 *(3 * 2)))=\tilde{B}_{A}(2)=[0.3,0.7] \nsucceq[0.4,0.9]=\operatorname{rmin}\left\{\tilde{B}_{A}((2 * 3) * 0), \tilde{B}_{A}(0)\right\},
$$

we know that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is not a commutative MBJ-neutrosophic ideal of X.

We provide conditions for an MBJ-neutrosophic ideal to be a commutative MBJ-neutrosophic ideal.

Theorem 3.5. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is a commutative MBJneutrosophic ideal of X if and only if it is an MBJ-neutrosophic ideal of X satisfying the following condition.

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x *(y *(y * x))) \geq M_{A}(x * y), \tag{3.2}\\
\tilde{B}_{A}(x *(y *(y * x))) \succeq \tilde{B}_{A}(x * y), \\
J_{A}(x *(y *(y * x))) \leq J_{A}(x * y) .
\end{array}\right)
$$

Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of X. If we put $z=0$ in (3.1) and use (2.1) and (2.10), then we have (3.2).

Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of X satisfying the condition (3.2). Then

$$
\begin{aligned}
& M_{A}(x *(y *(y * x))) \geq M_{A}(x * y) \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\}, \\
& \tilde{B}_{A}(x *(y *(y * x))) \succeq \tilde{B}_{A}(x * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\}, \\
& J_{A}(x *(y *(y * x))) \leq J_{A}(x * y) \leq \max \left\{J_{A}((x * y) * z), J_{A}(z)\right\}
\end{aligned}
$$

for all $x, y, z \in X$. Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of X.

Lemma 3.6. [6] Every MBJ-neutrosophic ideal $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ of X satisfies the following assertion.

$$
x * y \leq z \Rightarrow\left\{\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}(y), M_{A}(z)\right\}, \tag{3.3}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(z)\right\}, \\
J_{A}(x) \leq \max \left\{J_{A}(y), J_{A}(z)\right\},
\end{array}\right.
$$

for all $x, y, z \in X$.
We provide a condition for an MBJ-neutrosophic ideal to be a commutative MBJ-neutrosophic ideal.

Theorem 3.7. In a commutative BCK-algebra, every MBJ-neutrosophic ideal is a commutative MBJ-neutrosophic ideal.

Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of a commutative $B C K$-algebra X. Note that

$$
\begin{aligned}
((x *(y *(y * x))) *((x * y) * z)) * z & =((x *(y *(y * x))) * z) *((x * y) * z) \\
& \leq(x *(y *(y * x))) *(x * y) \\
& =(x *(x * y)) *(y *(y * x))=0,
\end{aligned}
$$

that is, $(x *(y *(y * x))) *((x * y) * z) \leq z$ for all $x, y, z \in X$. By Lemma 3.6 we have

$$
\begin{aligned}
& M_{A}(x *(y *(y * x))) \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\}, \\
& \tilde{B}_{A}(x *(y *(y * x))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\}, \\
& J_{A}(x *(y *(y * x))) \leq \max \left\{J_{A}((x * y) * z), J_{A}(z)\right\} .
\end{aligned}
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of X.

Given an MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X, we consider the following sets.

$$
\begin{aligned}
& U\left(M_{A} ; \alpha\right):=\left\{x \in X \mid M_{A}(x) \geq \alpha\right\}, \\
& U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right):=\left\{x \in X \mid \tilde{B}_{A}(x) \succeq\left[\delta_{1}, \delta_{2}\right]\right\}, \\
& L\left(J_{A} ; \beta\right):=\left\{x \in X \mid J_{A}(x) \leq \beta\right\},
\end{aligned}
$$

where $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$.
Theorem 3.8. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is a commutative MBJneutrosophic ideal of X if and only if the non-empty sets $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are commutative ideals of X for all $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$.

Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be a commutative MBJ-neutrosophic ideal of X. Let $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$ be such that $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are non-empty. Obviously, $0 \in U\left(M_{A} ; \alpha\right) \cap U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right) \cap L\left(J_{A} ; \beta\right)$. For any $x, y, z, a, b, c, u, v, w \in X$, if $(x * y) * z \in U\left(M_{A} ; \alpha\right)$, $z \in U\left(M_{A} ; \alpha\right),(a * b) * c \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right), c \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right),(u * v) * w \in L\left(J_{A} ; \beta\right)$ and $w \in L\left(J_{A} ; \beta\right)$, then

$$
\begin{aligned}
& M_{A}(x *(y *(y * x))) \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\} \geq \min \{\alpha, \alpha\}=\alpha, \\
& \tilde{B}_{A}(a *(b *(b * a))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((a * b) * c), \tilde{B}_{A}(c)\right\} \succeq \operatorname{rmin}\left\{\left[\delta_{1}, \delta_{2}\right],\left[\delta_{1}, \delta_{2}\right]\right\}=\left[\delta_{1}, \delta_{2}\right], \\
& J_{A}(u *(v *(v * u))) \leq \max \left\{J_{A}((u * v) * w), J_{A}(w)\right\} \leq \min \{\beta, \beta\}=\beta,
\end{aligned}
$$

and so $x *(y *(y * z)) \in U\left(M_{A} ; \alpha\right), a *(b *(b * a)) \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $u *(v *(v * u)) \in L\left(J_{A} ; \beta\right)$. Therefore $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are commutative ideals of X.

Conversely, assume that the non-empty sets $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are commutative ideals of X for all $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$. Assume that $M_{A}(0)<M_{A}(a), \tilde{B}_{A}(0) \prec$ $\tilde{B}_{A}(a)$ and $J_{A}(0)>J_{A}(a)$ for some $a \in X$. Then $0 \notin U\left(M_{A} ; M_{A}(a)\right) \cap U\left(\tilde{B}_{A} ; \tilde{B}_{A}(a)\right) \cap L\left(J_{A} ; J_{A}(a)\right.$, which is a contradiction. Hence $M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x)$ and $J_{A}(0) \leq J_{A}(x)$ for all $x \in X$. If

$$
M_{A}\left(a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right)\right)<\min \left\{M_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), M_{A}\left(c_{0}\right)\right\}
$$

for some $a_{0}, b_{0}, c_{0} \in X$, then $\left(a_{0} * b_{0}\right) * c_{0} \in U\left(M_{A} ; t_{0}\right)$ and $c_{0} \in U\left(M_{A} ; t_{0}\right)$ but $a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right) \notin$ $U\left(M_{A} ; t_{0}\right)$ for $t_{0}:=\min \left\{M_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), M_{A}\left(c_{0}\right)\right\}$. This is a contradiction, and thus

$$
M_{A}(a *(b *(b * a))) \geq \min \left\{M_{A}((a * b) * c), M_{A}(c)\right\},
$$

for all $a, b, c \in X$. Similarly, we can show that $J_{A}(a *(b *(b * a))) \leq \max \left\{J_{A}((a * b) * c), J_{A}(c)\right\}$ for all $a, b, c \in X$. Suppose that $\tilde{B}_{A}\left(a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right)\right) \prec \operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), \tilde{B}_{A}\left(c_{0}\right)\right\}$ for some $a_{0}, b_{0}, c_{0} \in X$. Let $\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right)=\left[\lambda_{1}, \lambda_{2}\right], \tilde{B}_{A}\left(c_{0}\right)=\left[\lambda_{3}, \lambda_{4}\right]$ and $\tilde{B}_{A}\left(a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right)\right)=\left[\delta_{1}, \delta_{2}\right]$. Then

$$
\left[\delta_{1}, \delta_{2}\right] \prec \operatorname{rmin}\left\{\left[\lambda_{1}, \lambda_{2}\right],\left[\lambda_{3}, \lambda_{4}\right]\right\}=\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right],
$$

and so $\delta_{1}<\min \left\{\lambda_{1}, \lambda_{3}\right\}$ and $\delta_{2}<\min \left\{\lambda_{2}, \lambda_{4}\right\}$. Taking

$$
\left[\gamma_{1}, \gamma_{2}\right]:=\frac{1}{2}\left(\tilde{B}_{A}\left(a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right)\right)+\operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), \tilde{B}_{A}\left(c_{0}\right)\right\}\right)
$$

implies that

$$
\left[\gamma_{1}, \gamma_{2}\right]=\frac{1}{2}\left(\left[\delta_{1}, \delta_{2}\right]+\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right]\right)=\left[\frac{1}{2}\left(\delta_{1}+\min \left\{\lambda_{1}, \lambda_{3}\right\}\right), \frac{1}{2}\left(\delta_{2}+\min \left\{\lambda_{2}, \lambda_{4}\right\}\right)\right] .
$$

