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Abstract

In this paper, we introduce the notion of hyper BI-
algebra and investigate some properties of it. Also, we
state and prove some theorems which determine the rela-
tionship among R/C/D/T and V-hyper BI-algebras un-
der some conditions. Then we study the relation among
hyper BI-algebra with some of other hyper logical alge-
bras such as hyper BCI/BCK/K/B/BCC-algebras and
show that under which condition these hyper structures
coincide. In addition, we define hyper subalgebra and
(weak) ideal of a hyper BI-algebra and obtain some re-
sults and the relation between them. Finally, we con-
struct the quotient structure of hyper BI-algebra and ex-
amine the isomorphism theorems.
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A Title

1 Introduction

The notion of BCK-algebra and BCI-algebra were introduced by Imai and Iseki, in [11], as two
classes of abstract algebras. It is known that the class of BCK-algebras is a proper subclass of the
BCI-algebras.

Iseki posed an interesting problem (solved by Wronski in [26]) whether the class of BCK-
algebras is a variety. In connection with this problem Komori introduced a notion of BCC-algebra
which is a generalization of a BCK-algebra and proved that the class of all BCC-algebras is not a
variety, but the variety generated by BCC-algebras is finitely based [9], [17], [18].

The notion of B-algebras was introduced by Neggers and Kim in 2002. They showed that
the B-algebra is equivalent in some senses to a group [21], [22]. Many researchers generalized
B-algebras and introduced new notions as: D-algebras, BM/BG/BO/BN/BP/BF-algebras and so
on. For more details, the reader can study references [2] [13], [14], [15], [16], [20] and [25].

Borumand Saeid et al. introduced a new algebra, called BI-algebra [3]. These algebras are
interesting and important in that they are an extension of both a/an (dual) implication algebra
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and an implicative BCK-algebra. Recently, in [23], the concepts of a Neutro-BI-algebra and Anti-
BI-algebra are introduced, and some related properties are investigated. Also, was shown that the
class of Neutro-BI-algebra is an alternative of the class of BI-algebras. The study of hyperstruc-
tures, started in 1934 by Marty,s paper at the 8th Congress of Scandinavian Mathematicians [19]
where hypergroups were introduced. Since then, many researchers have worked on and developed
hyperstructure theory from the theoretical point of view and for their applications to many sub-
jects of pure and applied mathematics. There are extensive applications in many branches such
as Euclidian and non-Euclidian geometries, graphs and hyper-graphs, binary relations, lattices,
fuzzy and rough sets, automata, cryptography, codes, probabilities, information sciences and so
on. Some interesting applications of hyper structures can be found in the book [8].

In [12], Jun et al. applied the hyper structures to BCK-algebras, and introduced the concept
of a hyper BCK-algebra which is a generalization of a BCK-algebra and investigated some related
properties. Borzooei et al. introduced and studied hyper K-algebras [6]. Further in (2006), Xin
initiated the concept of hyper BCI-algebras which is basically a generalization of hyper BCK-
algebras, and he proved that every hyper BCK-algebra is a hyper BCI-algebra [27].

Borzooei, Dudek and Kouhestani, have introduced the concept of hyper BCC-algebra as a
common generalization of BCC-algebras and hyper BCK-algebras. In particular, they have in-
vestigated different types of hyper BCC-ideals and have described the relationship among them
[5].

Endam et al. applied the concept of hyperstructure to B-algebras and proved that hyper
B-algebra is a natural extension of B-algebra and presented some basic properties. Their study
characterized the closed and invertible subhyper B-algebras [10]. A. L. O. Vicedo and J. P. Vilela
[24] introduced the notions of (weak, strong) hyper B-ideals and investigated the relationship
among these hyper B-ideals. Moreover, they studied relations between hyper B-ideals and subhyper
B-algebras and some relations between hyper B-algebras and hypergroups.

This paper is organized as: In Section 2, we provide some definitions and preliminary conclu-
sions about BI-algebras and some other algebras which will be used in next sections. In Section
3, we introduce the notion of hyper BI-algebra and investigate some properties of it. Finally, in
Section 4, we study the relation among hyper BI-algebra with some of other hyper logical algebras
and show that under which condition these hyper structures coincide.

2 Preliminaries

In this section, we recollect some definitions and results which will be used in the next sections.

Definition 2.1. [1] A groupoid (X; ∗) is called an implication algebra if for all x, y, z ∈ X, it
satisfies the following identities:
(I1) (x ∗ y) ∗ x = x,
(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x,
(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Definition 2.2. [7] Let (X; ∗) be an implication algebra and for any x, y ∈ X, define a binary
operation ” ◦ ” on X by, x ◦ y = y ∗ x. Then (X, ◦) is called a dual implication algebra and for all
x, y, z ∈ X, it satisfies the following axioms:
(DI1) x ◦ (y ◦ x) = x,
(DI2) x ◦ (x ◦ y) = y ◦ (y ◦ x),
(DI3) (z ◦ y) ◦ x = (z ◦ x) ◦ y.
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Chen and Olivia in [7] proved that in any implication algebra (X; ∗) for all x, y ∈ X, the
identity x ∗ x = y ∗ y holds which is denoted by the constant 0. BI-algebra is a generalization of
the notion of dual implication algebra.

Definition 2.3. [3] An algebraic structure (X; ∗, 0) of type (2, 0) is called BI-algebra if for all
x, y ∈ X, it satisfies the following conditions:
(BI1) x ∗ x = 0,
(BI2) x ∗ (y ∗ x) = x.

Let (X; ∗, 0) be a BI-algebra. For any x, y ∈ X, define the relation ≤ on X by x ≤ y if and
only if x ∗ y = 0. Notice that (X,≤) is not a poset and the relation ≤ is only reflexive.

Proposition 2.4. [3] Let (X, ∗, 0) be a BI-algebra. Then for any x, y ∈ X, the following conditions
hold:
(i) x ∗ 0 = x,
(ii) 0 ∗ x = 0,
(iii) x ∗ y = (x ∗ y) ∗ y.

Proposition 2.5. [3] (i) Every implicative BCK-algebra is a BI-algebra.
(ii) Any dual implication algebra is a BI-algebra.

Definition 2.6. [8] A hyperoperation on a non-empty set H is a map ◦ : H ×H → P ∗(H), where
P ∗(H) is the set of all the non-empty subsets of H. Moreover, H with a hyperoperation is called a
hypergroupoid. An element a ∈ H is called scalar if |a� x| = 1, for any x ∈ H. In this definition,
if A and B are two non-empty subsets of H, then we define A ◦B, a ◦B and A ◦ b as follows, for
any a ∈ A and b ∈ B:

A ◦B =
⋃

a∈A,b∈B
(a ◦ b), a ◦B = {a} ◦B and A ◦ b = A ◦ {b}.

3 Hyper BI-algebras

In this section, we introduce the notion of hyper BI-algebra and investigate some properties of
it. Then we show that any hyper BI-algebra of order n can be extend to a hyper BI-algebra of
order n + 1. In addition, we construct a hyper BI-algebra by two (hyper) BI-algebras. Also, we
present some special types of hyper BI-algebras and investigate relation of between them. Finally,
we introduce and study the notion of (strong) hyper subalgebra of a hyper BI-algebra and check
them under BI-homomorphism.

Definition 3.1. Let H be a non-empty set endowed with a hyper operation ”◦”. Then (H, ◦, 0) is
called a hyper BI-algebra if for any x, y ∈ H, the following conditions hold:
(HBI1) x ≤ x,
(HBI2) x ∈ x ◦ (y ◦ x).