It follows that

$$
\min \left\{\lambda_{1}, \lambda_{3}\right\}>\gamma_{1}=\frac{1}{2}\left(\delta_{1}+\min \left\{\lambda_{1}, \lambda_{3}\right\}\right)>\delta_{1},
$$

and

$$
\min \left\{\lambda_{2}, \lambda_{4}\right\}>\gamma_{2}=\frac{1}{2}\left(\delta_{2}+\min \left\{\lambda_{2}, \lambda_{4}\right\}\right)>\delta_{2} .
$$

Hence $\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right] \succ\left[\delta_{1}, \delta_{2}\right]=\tilde{B}_{A}\left(a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right)\right.$), and therefore $a_{0} *\left(b_{0} *\left(b_{0} * a_{0}\right)\right) \notin U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)$. On the other hand,

$$
\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right)=\left[\lambda_{1}, \lambda_{2}\right] \succeq\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right],
$$

and

$$
\tilde{B}_{A}\left(c_{0}\right)=\left[\lambda_{3}, \lambda_{4}\right] \succeq\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right],
$$

that is, $\left(a_{0} * b_{0}\right) * c_{0}, c_{0} \in U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)$. This is a contradiction, and therefore

$$
\tilde{B}_{A}(x *(y *(y * x))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\}
$$

for all $x, y, z \in X$. Consequently $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of X.

Theorem 3.9. Every commutative ideal can be realized as level neutrosophic commutative ideals of some commutative MBJ-neutrosophic ideal of X.

Proof. Given a commutative ideal C of X, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by

$$
M_{A}(x)=\left\{\begin{array}{ll}
\alpha & \text { if } x \in C, \\
0 & \text { otherwise },
\end{array} \quad \tilde{B}_{A}(x)=\left\{\begin{array}{ll}
{\left[\delta_{1}, \delta_{2}\right]} & \text { if } x \in C, \\
{[0,0]} & \text { otherwise },
\end{array} \quad J_{A}(x)= \begin{cases}\beta & \text { if } x \in C \\
1 & \text { otherwise }\end{cases}\right.\right.
$$

where $\alpha, \delta_{1}, \delta_{2} \in(0,1]$ and $\beta \in[0,1)$. Let $x, y, z \in X$. If $(x * y) * z \in C$ and $z \in C$, then $x *(y *(y * x)) \in C$. Thus

$$
\begin{aligned}
& M_{A}(x *(y *(y * x)))=\alpha=\min \left\{M_{A}((x * y) * z), M_{A}(z)\right\}, \\
& \tilde{B}_{A}(x *(y *(y * x)))=\left[\delta_{1}, \delta_{2}\right]=\operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\}, \\
& J_{A}(x *(y *(y * x)))=\beta=\max \left\{J_{A}((x * y) * z), J_{A}(z)\right\} .
\end{aligned}
$$

Assume that $(x * y) * z \notin C$ and $z \notin C$. Then $M_{A}((x * y) * z)=0, M_{A}(z)=0, \tilde{B}_{A}((x * y) * z)=[0,0]$, $\tilde{B}_{A}(z)=[0,0]$, and $J_{A}((x * y) * z)=1, J_{A}(z)=1$. It follows that

$$
\begin{aligned}
& M_{A}(x *(y *(y * x))) \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\}, \\
& \tilde{B}_{A}(x *(y *(y * x))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\}, \\
& J_{A}(x *(y *(y * x))) \leq \max \left\{J_{A}((x * y) * z), J_{A}(z)\right\} .
\end{aligned}
$$

If exactly one of $(x * y) * z$ and z belongs to C, then exactly one of $M_{A}((x * y) * z)$ and $M_{A}(z)$ is equal to 0 ; exactly one of $\tilde{B}_{A}((x * y) * z)$ and $\tilde{B}_{A}(z)$ is equal to $[0,0]$; exactly one of $J_{A}((x * y) * z)$ and $J_{A}(z)$ is equal to 1 . Hence

$$
\begin{aligned}
& M_{A}(x *(y *(y * x))) \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\}, \\
& \tilde{B}_{A}(x *(y *(y * x))) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\}, \\
& J_{A}(x *(y *(y * x))) \leq \max \left\{J_{A}((x * y) * z), J_{A}(z)\right\} .
\end{aligned}
$$

It is clear that $M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x)$, and $J_{A}(0) \leq J_{A}(x)$ for all $x \in X$. Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of X. Obviously, $U\left(M_{A} ; \alpha\right)=C$, $U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)=C$ and $L\left(J_{A} ; \beta\right)=C$. This completes the proof.

A mapping $f: X \rightarrow Y$ of $B C K / B C I$-algebras is called a homomorphism ([10]) if $f(x * y)=$ $f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a homomorphism, then $f(0)=0$. Let $f: X \rightarrow Y$ be a homomorphism of $B C K / B C I$-algebras. For any MBJ-neutrosophic set $A=\left(M_{A}\right.$, $\left.\tilde{B}_{A}, J_{A}\right)$ in Y, we define a new MBJ-neutrosophic set $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ in X, which is called the induced MBJ-neutrosophic set, by

$$
(\forall x \in X)\left(\begin{array}{l}
M_{A}^{f}(x)=M_{A}(f(x)) \tag{3.4}\\
\tilde{B}_{A}^{f}(x)=\tilde{B}_{A}(f(x)) \\
J_{A}^{f}(x)=J_{A}(f(x))
\end{array}\right)
$$

Lemma 3.10. Let $f: X \rightarrow Y$ be a homomorphism of $B C K / B C I$-algebras. If an MBJ-neutrosophic set $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in Y is an MBJ-neutrosophic ideal of Y, then the induced MBJ-neutrosophic set $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ in X is an $M B J$-neutrosophic ideal of X.

Proof. For any $x \in X$, we have

$$
\begin{aligned}
& M_{A}^{f}(0)=M_{A}(f(0))=M_{A}(0) \geq M_{A}(f(x))=M_{A}^{f}(x) \\
& \tilde{B}_{A}^{f}(0)=\tilde{B}_{A}(f(0))=\tilde{B}_{A}(0) \succeq \tilde{B}_{A}(f(x))=\tilde{B}_{A}^{f}(x) \\
& J_{A}^{f}(0)=J_{A}(f(0))=J_{A}(0) \leq J_{A}(f(x))=J_{A}^{f}(x)
\end{aligned}
$$

Let $x, y \in X$. Then

$$
\begin{aligned}
M_{A}^{f}(x) & =M_{A}(f(x)) \geq \min \left\{M_{A}(f(x) * f(y)), M_{A}(f(y))\right\} \\
& =\min \left\{M_{A}(f(x * y)), M_{A}(f(y))\right\} \\
& =\min \left\{M_{A}^{f}(x * y), M_{A}^{f}(y)\right\} \\
\tilde{B}_{A}^{f}(x) & =\tilde{B}_{A}(f(x)) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(f(x) * f(y)), \tilde{B}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(f(x * y)), \tilde{B}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}^{f}(x * y), \tilde{B}_{A}^{f}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}^{f}(x) & =J_{A}(f(x)) \leq \max \left\{J_{A}(f(x) * f(y)), J_{A}(f(y))\right\} \\
& =\max \left\{J_{A}(f(x * y)), J_{A}(f(y))\right\} \\
& =\max \left\{J_{A}^{f}(x * y), J_{A}^{f}(y)\right\}
\end{aligned}
$$

Therefore $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ is an MBJ-neutrosophic ideal of X.
Theorem 3.11. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. If an MBJ-neutrosophic set $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in Y is a commutative MBJ-neutrosophic ideal of Y, then the induced MBJ-neutrosophic set $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ in X is a commutative MBJ-neutrosophic ideal of X.

Proof. Assume that $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of Y. Then $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of Y by Theorem 3.3, and so $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}\right.$, $\left.J_{A}^{f}\right)$ is an MBJ-neutrosophic ideal of Y by Lemma 3.10. For any $x, y \in X$, we have

$$
\begin{aligned}
M_{A}^{f}(x *(y *(y * x))) & =M_{A}(f(x *(y *(y * x)))) \\
& =M_{A}(f(x) *(f(y) *(f(y) * f(x)))) \\
& \geq M_{A}(f(x) * f(y)) \\
& =M_{A}(f(x * y))=M_{A}^{f}(x * y), \\
\tilde{B}_{A}^{f}(x *(y *(y * x))) & =\tilde{B}_{A}(f(x *(y *(y * x)))) \\
& =\tilde{B}_{A}(f(x) *(f(y) *(f(y) * f(x)))) \\
& \succeq \tilde{B}_{A}(f(x) * f(y)) \\
& =\tilde{B}_{A}(f(x * y))=\tilde{B}_{A}^{f}(x * y),
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}^{f}(x *(y *(y * x))) & =J_{A}(f(x *(y *(y * x)))) \\
& =J_{A}(f(x) *(f(y) *(f(y) * f(x)))) \\
& \leq J_{A}(f(x) * f(y)) \\
& =J_{A}(f(x * y))=J_{A}^{f}(x * y) .
\end{aligned}
$$