Where x ≤ y if 0 ∈ x ◦ y. For any A,B ⊆ H, we define A� B if and only if there exist a ∈ A
and b ∈ B such that a ≤ b. We denote A� {y} ({x} � B) by A� y (x� B).

Example 3.2. Let H = {0, a, b, c}. Define the hyper operation ”◦” on H as the following table:

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0,a} {a,c} {a,b}
b {b} {b,c} {0,c} {b,c}
c {c} {b,c} {b,c} {0,b}
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Then we can see that (H; ◦, 0) is a hyper BI-algebra.

Note. In the following proposition, we study the relation between BI-algebra and hyper BI-
algebra

Proposition 3.3. (i) Let (H, ?, 0) be a BI-algebra. Define the hyper operation x ◦ y := {x ? y},
then (H, ◦, 0) is a hyper BI-algebra.
(ii) If (H, ◦, 0) is a hyper BI-algebra such that, for all x, y ∈ H, |x ◦ y| = 1, then (H, ◦, 0) is a
BI-algebra.

Proof. (i) By (B1), x ◦ x = {x ? x} = {0}, then x ≤ x. Also, since x ◦ (y ◦ x) = {x ? (y ? x)} = {x},
we get that x ∈ x ◦ (y ◦ x).
(ii) Since x ≤ x, we get 0 ∈ x ◦ x. In addition, from |x ◦ x| = 1, we have x ◦ x = {0}. Also, since
x ∈ x ◦ (y ◦x) and |x ◦ (y ◦x)| = 1, we get x ◦ (y ◦x) = {x}. Therefore (H, ◦, 0) is a BI-algebra.

Note. The above proposition shows that any hyper BI-algebra is a generalization of BI-algebra.

Proposition 3.4. Let (H, ◦, 0) be a hyper BI-algebra. Then for all x, y ∈ H and non-empty subsets
A,B,C of H the following statements hold:
(i) A� A.
(ii) A ∩B 6= ∅ implies A� B and B � A.
(iii) A ⊆ B and A� C imply B � C, specially A� x, A ⊆ B imply B ≤ x.
(iv) A� B and B ⊆ C imply A� C.
(v) 0 ∈ 0 ◦ (x ◦ 0).
(vi) 0� x ◦ 0.
(vii) x ∈ x ◦ (A ◦ x).
(viii) x� x ◦ (y ◦ x)� x.
(ix) x� x ◦ (A ◦ x)� x.
(x) If there exists y ∈ H such that y ◦ x = {0}, then x ∈ x ◦ 0.
(xi) There is at least one t ∈ H such that x ∈ x ◦ t, particularly, x ∈ x ◦H.

Proof. (i) Let A be a non-empty subset of H such that x ∈ A. Since x ≤ x, we have A� A.
(ii) Let A ∩B 6= ∅. Then there exists t ∈ A ∩B. Since t ∈ A, t ∈ B and t ≤ t, we get A� B and
B � A.
(iii) Let A� C and A ⊆ B. Then there exist a ∈ A and c ∈ C such that a ≤ c. Since a ∈ A ⊆ B,
we get B � C. Particularly, it is enough to let C = {x}.
(iv) Let A� B and B ⊆ C. Then there exist a ∈ A and b ∈ B such that a ≤ b. Since b ∈ B ⊆ C,
we have A� C.
(v) It is the result of (HBI2).
(vi) It is the result of (v).
(vii) Since for all a ∈ A, x ∈ x ◦ (a ◦ x), we have x ∈ x ◦ (A ◦ x).
(viii) Since x ∈ x ◦ (y ◦ x) and x ≤ x, we get x� x ◦ (y ◦ x)� x.
(ix) By (vii) and (HBI1), the proof is clear.
(x) Suppose y ∈ H such that y ◦ x = {0}. Then by (HBI2) x ∈ x ◦ (y ◦ x) = x ◦ 0.
(xi) Since x ∈ x ◦ (y ◦ x) =

⋃
t∈y◦x

(x ◦ t), there exists t ∈ y ◦ x ⊆ H such that x ∈ x ◦ t.

In the following theorem, we prove that extend of a hyper BI-algebra, is a hyper BI-algebra,
too.
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Theorem 3.5. Any hyper BI-algebra of order n can be extend to a hyper BI-algebra of order n+1.

Proof. Let (H, ◦, 0) be a hyper BI-algebra of order n and H̄ = H ∪{e} for e /∈ H. Then define the
hyper operation ◦̄ on H̄ as follows:

x◦̄y =


x ◦ y, x, y ∈ H
{0}, x ∈ H̄, y = e
H, x = e, y ∈ H − {0}
{e}, x = e, y = 0.

Let x ∈ H̄. If x ∈ H, since (H, ◦, 0) is a hyper BI-algebra, then x ≤ x. Also, if x = e, then by
definition of hyper operation ◦̄, we have e◦̄e = {0}. Hence, (HBI1) holds.
Let x, y ∈ H̄. Then we prove that x ∈ x◦̄(y◦̄x). For this, we suppose 5 cases as follows:
Case 1. If x, y ∈ H, then since (H, ◦, 0) is a hyper BI-algebra, it is clear that (HBI2) holds.
Case 2. Let x = y = e. Since e◦̄e = {0} and e◦̄0 = {e}, we get that e ∈ {e} = e◦̄0 = e◦̄(e◦̄e).
Therefore, (HBI2) holds.
Case 3. If x ∈ H − {0} and y = e, then x◦̄(y◦̄x) = x◦̄(e◦̄x) = x◦̄H = x ◦H. Also, by Proposition
3.4(xi), x ∈ x ◦ t for some t ∈ H. Hence x ∈

⋃
t∈H

(x ◦ t) = x ◦ H. So, in this case, the proof is

completed.
Case 4. If x = {0} and y = e, then x◦̄(y◦̄x) = 0◦̄(e◦̄0) = 0◦̄{e} = {0}. Hence, 0 ∈ 0◦̄(e◦̄0) and so
(HBI2) holds.
Case 5. If x = e and y ∈ H, then x◦̄(y◦̄x) = e◦̄(y◦̄e) = e◦̄{0} = {e}. Hence, (HBI2) holds.

Therefore, (H̄, ◦̄, 0) is a hyper BI-algebra as order n+ 1.

Corollary 3.6. For any n ∈ N, there exists a hyper BI-algebra of order n.

Proof. Let H = {0, a} be a set. Define the hyper operation ”◦” on H as the following table:

◦ 0 a

0 {0} {0}
a {a} H

Then (H; ◦, 0) is a hyper BI-algebra of order 2. Therefore by Theorem 3.5, we can construct a
hyper BI-algebra of any order n.

In the following proposition, we construct a hyper BI-algebra by two hyper BI-algebras.

Proposition 3.7. Let (H1, ∗, 01) and (H2, ?, 02) be two hyper BI-algebras. Define the hyperoper-
ation ”◦” on H1 ×H2, for any (x, y), (z, w) ∈ H1 ×H2, as follows:
•(x, y) ◦ (z, w) := {(t, s)| t ∈ x ∗ z, s ∈ y ? w},
•(x, y) ≤ (z, w) if and only if x ≤ z and y ≤ w.

Then (H1 ×H2; ◦, 0) is a hyper BI-algebra where 0 =: (01, 02) witch is called Cartesian product of
hyper BI-algebras H1 and H2.