Therefore $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ is a commutative MBJ-neutrosophic ideal of X by Theorem 3.5.
Lemma 3.12. Let $f: X \rightarrow Y$ be an onto homomorphism of $B C K / B C I$-algebras and let $A=\left(M_{A}\right.$, $\left.\tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in Y. If the induced MBJ-neutrosophic set $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}\right.$, $\left.J_{A}^{f}\right)$ in X is an MBJ-neutrosophic ideal of X, then $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of Y.
Proof. Suppose that the induced MBJ-neutrosophic set $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ in X is an MBJneutrosophic ideal of X. For any $a \in Y$, there exists $x \in X$ such that $f(x)=a$. Thus

$$
\begin{gathered}
M_{A}(0)=M_{A}(f(0))=M_{A}^{f}(0) \geq M_{A}^{f}(x)=M_{A}(f(x))=M_{A}(a), \\
\tilde{B}_{A}(0)=\tilde{B}_{A}(f(0))=\tilde{B}_{A}^{f}(0) \succeq \tilde{B}_{A}^{f}(x)=\tilde{B}_{A}(f(x))=\tilde{B}_{A}(a),
\end{gathered}
$$

and

$$
J_{A}(0)=J_{A}(f(0))=J_{A}^{f}(0) \leq J_{A}^{f}(x)=J_{A}(f(x))=J_{A}(a) .
$$

Let $a, b \in Y$. Then $f(x)=a$ and $f(y)=b$ for some $x, y \in X$. Hence

$$
\begin{aligned}
M_{A}(a) & =M_{A}(f(x))=M_{A}^{f}(x) \geq \min \left\{M_{A}^{f}(x * y), M_{A}^{f}(y)\right\} \\
& =\min \left\{M_{A}(f(x * y)), M_{A}(f(y))\right\} \\
& =\min \left\{M_{A}(f(x) * f(y)), M_{A}(f(y))\right\} \\
& =\min \left\{M_{A}(a * b), M_{A}(b)\right\},
\end{aligned}
$$

$$
\begin{aligned}
\tilde{B}_{A}(a) & =\tilde{B}_{A}(f(x))=\tilde{B}_{A}^{f}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}^{f}(x * y), \tilde{B}_{A}^{f}(y)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(f(x * y)), \tilde{B}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(f(x) * f(y)), \tilde{B}_{A}(f(y))\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(a * b), \tilde{B}_{A}(b)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(a) & =J_{A}(f(x))=J_{A}^{f}(x) \leq \max \left\{J_{A}^{f}(x * y), J_{A}^{f}(y)\right\} \\
& =\max \left\{J_{A}(f(x * y)), J_{A}(f(y))\right\} \\
& =\max \left\{J_{A}(f(x) * f(y)), J_{A}(f(y))\right\} \\
& =\max \left\{J_{A}(a * b), J_{A}(b)\right\} .
\end{aligned}
$$

Therefore $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of Y.
Theorem 3.13. Let $f: X \rightarrow Y$ be an onto homomorphism of $B C K$-algebras and let $A=\left(M_{A}\right.$, $\left.\tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in Y. If the induced MBJ-neutrosophic set $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}\right.$, $\left.J_{A}^{f}\right)$ in X is a commutative MBJ-neutrosophic ideal of X, then $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of Y.