Proof. Since x ≤ x and y ≤ y, we have (01, 02) ∈ {(a, b)| a ∈ x ∗ x, b ∈ y ? y} = (x, y) ◦ (x, y).
Thus, (x, y) ≤ (x, y) and so (HBI1) holds. Since H1 and H2 are two hyper BI-algebras, for any
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x, z ∈ H1 and y, w ∈ H2, we have x ∈ x ∗ (z ∗ x) and y ∈ y ? (w ? y). Then

(x, y) ∈ {(t, s)| t ∈ x ∗ (z ∗ x), s ∈ y ? (w ? y)}
=

⋃
a∈z∗x

⋃
b∈w?y

[{(t, s)| t ∈ x ∗ a, s ∈ y ? b}]

=
⋃

a∈z∗x

⋃
b∈w?y

[(x, y) ◦ (a, b)]

= (x, y) ◦ {(a, b)| a ∈ z ∗ x, b ∈ w ? y}
= (x, y) ◦ ((z, w) ◦ (x, y)).

Hence (HBI2) holds. Therefore, (H1 ×H2; ◦, 0) is a hyper BI-algebra.

In the following proposition we prove that we can construct a hyper BI-algebra by Cartesian
product of two BI-algebras, too.

Theorem 3.8. Let (H1, ◦1, 01) and (H2, ◦2, 02) be two BI-algebras such that 02 is the least element
of H2. Define the hyperoperation ”∗” on H1 ×H2, as the following:

x̄ ∗ ȳ =: {(x1 ◦1 y1, x2), (x1 ◦1 y1, x2 ◦2 y2)},

where 0 =: (01, 02) and x̄ = (x1, x2), ȳ = (y1, y2) ∈ H1 × H2. Then (H1 × H2; ∗, 0) is a hyper
BI-algebra which is called strong hyper BI-algebra.

Proof. It is clear that the hyper operation ”∗” is well-defined. Let x̄ = (x1, x2), ȳ = (y1, y2) ∈
H1 ×H2. Then, we prove that

x̄ ≤ ȳ if and only if x1 ≤ y1, x2 ≤ y2.

Let x̄ ≤ ȳ. Then 0 ∈ x̄ ∗ ȳ i.e. (01, 02) ∈ {(x1 ◦1 y1, x2), (x1 ◦1 y1, x2 ◦2 y2)}, so we have two
following cases:
Case 1. If (01, 02) = (x1 ◦1 y1, x2), then 01 = x1 ◦1 y1 and 02 = x2. Hence, x1 ≤ y1 and
x2 = 02 ≤ y2.
Case 2. If (01, 02) = (x1 ◦1 y1, x2 ◦2 y2), then 01 = x1 ◦1 y1 and 02 = x2 ◦2 y2. Hence, x1 ≤ y1 and
x2 ≤ y2.

Conversely, let x1 ≤ y1 and x2 ≤ y2. Since H1 and H2 are BI-algebras, we get x1 ◦1 y1 = 01

and x2 ◦2 y2 = 02. Then

0 = (01, 02) = (x1 ◦1 y1, x2 ◦2 y2) ∈ x̄ ∗ ȳ

Therefore, x̄ ≤ ȳ.
Now, let x̄ = (x1, x2) ∈ H1 ×H2. Since x1 ≤ x1 and x2 ≤ x2, we have (x1, x2) ≤ (x1, x2), and

so x̄ ≤ x̄. Hence, (HBI1) holds.
Let x̄, ȳ ∈ H1 ×H2 such that x̄ = (x1, x2) and ȳ = (y1, y2). Since H1 and H2 are BI-algebras,



On hyper BI-algebras 53

we have x1 = x1 ◦1 (y1 ◦1 x1) and x2 = x2 ◦2 (y2 ◦2 x2). Then

x̄ ∗ (ȳ ∗ x̄)

= (x1, x2) ∗ ((y1, y2) ∗ (x1, x2)) = (x1, x2) ∗ {(y1 ◦1 x1, y2), (y1 ◦1 x1, y2 ◦2 x2)}
= {(x1 ◦1 (y1 ◦1 x1), x2), (x1 ◦1 (y1 ◦1 x1), x2 ◦2 y2)}⋃

{(x1 ◦1 (y1 ◦1 x1), x2), (x1 ◦1 (y1 ◦1 x1), x2 ◦2 (y2 ◦2 x2))}
= {(x1, x2), (x1, x2 ◦2 y2)} ∪ {(x1, x2)}
= {(x1, x2), (x1, x2 ◦2 y2)}
= {x̄, z̄},

where z̄ = (x1, x2 ◦2 y2). Hence x̄ ∈ x̄ ∗ (ȳ ∗ x̄). Therefore, (HBI2) holds and (H1 ×H2; ◦, 0) is
a hyper BI-algebra.

Definition 3.9. Let (H, ◦, 0) be a hyper BI-algebra and x ∈ H. Then H is called:
• Row hyper (or briefly R-hyper) BI-algebra if 0 ◦ x = {0}.
• Column hyper (or briefly C-hyper) BI-algebra if x ◦ 0 = {x}.
• Diagonal hyper (or briefly D-hyper) BI-algebra if x ◦ x = {0}.
• Thin hyper (or briefly T-hyper) BI-algebra if it is R-hyper and C-hyper BI-algebra.
• Very thin hyper (or briefly V-hyper) BI-algebra if it is an R-hyper, C-hyper and D-hyper

BI-algebra.

Example 3.10. (i) Let H = {0, a, b} be a set. Define the hyperoperation ◦ on H as follows:

◦ 0 a b

0 {0} {0} {0}
a {0,a} {0,b} {a,b}
b {0,b} {a,b} {0,a}

Then (H, ◦, 0) is an R-hyper BI-algebra. In addition, it is clear that (H, ◦, 0) is not a C-hyper
BI-algebra and D-hyper BI-algebra. Because x ∈ H, x ◦ 0 6= {x} and x ◦ x 6= {0}, for some x ∈ H.
(ii) Let H = {0, a, b} be a set. Define the hyperoperation ◦ on H as follows:

◦ 0 a b

0 {0} {0,a} {0,b}
a {a} {0,b} {a,b}
b {b} {a,b} {0,a}

Then (H, ◦, 0) is a C-hyper BI-algebra. In addition, it is clear that (H, ◦, 0) is not an R-hyper
BI-algebra and D-hyper BI-algebra. Because for some x ∈ H, 0 ◦ x 6= {0} and x ◦ x 6= {0}.
(iii) Let H = {0, a, b} be a set. Define the hyperoperation ◦ on H as follows:

◦ 0 a b

0 {0} {0} {0,a}
a {a} {0} {0,a}
b {0,b} {0,b} {0}

Then (H, ◦, 0) is a D-hyper BI-algebra. In addition, it is clear that (H, ◦, 0) is not a C-hyper
BI-algebra and R-hyper BI-algebra. Because for some x ∈ H, x ◦ 0 6= {x} and 0 ◦ x 6= {0}.
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(iv) Let H = {0, a, b} be a set. Define the hyperoperation ◦ on H as follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {a,b}
b {b} {a,b} {0,b}

Then (H, ◦, 0) is a T-hyper BI-algebra. Clearly, (H, ◦, 0) is not a V-hyper BI-algebra. Because it
is not a diagonal hyper BI-algebra.
(v) Let H = {0, a, b} be a set. Define the hyperoperation ”◦” on H as follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {a,b}
b {b} {a,b} {0}

Then (H, ◦, 0) is a V-hyper BI-algebra.

Note. From now on, H = (H; ◦, 0) or simply H is a hyper BI-algebra unless otherwise state.

Definition 3.11. (i) Let S be a subset of H containing ”0”. If (S, ◦, 0) is a hyper BI-algebra,
then S is called a hyper subalgebra of H.
(ii) Let S be a hyper subalgebra of H. If for all x ∈ S, x ◦S = S = S ◦ x, then S is called a strong
hyper subalgebra of H.

Theorem 3.12. Let S be a non-empty subset of H. Then S is a hyper subalgebra of H if and
only if x ◦ y ⊆ S for all x, y ∈ S.

Proof. (⇒) If S is a hyper subalgebra of H, then S is closed under hyper operation ”◦”.
(⇐) Let x, y ∈ S such that x ◦ y ⊆ S. Since 0 ∈ x ◦ x ⊆ S, we get 0 ∈ S. Hence, x ≤ x, and
so (HBI1) holds. Now, it is enough to show that S satisfies the condition (HBI2). For this, by
assumption, for any x, y ∈ S, y ◦ x ⊆ S. Then x ∈ x ◦ (y ◦ x) ⊆ x ◦ S =

⋃
s∈S

(x ◦ s) ⊆ S. Hence, S

is a hyper subalgebra of H.

Example 3.13. (i) Let H be the hyper BI-algebra as in Example 3.10(i). Then S = {0, a} is not
a hyper subalgebra of H. Because a ◦ a = {0, b} * S.
(ii) Let H be the hyper BI-algebra as in Example 3.10(iii). Then S = {0, a} is a hyper subalgebra
of H. But it is not a strong hyper subalgebra, because S ◦ a = {0} 6= S.
(iii) Let H = {0, a, b}. Then define the hyper operations ”◦” on H as follows:

◦ 0 a b

0 {0} {0,a} {0,b}
a {0,a} {0,a} {0,b}
b {b} H {0}

Routine calculations show that (H; ◦, 0) is a hyper BI-algebra. Then S = {0}, S = {0, a} and
S = {0, b} are strong hyper subalgebras of H.

In the following example, we show that S = {0} is not a (strong) hyper subalgebra, in general.
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Example 3.14. Let H = {0, a, b}. Then define the hyper operations ”◦” on H as follows:

◦ 0 a b

0 H {0,a} {0,b}
a {0,a} {0,a} {0,b}
b {b} H {0}

Routine calculations show that (H; ◦, 0) is a hyper BI-algebra. Then S = {0} is not a (strong)
hyper subalgebra of H, because 0 ◦ 0 = H * {0}.

Proposition 3.15. If H is a/an (C-hyper, D-hyper) R-hyper BI-algebra, then S = {0} is a strong
hyper subalgebra of H.

Proof. The proof is straightforward.

Theorem 3.16. There is not any non-trivial proper strong hyper subalgebra of R-hyper BI-algebra.

Proof. Let H be an R-hyper BI-algebra and S 6= {0} be a proper strong hyper subalgebra of H.
Then for all x ∈ H, 0 ◦ x = {0} and x ◦ S = S for all x ∈ S. In particularly, if x = 0, then
0◦S =

⋃
s∈S

(0◦s) = {0}, which is a contradiction with S 6= {0}. Hence an R-hyper BI-algebra does

not have any non-trivial strong hyper subalgebra.

In the following, we define a homomorphism on hyper BI-algebras and investigate some prop-
erties of it.

Definition 3.17. Let H1 = (H1, ◦1, 01) and H2 = (H2, ◦2, 02) be two hyper BI-algebras. A mapping
f : H1 → H2 is called a hyper BI-homomorphism if for any x, y ∈ X we have
(i) f(01) = 02,
(ii) f(x ◦1 y) = f(x) ◦2 f(y).
If f is one to one and onto, then we say that f is a hyper BI-isomorphism.

Example 3.18. Let H1 = {01, a, b} and H2 = {02, x, y, z}. Define two hyper operations ”◦” and
”∗” on H1 and H2, respectively, as follows:

◦ 01 a b

01 {01} {01} {01}
a {a} {01, a} {a,b}
b {b} {a,b} {01,b}

∗ 02 x y z

02 {02} {02} {02} {02}
x {x} {02, x} {x, y} {x, z}
y {y} {x, y} {02, y} {y, z}
z {z} {x, z} {y, z} {02}

Then routine calculations show that (H1, ◦, 01) and (H2; ∗, 02) are hyper BI-algebras. Now, if we
define f : H1 → H2 such that:

f(01) := 02, f(a) := x, and f(b) := y,

then f is a hyper BI-homomorphism.

Suppose f is a BI-homomorphism of H1 to H2. We denote Kerf = {x ∈ H1 : f(x) = 02}. Let
A and B be two non-empty subsets of H1 and H2, respectively. Then f(A) = {f(a) : a ∈ A} is
called the image of A under f and f−1(B) = {x ∈ H1 : f(x) ∈ B} is called the inverse image of B
under f .
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Proposition 3.19. Let H1 and H2 be two hyper BI-algebras. If f : H1 → H2 is a hyper BI-
homomorphism, then f is an order preserving map.

Proof. Let x, y ∈ H1 such that x ≤ y. Then 01 ∈ x ◦ y and 02 = f(01) ∈ f(x ◦ y) = f(x) ◦ f(y).
Hence, f(x) ≤ f(y).

Proposition 3.20. Let f : H1 → H2 be a hyper BI-homomorphism.
(i) If S is a (strong) hyper subalgebra of H1, then f(S) is a (strong) hyper subalgebra of H2.
(ii) If S is a hyper subalgebra of H2, then f−1(S) is a hyper subalgebra of H1.
(iii) If S is a strong hyper subalgebra of H2 and f is onto, then f−1(S) is a strong hyper subalgebra
of H1.

Proof. (i) Let S be a hyper subalgebra of H1 and y1, y2 ∈ f(S). Then there exist x1, x2 ∈ S such
that y1 = f(x1) and y2 = f(x2). By Theorem 3.12, we have x1 ◦ x2 ⊆ S, then

y1 ◦ y2 = f(x1) ◦ f(x2) = f(x1 ◦ x2) ⊆ f(S).

Hence, f(S) is a hyper subalgebra of H2. Now, let S be a strong hyper subalgebra of H1 and
y ∈ f(S). Then there exists x ∈ S such that y = f(x). Thus,

y ◦ f(S) = f(x) ◦ f(S) = f(x ◦ S) = f(S) = f(S ◦ x) = f(S) ◦ f(x) = f(S) ◦ y.

Therefore, f(S) is a (strong) hyper subalgebra of H2.
(ii) Let S be a hyper subalgebra of H2. If x1, x2 ∈ f−1(S), then f(x1), f(x2) ∈ S and we get

f(x1 ◦ x2) = f(x1) ◦ f(x2) ⊆ S. So x1 ◦ x2 ⊆ f−1(S). Hence f−1(S) is a hyper subalgebra of H1.
(iii) By (ii), we know that f−1(S) is a hyper subalgebra of H. Then it is enough to prove

that f−1(S) is strong. For this, since f is onto, we have f(f−1(S)) = S. Let x ∈ f−1(S). Since
f(x) ∈ S and S is strong, we get

f(x ◦ f−1(S)) = f(x) ◦ f(f−1(S)) = f(x) ◦ S = S.