Proof. Suppose that $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ is a commutative MBJ-neutrosophic ideal of X. Then $A^{f}=\left(M_{A}^{f}, \tilde{B}_{A}^{f}, J_{A}^{f}\right)$ is an MBJ-neutrosophic ideal of X by Theorem 3.3, and thus $A=\left(M_{A}, \tilde{B}_{A}\right.$, J_{A}) is an MBJ-neutrosophic ideal of Y by Lemma 3.12. For any $a, b, c \in Y$, there exist $x, y, z \in X$ such that $f(x)=a, f(y)=b$ and $f(z)=c$. It follows that

$$
\begin{aligned}
M_{A}(a *(b *(b * a))) & =M_{A}(f(x) *(f(y) *(f(y) * f(x))))=M_{A}(f(x *(y *(y * x)))) \\
& =M_{A}^{f}(x *(y *(y * x))) \geq M_{A}^{f}(x * y) \\
& =M_{A}(f(x) * f(y))=M_{A}(a * b), \\
\tilde{B}_{A}(a *(b *(b * a))) & =\tilde{B}_{A}(f(x) *(f(y) *(f(y) * f(x))))=\tilde{B}_{A}(f(x *(y *(y * x)))) \\
& =\tilde{B}_{A}^{f}(x *(y *(y * x))) \succeq \tilde{B}_{A}^{f}(x * y) \\
& =\tilde{B}_{A}(f(x) * f(y))=\tilde{B}_{A}(a * b),
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(a *(b *(b * a))) & =J_{A}(f(x) *(f(y) *(f(y) * f(x))))=J_{A}(f(x *(y *(y * x)))) \\
& =J_{A}^{f}(x *(y *(y * x))) \leq J_{A}^{f}(x * y) \\
& =J_{A}(f(x) * f(y))=J_{A}(a * b) .
\end{aligned}
$$

It follows from Theorem 3.5 that $A=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a commutative MBJ-neutrosophic ideal of Y.

Conclusion

We have introduced the concept of commutative MBJ-neutrosophic ideal, and have investigated several properties. We have considered relations between MBJ-neutrosophic ideal and commutative

MBJ-neutrosophic ideal, and have provided characterizations of commutative MBJ-neutrosophic ideal. Using the homomorphism of $B C K$-algebras, we have shown that the induced MBJ-neutrosophic set of a commutative MBJ-neutrosophic ideal is also a commutative MBJ-neutrosophic ideal. We also have shown that if the induced MBJ-neutrosophic set of an MBJ-neutrosophic is a commutative MBJ-neutrosophic ideal, then the original MBJ-neutrosophic is also a commutative MBJneutrosophic ideal.

References

[1] K. Atanassov, Intutionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.
[2] R.A. Borzooei, F. Smarandache, Y.B. Jun, Positive implicative generalized neutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, (in press).
[3] Y.S. Huang, BCI-algebra, Beijing: Science Press, 2006.
[4] Y.B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 75-86.
[5] Y.B. Jun, S.J. Kim, F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 7 (2018), 23.
[6] Y.B. Jun, E.H. Roh, MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Mathematics, (submitted).
[7] Y.B. Jun, F. Smarandache, H. Bordbar, Neutrosophic \mathcal{N}-structures applied to BCK/BCIalgebras, Information, 8 (2017), 128.
[8] Y.B. Jun, F. Smarandache, S.Z. Song, M. Khan, Neutrosophic positive implicative \mathcal{N}-ideals in BCK/BCI-algebras, Axioms, 7 (2018), 3.
[9] M. Khan, S. Anis, F. Smarandache, Y.B. Jun, Neutrosophic \mathcal{N}-structures and their applications in semigroups, Annals of Fuzzy Mathematics and Informatics, 14(6) (2017), 583-598.
[10] J. Meng, Y.B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
[11] M. Mohseni Takallo, M. Aaly Kologani, MBJ-neutrosophic filters of equality algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(2) (2020), 57-75.
[12] M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Systems, (in press).
[13] M. Mohseni Takallo, Y.B. Jun, Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1) (2020), 95-105.
[14] M.A. Öztürk, Y.B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, Journal of International Mathematical Virtual Institute, 8 (2018), 1-17.
[15] A.B. Saeid, Y.B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 87-97.
[16] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information and Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBookneutrosophic s6.pdf (last edition online).
[17] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probabilFy, set and logic, Rehoboth: American Research Press, 1999.
[18] F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24(5) (2005), 287-297.
[19] S.Z. Song, M. Khan, F. Smarandache, Y.B. Jun, A novel extension of neutrosophic sets and Fs application in BCK/BI-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU (2018), 308-326.
[20] S.Z. Song, F. Smarandache, Y.B. Jun, Neutrosophic commutative \mathcal{N}-ideals in BCK-algebras, Information, 8 (2017), 130.
[21] L.A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.