Hence x ◦ f−1(S) = f−1(S). Similarly f−1(S) ◦ x = f−1(S). Therefore, x ◦ f−1(S) = f−1(S) =
f−1(S) ◦ x.

Proposition 3.21. Let f : H1 → H2 be a hyper BI-homomorphism. If 02 ◦ 02 = {02}, then Kerf
is a hyper subalgebra of H1.

Proof. Let x1, x2 ∈ Kerf . Then f(x1) = 02 = f(x2) and for all t ∈ x1 ◦ x2, we have

f(t) ∈ f(x1 ◦ x2) = f(x1) ◦ f(x2) = 02 ◦ 02 = {02}.

Hence, t ∈ Kerf , and so x1 ◦ x2 ⊆ Kerf . Therefore, Kerf is a hyper subalgebra of H1.

Proposition 3.22. Let f : H1 → H2 be an onto hyper BI-homomorphism. Then:
(i) If H1 is an R-hyper BI-algebra, then H2 is an R-hyper BI-algebra, too.
(ii) If H1 is a C-hyper BI-algebra, then H2 is a C-hyper BI-algebra, too.
(iii) If H1 is a D-hyper BI-algebra, then H2 is, too.
(iv) If H1 is a T-hyper BI-algebra, then H2 is, too.
(v) If H1 is a V-hyper BI-algebra, then H2 is, too.
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Proof. We only proof (i) and the proof of other cases is similar.
(i) Let H1 be an R-hyper BI-algebra and y ∈ H2. Then there exists x ∈ H1 such that y = f(x).

Thus

02 ◦ y = f(01) ◦ f(x) = f(01 ◦ x) = {f(t)| t ∈ 01 ◦ x = {01}} = {f(01)} = {02}.

Therefore, H2 is an R-hyper BI-algebra.

Proposition 3.23. Let f : H1 → H2 be a one-to-one hyper BI-homomorphism. If H2 is a/an
(D/V/T/C) R-hyper BI-algebra, then H1 is, too.

Proof. Let H2 be an R-hyper BI-algebra and x ∈ H1. Then

{f(t)| t ∈ 01 ◦ x} = f(01 ◦ x) = f(01) ◦ f(x) = 02 ◦ f(x) = {02} = {f(01)}.

Since f is one-to-one, we get that 01 ◦ x = {01}. Therefore, H1 is an R-hyper BI-algebra. The
proof of other cases is similar.

4 Relation among hyper BI-algebra and some of other hyper al-
gebars

In this section, we study the relation among hyper BI-algebra with some of other hyper logical
algebras such as hyper (BCK/ BCI/ BCC/ K) B-algebra and show that under which condition
these hyper structures coincide.

Definition 4.1. [12] An algebraic structure (H; ◦, 0) with hyper operation ”◦” and a constant ”0”
is called a hyper BCK-algebra if for all x, y, z ∈ H it satisfies the following conditions:

(HBCK1) (x ◦ y) ◦ (y ◦ z)� x ◦ z,
(HBCK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HBCK3) x ◦H � {x},
(HBCK4) x ≤ y and y ≤ x imply x = y.

Where x ≤ y if and only if 0 ∈ x ◦ y. Also, suppose A and B are two non-empty subsets of H.
Then A� B means that for all a ∈ A, there exists an element b ∈ B such that a ≤ b.

Theorem 4.2. [12] If (H, ◦, 0) is a hyper BCK-algebra, then for any x ∈ H we have x ≤ x.

Example 4.3. (i) Let H be the hyper BI-algebra as in Example 3.13(iii). Since for a ∈ H, we
have, 0 ∈ 0 ◦ a and 0 ∈ a ◦ 0, then 0 ≤ a and a ≤ 0, but a 6= 0. Thus H does not satisfy the
condition (HBK4). Hence, H it is not a hyper BCK-algebra.

(ii) Let H = {0, a, b}. Define the hyper operation ”◦” on H as the following table:

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {a, b} {0,a,b}

Then (H, ◦, 0) is a hyper BCK-algebra. But it is not a hyper BI-algebra, because

a /∈ a ◦ (b ◦ a) = a ◦ {a, b} = (a ◦ a) ∪ (a ◦ b) = {0}.
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By the above examples we can see that hyper BI-algebras and hyper BCK-algebras are not
same.

Definition 4.4. [27] An algebraic structure (H; ◦, 0) with hyper operation ”◦” and constant ”0”
is called a hyper BCI-algebra if for all x, y, z ∈ H it satisfies the following conditions:

(HBCI1) (x ◦ y) ◦ (y ◦ z)� x ◦ z,
(HBCI2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HBCI3) x ≤ x,
(HBCI4) x� y and y � x imply x = y,
(HBCI5) 0 ◦ (0 ◦ x)� x.
Where x ≤ y if and only if 0 ∈ x ◦ y. Also A � B means that for all a ∈ A, there exists an

element b ∈ B such that a ≤ b.

According to Example 4.3(i), clearly, H is not a hyper BCI-algebra.

Example 4.5. Let H = {0, a, b}. Define the hyperoperation ”◦” on H as the following table:

◦ 0 a b

0 {0} {a} {b}
a {a} {0,a} {b}
b {b} {b} {0}

Then (H, ◦, 0) is a hyper BCI-algebra. But it is not a hyper BI-algebra, because a /∈ a◦(b◦a) = {b}.

By the above example, we can see that hyper BI-algebras and hyper BCI-algebras are not
same.

Definition 4.6. [6] An algebraic structure (H; ◦, 0) with hyper operation ”◦” and constant ”0” is
called a hyper K-algebra if for all x, y, z ∈ H, it satisfies the following axioms:

(HK1) (x ◦ y) ◦ (y ◦ z)� x ◦ z,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ≤ x,
(HK4) x ≤ y and y ≤ x imply x = y,
(HK5) 0 ≤ x.

Where x ≤ y if and only if 0 ∈ x ◦ y. For any A,B ⊆ H, A � B if and only if there exist a ∈ A
and b ∈ B such that a ≤ b.

According to Example 4.3(i), obviously, H is not a hyper K-algebra.

Example 4.7. Let H = {0, a, b, c}. Define the hyperoperation ”◦” on H as follows:

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {b} {0} {0}
c {c} {b} {a} {0, a}

Then (H; ◦, 0) is a hyper K-algebra. But it is not a hyper BI-algebra, since a /∈ a ◦ (b ◦ a) = {0}.

By the above example, we can see that hyper BI-algebras and hyper K-algebras are not same.
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Definition 4.8. [10] An algebraic structure (H; ◦, 0) with a binary hyper operation ”◦” and a
constant ”0” is called a hyper B-algebra if for all x, y, z ∈ H, it satisfies the following axioms:

(HB1) 0 ∈ x ◦ x,
(HB2) x ◦H = H = H ◦ x,
(HB3) (x ◦ y) ◦ z = x ◦ (z ◦ (0 ◦ y)).

Where x ≤ y if and only if 0 ∈ x ◦ y and A� B means that for all a ∈ A, there exists an element
b ∈ B such that a ≤ b.

Example 4.9. (i) Hyper BI-algebra H in Example 3.13(iii) is not a hyper B-algebra. Because

{0, b} = (a ◦ b) ◦ 0 6= a ◦ (0 ◦ (0 ◦ b)) = {0, a, b}.

(ii) Let H = {0, a, b} and define the hyperoperation ”◦” on H as follows:

◦ 0 a b

0 {0} {a} {b}
a {a} {0,a} {0,a}
b {b} {0, a} {0,a}

Then routine calculations show that (H, ◦, 0) is a hyper B-algebra. But it is not a hyper BI-
algebra, because 0 /∈ 0 ◦ (a ◦ 0) = {a}.

By the above examples we can see that hyper BI-algebras and hyper B-algebras are not same.

Definition 4.10. [5] An algebraic structure (H; ◦, 0) with a binary hyper operation ”◦” and a
constant ”0” is called a hyper BCC-algebra if for all x, y, z ∈ H, it satisfies the following axioms:

(HBCC1) (x ◦ z) ◦ (y ◦ z)� x ◦ y,
(HBCC2) 0 ◦ x = 0,
(HBCC3) x ◦ 0 = x,
(HBCC4) x ≤ y and y ≤ x imply x = y.

Where x ≤ y if and only if 0 ∈ x◦y. Also A� B means that for all a ∈ A, there exists an element
b ∈ B such that a ≤ b.

Theorem 4.11. [5] In any hyper BCC-algebra H, for all x ∈ H, we have x ≤ x.

Example 4.12. (i) Let H be the hyper BI-algebra as in Example 3.13(iii). Since 0 ≤ a and
a ≤ 0 but a 6= 0, we get H does not satisfy the condition (HBCC4). Hence, H it is not a hyper
BCC-algebra.

(ii) Let H = {0, a, b, c}. Define the hyperoperation ”◦” on H as follows:

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {b} {0, a} {b}
c {c} {a, c} {0, a, c} {0, a, c}

Then (H; ◦, 0) is a hyper BCC-algebra. But it is not a hyper BI-algebra, because a /∈ a◦(b◦a) = {0}.

By the above examples we can see that hyper BI-algebras and hyper BCC-algebras are not
same.
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Theorem 4.13. Let (H; ◦, 0) be a hyper (BCK/ BCI/ BCC/ K) B-algebra. If H satisfies the
condition x ∈ x ◦ (y ◦ x), then it is a hyper BI-algebra.

Proof. For any hyper (BCK/ BCI/ BCC/ K) B-algebra, we have x ≤ x, in axioms or properties.
So (HBI1) holds in all of them. Hence if these hyper algebras satisfy the condition (HBI2), then
these hyper algebraic structures can be a hyper BI-algebra.

5 Hyper ideals of hyper BI-algebras

In this section, we introduce the notion of (weak) ideals on hyper BI-algebra and investigate the
relation between hyper subalgebras and ideals of a hyper BI-algebra. Also, by defining the notion
of normal subset, we construct the quotient hyper BI-algebra. Finally, we survey the isomorphism
theorems on structures of hyper BI-algebras.

Definition 5.1. Let I be a non-empty subset of a hyper BI-algebra H containing 0. Then I is
called

• a weak ideal if x ◦ y ⊆ I and y ∈ I imply x ∈ I;

• an ideal if x ◦ y � I and y ∈ I imply x ∈ I, for any x, y ∈ H.

Example 5.2. (i) Let (H, ◦, 0) be the hyper BI-algebra as in Example 3.13(iii). Then I = {0, b}
is not a weak ideal of H. Because a ◦ b = {0, b} ⊆ I and b ∈ I but a /∈ I. Also, I = {0, a} is a
weak ideal of H.
(ii) Let H be the hyper BI-algebra as in Example 3.2. Then I = {0, a} is an ideal of H.

Proposition 5.3. If I is an ideal of H, then I is a weak ideal of H.

Proof. Let x ◦ y ⊆ I and y ∈ I. Then by Proposition 3.4(ii), x ◦ y � I and y ∈ I. Since I is an
ideal of H, we get x ∈ I. Hence I is a weak hyper ideal of H.

Note: In the following example, we can see that the converse of above proposition is not true,
in general.

Example 5.4. Let I = {0, a} be weak ideal of hyper BI-algebra as in Example 3.13(iii). Then it
is not an ideal of H, because (b ◦ a)I = H ∩ I 6= ∅ and b /∈ I.

Proposition 5.5. Let I be a non-empty subset of H containing 0. Then I is an ideal of H if and
only if (x ◦ y) ∩ I 6= ∅ and y ∈ I imply x ∈ I.

Proof. (⇒) Let I be an ideal of H and (x ◦ y) ∩ I 6= ∅. Then by Proposition 3.4(ii), x ◦ y � I.
Since y ∈ I and I is an ideal of H, we have x ∈ I.
(⇐) Let x, y ∈ H. If x ◦ y � I and y ∈ I, then there exists a ∈ x ◦ y and b ∈ I such that a ≤ b.
Thus 0 ∈ (a ◦ b) ∩ I 6= ∅. Since b ∈ I, by assumption, we have a ∈ I. Hence a ∈ (x ◦ y) ∩ I 6= ∅.
Again, since y ∈ I, by assumption, we get x ∈ I. Therefore, I is an ideal of H.

The following example shows that hyper subalgebra and a/an (weak) ideal of a hyper BI-algebra
are different notions:
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Example 5.6. (i) Let H be the hyper BI-algebra as in Example 3.13(iii). Then S = {0, b} is a
hyper subalgebra. Since a ◦ b = {0, b} ⊆ S, b ∈ S and a /∈ S, then S is not a weak ideal of H.
Consequently, S is not an ideal of H.
(ii) Let H = {0, a, b} and define the hyperoperation ”◦” on H as follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {a}
b {b} {b} {0, a}

Then (H; ◦, 0) is a hyper BI-algebra and I = {0, b} is an ideal of it. But I is not a hyper subalgebra
of H because of b ◦ b = {0, a} * I.

Proposition 5.7. Let H be a hyper BI-algebra and S be a hyper subalgebra of H. Then
(i) S is a weak ideal of H if and only if for all x ∈ H − S and y ∈ S, we have x ◦ y * S.
(ii) S is an ideal of H if and only if for all x ∈ H − S and y ∈ S, we get (x ◦ y) ∩ S = ∅.

Proof. (i) Let S be a weak ideal of H, x ∈ H − S, and y ∈ S. Suppose x ◦ y ⊆ S. Since S is a
weak hyper ideal of H, we have x ∈ S, which is a contradiction. Thus x ◦ y * S. Conversely, let
x ◦ y ⊆ S and y ∈ S. Suppose x /∈ S. Then by assumption x ◦ y * S, which is a contradiction.
Thus x ∈ S and so S is a weak ideal of H.
(ii) Let S be an ideal of H, x ∈ H − S and y ∈ S. Suppose (x ◦ y) ∩ S 6= ∅. Since y ∈ S and S is
an ideal of H, we have x ∈ S, which is a contradiction. Thus (x ◦ y) ∩ S = ∅.
Conversely, let for any x ∈ H − S and y ∈ S we have (x ◦ y)∩ S = ∅. If (x ◦ y)∩ S 6= ∅ and y ∈ S,
then x ∈ S, which is a contradiction. Hence, S is an ideal of H.

Definition 5.8. A non-empty subset I of H is called a downset if x ≤ y and y ∈ I, then x ∈ I,
for any x, y ∈ H.

Proposition 5.9. If I is an ideal of H, then I is a downset.

Proof. Let x ≤ y and y ∈ I. Then 0 ∈ (x ◦ y) ∩ I. Since y ∈ I and I is an ideal of H, we get
x ∈ I.

Let H be a hyper BI-algebra. Then 0 is called minimal element of H if for any x ∈ H, x ≤ 0,
then x = 0.

Example 5.10. (i) Let H be the hyper BI-algebra as in Example 3.2. Then H has the least element
0.
(ii) Let (H, ◦, 0) be the BI-algebra as in Example 3.13(iii). Then ”0” is not minimal element of
H. Because 0 ∈ a ◦ 0 and so a ≤ 0 but a 6= 0.

Proposition 5.11. If H is a hyper BI-algebra with minimal element 0, then I = {0} is an ideal
of H.

Proof. Let y ∈ I = {0} and (x ◦ y) ∩ I 6= ∅. Then y = 0 and 0 ∈ x ◦ 0. Thus x ≤ 0 and so
x = 0 ∈ {0}. Therefore {0} is an ideal of H.

Note: In the following example we show that existing of minimal element is necessary in
Proposition 5.11.

Example 5.12. Let (H, ◦, 0) be the BI-algebra as in Example 3.13(iii). Then I = {0} is not an
ideal of H. Because (a ◦ 0) ∩ I 6= ∅ but a /∈ I.
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Proposition 5.13. (i) If H is a C-hyper BI-algebra, then 0 is minimal element of H.
(ii) In any C-hyper BI-algebra, I = {0} is an ideal of H.

Proof. (i) Let H be a C-hyper BI-algebra and x ≤ 0. Then 0 ∈ x ◦ 0 = {x} and so x = 0.
(ii) It follows by Proposition 5.11.

The set of all (weak) ideals of H is denoted by (WI(H)) I(H). Let for any i ∈ ∆, Ii is a/an
(weak) ideal of H, then

⋂
i∈∆

Ii is a/an (weak) ideal of H but this is not true for
⋃
i∈∆

Ii. If {Ii : i ∈ ∆}

is a chain, then
⋃
i∈∆

Ii is a/an (weak) ideal of H. Also, if I1 and I2 are (weak) ideals of hyper

BI-algebras H1 and H2, respectively, then I1 × I2 is a/an (weak) ideal of H1 ×H2.

Definition 5.14. Let x, y ∈ H. Define A(x, y) := {t ∈ H| 0 ∈ (t ◦ x) ◦ y}.

Example 5.15. Let H be the hyper BI-algebra as in Example 3.2. Then A(a, b) = {0, a, b, c} and
A(b, a) = {0, a, b}. So A(a, b) 6= A(b, a).

Proposition 5.16. Let x, y ∈ H. If 0 ≤ x, then 0, x ∈ A(x, y).

Proof. Since 0 ∈ 0 ◦ x ⊆ (0 ◦ x) ◦ y, we have 0 ∈ A(x, y). Also, 0 ∈ 0 ◦ y ⊆ (x ◦ x) ◦ y, then
x ∈ A(x, y).

Proposition 5.17. Let H be a C-hyper BI-algebra. Then for all x ∈ H and a non-empty subset
B ⊆ H, the following statements hold:
(i) t ∈ A(0, x) if and only if t ≤ x. Particularly, x ∈ A(0, x) and H =

⋃
x∈H

A(0, x).

(ii) B ⊆
⋃
b∈B

A(0, b).

(iii) A(x, 0) = A(0, x).

Proof. (i) Let x ∈ H. By Definition 5.14 we have,

t ∈ A(0, x) ⇔ 0 ∈ (t ◦ 0) ◦ x ⇔ 0 ∈ t ◦ x ⇔ t ≤ x.

Particularly, by (HBI1), x ≤ x and so x ∈ A(0, x), for all x ∈ H. Therefore, H =
⋃

x∈H
A(0, x).

(ii) It is straightforward by (i).
(iii) We note that

A(x, 0) = {t ∈ H| 0 ∈ (t ◦ x) ◦ 0} = {t ∈ H| 0 ∈ t ◦ x} = {t ∈ H| 0 ∈ (t ◦ 0) ◦ x} = A(0, x).

Proposition 5.18. Let H be a C-hyper BI-algebra such that 0 ≤ x for all x ∈ H. Then for all
x, y ∈ H, we have
(i) A(0, x) ⊆ A(x, y),
(ii) A(0, x) =

⋃
x,y∈H

A(x, y).

Proof. (i) Let z ∈ A(0, x). Then 0 ∈ (z ◦ 0) ◦ x. Since H is a C-hyper BI-algebra, we get 0 ∈ z ◦ x.
On the other hand, 0 ∈ 0◦y ⊆ (z ◦x)◦y. Thus by definition, z ∈ A(x, y) and so A(0, x) ⊆ A(x, y).

(ii) The proof is clear.

Theorem 5.19. Let I be a non-empty subset of H. Then I is an ideal of H if and only if
A(x, y) ⊆ I for all x, y ∈ I.
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Proof. Let I be an ideal ofH and x, y ∈ I. If z ∈ A(x, y), then 0 ∈ (z◦x)◦y and so ((z◦x)◦y)∩I 6= ∅.
Since I is an ideal of H and y ∈ I, we get (z ◦ x) ∩ I 6= ∅. Moreover, since x ∈ I and I is an ideal
of H, we have z ∈ I. Therefore, A(x, y) ⊆ I.
Conversely, let A(x, y) ⊆ I for all x, y ∈ I. Since 0 ∈ A(x, y) ⊆ I we have 0 ∈ I. Now, if
(a ◦ b) ∩ I 6= ∅ and b ∈ I, then there exists c ∈ (a ◦ b) ∩ I such that 0 ∈ c ◦ c ⊆ (a ◦ b) ◦ c. So
a ∈ A(b, c) ⊆ I i.e. a ∈ I. Therefore, I is an ideal of H.

Theorem 5.20. If I is an ideal of C-hyper BI-algebra H, then I =
⋃
x∈I

A(0, x).

Proof. By Proposition 5.17(ii), we know that I ⊆
⋃
x∈I

A(0, x). On the other hand, if t ∈
⋃

x∈I A(0, x),

then there exists a ∈ I such that t ∈ A(0, a). By Proposition 5.17(i), t ≤ a. Since a ∈ I and I is
an ideal of H, we get I is downset. Hence, t ∈ I. Therefore,

⋃
x∈I

A(0, x) ⊆ I.

Definition 5.21. Let N ⊆ H such that 0 ∈ N . Then N is called a normal subset if for any
x, y, a, b ∈ H, (x ◦ y) ∩N 6= ∅ and (a ◦ b) ∩N 6= ∅ imply ((x ◦ a) ◦ (y ◦ b)) ∩N 6= ∅.

Example 5.22. Let H be the hyper BI-algebra as in Example 3.13(iii). Then N = {0, a} is a
normal subset of H. But it is not an ideal of H, because (b ◦ a) ∩N 6= ∅ and b /∈ N .

Example 5.23. Let H = {0, a, b, c} and define the hyper operation ”◦” on H as follows:

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {0,a} {a,b}
b {b} {0,b} {0} {b}
c {c} {a,b} {c} {0}

Then (H; ◦, 0) is a V-hyper BI-algebra. Obviously, I = {0, c} is an ideal of H. But it is not a
normal subset, because (b ◦ b) ∩ I 6= ∅, (c ◦ b) ∩ I 6= ∅ and ((b ◦ c) ◦ (b ◦ b)) ∩ I = ∅.

Definition 5.24. Let N be a normal subset of H. Then for any x, y ∈ H, define the relation ≡N

on H as follows:
x ≡N y ⇔ (x ◦ y) ∩N 6= ∅ and (y ◦ x) ∩N 6= ∅.

Proposition 5.25. Let N be a normal subset of H. Then the relation ≡N is reflexive and sym-
metric.

Proof. Let x, y ∈ H. Since 0 ∈ (x ◦ x) ∩N 6= ∅, we get x ≡N x and the relation ≡N is reflexive.
The proof of symmetric is clear.

Proposition 5.26. Let H be a C-D-hyper BI-algebra and N be a normal subset of H. Then for
any x, y ∈ H, we have (x ◦ y) ∩N 6= ∅ if and only if (y ◦ x) ∩N 6= ∅.

Proof. Let N be a normal subset of H and for x, y ∈ H, (x ◦ y) ∩N 6= ∅. Since H is a C-D hyper
BI-algebra, y ◦ x = (y ◦ x) ◦ 0 and y ◦ y = {0}, respectively. Since 0 ∈ (y ◦ y) ∩ N 6= ∅ and N is
normal, we get

(y ◦ x) ∩N = ((y ◦ x) ◦ 0) ∩N = ((y ◦ x) ◦ (y ◦ y)) ∩N 6= ∅.

Hence (y ◦ x) ∩N 6= ∅. By the similar way, if (y ◦ x) ∩N 6= ∅, then (x ◦ y) ∩N 6= ∅.
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Corollary 5.27. Let N be a normal subset of a C-D-hyper BI-algebra such as H. Then for any
x, y ∈ H, x ≡N y if and only if (x ◦ y) ∩N 6= ∅.

Proof. Since N is a normal subset of H and x, y ∈ H, we have (x ◦ y) ∩ N 6= ∅. Conversely, if
(x ◦ y) ∩N 6= ∅, then by Proposition 5.26, (y ◦ x) ∩N 6= ∅. Hence x ≡N y.

Theorem 5.28. Let H be a C-D-hyper BI-algebra. If N is a normal subset of H, then ≡N is a
congruence relation on H.

Proof. Let H be a C-D-hyper BI-algebra, N be a normal subset of H and x, y, z ∈ H. If x ≡N y
and y ≡N z, then (x ◦ y)∩N 6= ∅ and (z ◦ y)∩N 6= ∅, respectively. Since H is a C-Diagonal hyper
BI-algebra, x ◦ z = (x ◦ z) ◦ 0 and y ◦ y = {0}, respectively. Since N is normal, we get

(x ◦ z) ∩N = ((x ◦ z) ◦ 0) ∩N = ((x ◦ z) ◦ (y ◦ y)) ∩N 6= ∅.

Then (x◦z)∩N 6= ∅ and so by Corollary 5.27, x ≡N z. Hence ≡N is an equivalence relation on H.
Also, if x ≡N y and a ≡N b, then (x◦ y)∩N 6= ∅ and (a◦ b)∩N 6= ∅, respectively. So by definition
of normal subset, we get ((x ◦ a) ◦ (y ◦ b)) ∩ N 6= ∅. Thus by Corollary 5.27, (x ◦ a) ≡N (y ◦ b).
Therefore, the relation ≡N is a congruence on H.

Note. From now on, we suppose H is a C-D-hyper BI-algebra and N is a normal subset of H
unless otherwise state.

Given a normal subset N of hyper BI-algebra H, we denote the equivalence class of the relation

≡N containing x, by [x] and the quotient set of H by
H

N
, where

[x] = {y ∈ H| y ≡N x}, H

N
= {[x]| x ∈ H}.

Theorem 5.29. For any x, y ∈ H define the operation ? on
H

N
as follows,

[x] ? [y] :=
⋃

t∈x◦y
[t].

Then (
H

N
; ?, [0]) is a hyper BI-algebra which is called quotient algebra of H induced by N , where

[x] ≤′ [y] if and only if [0] ∈ [x] ? [y].

Proof. Let x, y ∈ H. Since H is a D-hyper BI-algebra, we have x ◦ x = {0} and so [x] ? [x] =
[x ◦ x] = [0]. Thus [x] ≤′ [x] and (HBI1) holds. Also, we have

[x] ? ([y] ? [x]) =
⋃

t∈x◦(y◦x)

[t].

By (HBI2), x ∈ x ◦ (y ◦ x), and so [x] ∈ [x] ? ([y] ? [x]). Hence (HBI2) holds on
H

N
. Therefore,

(
H

N
; ?, [0]) is a hyper BI-algebra.

Proposition 5.30. If π : H → H

N
is a natural homomorphism such that π(x) := [x], then φ is an

onto hyper BI-homomorphism, where Kerπ = N .
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Proof. Let x, y ∈ H. Clearly, π is onto and π(0) = [0]. Since

π(x ◦ y) = π(
⋃

t∈x◦y
t) =

⋃
t∈x◦y

π(t) =
⋃

t∈x◦y
[t] = [x] ? [y],

we get π is an onto hyper BI-homomorphism. In addition,

Kerπ = {x ∈ H| π(x) = [0]} = {x ∈ H| [x] = [0]}
= {x ∈ H| x ≡N 0} = {x ∈ H| (x ◦ 0) ∩N 6= ∅}
= {x ∈ H| x ∈ N}
= N.

Therefore, Kerπ = N .

Theorem 5.31. Let f : H → H′ be a hyper BI-homomorphism between two hyper BI-algebras,
where N and N ′ are normal subsets of H and H ′, respectively. If f(N) ⊆ N ′, then there exists a

unique hyper BI-homomorphism g :
H

N
→ H ′

N ′
such that goπ = π′of .

Proof. Define g :
H

N
→ H ′

N ′
as [x]N � [f(x)]N ′ . First we show that g is well-defined:

Let x, y ∈ H and [x] = [y]. Then (x◦y)∩N 6= ∅ and so there exists t ∈ N such that t ∈ x◦y. Thus
f(t) ∈ f(N) ⊆ N ′ and f(t) ∈ f(x ◦ y) = f(x) ◦′ f(y). Hence, (f(x) ◦ f(y)) ∩ N ′ 6= ∅. Therefore,
[f(x)]N ′ = [f(y)]N ′ . Now, we show g is a hyper BI-homomorphism: g([0]) = [f(0)] = [0′]. If
[t′] ∈ g([x] ? [y]), then

[t′] ∈ g(
⋃

t∈x◦y
[t]) = {g([t])| t ∈ x ◦ y} = {[f(t)]| t ∈ x ◦ y}.

So there exists t ∈ x◦y such that [t′] = [f(t)]. Since t ∈ x◦y, we have f(t) ∈ f(x◦y) = f(x)◦′ f(y)
and so

[t′] = [f(t)] ∈ {[z]| z ∈ f(x) ◦′ f(y)} = [f(x)] ?′ [f(y)] = g([x]) ?′ g([y]).

Therefore, g([x] ? [y]) ⊆ g([x]) ?′ g([y]). By the similar way, we obtain g([x]) ?′ g([y]) ⊆ g([x] ? [y]).
Obviously, g is unique.

6 Conclusion and future work

In this paper, a new hyper algebra was introduced which is a generalization of BI-algebras. Basic
properties, hyper subalgebras, BI-homomorphism and some special types of hyper BI-algebras were
discussed. Also, relationship between this new hyperstructure and some the other hyper algebras
were investigated. Finally, isomorphism theorems were investigated on the constructed quotient
structure of hyper BI-algebras. As future works, we shall define commutative hyper BI-algebras
and some types of ideals in hyper BI-algebras.
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