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Abstract

In this paper, we introduce the notions of Belluce lattice
associated with a bounded BCK-algebra and reticula-
tion of a bounded BCK-algebra. To do this, first, we
define the operations f, g and t on BCK-algebras and
we study some algebraic properties of them. Also, for
a bounded BCK-algebra A we define the Zariski topol-
ogy on Spec(A) and the induced topology τA,Max(A) on
Max(A). We prove (Max(A), τA,Max(A)) is a compact
topological space if A has Glivenko property. Using the
open and the closed sets of Max(A), we define a congru-
ence relation on a bounded BCK-algebra A and we show
LA, the quotient set, is a bounded distributive lattice.
We call this lattice the Belluce lattice associated with A.
Finally, we show (LA, pA) is a reticulation of A (in the
sense of Definition 5.1) and the lattices LA and SA are
isomorphic.
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A Title

1 Introduction

In [4], Belluce defined the reticulation for non-commutative rings (for commutative rings see [17]).
Using this model, the reticulation was defined for others classes of universal algebras: MV -algebras
([3]), BL-algebras ([13]), residuated lattices ([14], [15]), Hilbert algebras ([5]) and quantales ([8]).
Generally speaking, the reticulation for an algebra A of types mentioned above is a pair (LA, λ)
consisting of a bounded distributive lattice LA and a surjection λ : A→ LA such that the function
given by the inverse image of λ induces (by reticulation) a homeomorphism of topological spaces
between the prime spectrum of LA and that of A. Using this construction many properties can be
transferred between LA and A.

In this paper, we construct the Belluce lattice associated with a bounded BCK-algebra and
we define the reticulation of a bounded BCK-algebra (in the sense of Definition 5.1). Also we
prove several properties of it.
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The paper is organized as follows: In Section 2, we review some relevant concepts relative to
BCK-algebras. Also, we define the new operations f, g and t on BCK-algebras and we study
the algebraic properties of them.

For a bounded BCK-algebra A, in Section 3, we study the topological spaces Spec(A), the
prime spectrum of A, and Max(A), the maximal spectrum of A, using a standard method ([1]).
The family τA = {D(S) : S ⊆ A} is a topology on Spec(A) having {D(x) : x ∈ A} as basis.
The topology τA is called the Zariski topology on Spec(A) and the topological space (Spec(A), τA)
is called the prime spectrum of A. Since Max(A) ⊆ Spec(A) we can consider on Max(A) the
topology induced by Zariski topology. So, we obtain a topological space (Max(A), τA,Max(A))
called the maximal spectrum of A.

If BCK-algebra A has Glivenko property, then Max(A) is a compact topological space (The-
orem 3.10).

Using the open and the closed sets of Max(A), in Section 4, we construct and study the
Belluce lattice LA associated with a bounded BCK-algebra A (Theorems 4.4, 4.9, 4.11 and 4.13).

In Section 5, we introduce the notion of reticulation of a bounded BCK-algebra and prove that
the uniqueness of this reticulation (Theorem 5.2). Finally, we show that (LA, pA) and (SA, VMax)
are reticulations of A and LA and SA are isomorphic (Corollaries 5.4 and 5.5).

2 Preliminaries

Definition 2.1. ([11], [12]) A BCK-algebra is an algebra (A,→, 1) of type (2,0) such that the
following axioms are fulfilled for every x, y, z ∈ A:

(a1) x→ x = 1;

(a2) if x→ y = y → x = 1, then x = y;

(B) (x→ y)→ [(y → z)→ (x→ z)] = 1;

(C) x→ (y → z) = y → (x→ z);

(K) x→ (y → x) = 1.

For examples of BCK-algebras, see [11] and [12].
If A is a BCK-algebra, then the relation x ≤ y iff x → y = 1 is a partial order on A; with

respect to this order 1 is the largest element of A. A bounded BCK-algebra is a BCK-algebra A
with the smallest element 0; in this case for x ∈ A we denote x∗ = x→ 0.

A bounded BCK-algebra A has Glivenko property (see [7]) if it satisfies the following condition:

(G) (x→ y)∗∗ = x→ y∗∗, for every x, y ∈ A.

For a BCK-algebra A and x1, ..., xn, x ∈ A (n ≥ 1) we define (x1, ..., xn;x) = x1 → (x2 →
...(xn → x)...).

From [6] and [12] we have the following rules of calculus:

(c1) x→ 1 = 1, 1→ x = x, x ≤ y → x, x ≤ (x→ y)→ y;

(c2) ((x→ y)→ y)→ y = x→ y;

(c3) if x ≤ y, then z → x ≤ z → y and y → z ≤ x→ z;
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(c4) x→ y ≤ (z → x)→ (z → y) ≤ z → (x→ y), for every x, y, z ∈ A.

In a bounded BCK-algebra A, for x, y, z ∈ A we have the following rules of calculus (see [7],
[10], [11] and [12]):

(c5) 0∗ = 1, 1∗ = 0, x→ y∗ = y → x∗, x ≤ x∗∗, x∗∗∗ = x∗;

(c6) x∗∗ ≤ x∗ → x, x→ y ≤ y∗ → x∗ and if x ≤ y, then y∗ ≤ x∗.

Remark 2.2. Using (c5) we deduce that a bounded BCK-algebra A has Glivenko property iff
(x→ y)∗∗ = x∗∗ → y∗∗, for every x, y ∈ A.

If A is a bounded BCK-algebra, then for x, y ∈ A we denote xgy = x∗ → y and xfy = (x→
y∗)∗.

Proposition 2.3. Let A be a bounded BCK-algebra and x, y, z ∈ A. Then:

(c7) xf 0 = 0, xf 1 = x∗∗ and xf x∗ = 0;

(c8) xf y = y f x ≤ x∗∗, y∗∗;

(c9) if x ≤ y, then xf z ≤ y f z;

(c10) x, y ≤ xg y, xg 0 = x∗∗, xg 1 = 1, xg x∗ = 1;

(c11) xg (y g z) = y g (xg z) and (xg y) g z ≤ xg (y g z);

(c12) xf (x→ y) ≤ y∗∗, x∗∗ f y∗∗ = xf y.

Proof. (c7). xf 0 = (x→ 0∗)∗ = (x→ 1)∗ = 1∗ = 0, xf 1 = (x→ 1∗)∗ = x∗∗ and xf x∗ = (x→
x∗∗)∗ = 1∗ = 0.

(c8). x f y = (x → y∗)∗
(c5)
= (y → x∗)∗ = y f x and since 0 ≤ y∗, by (c3), x

∗ ≤ x → y∗, so
xf y ≤ x∗∗. Similarly, xf y ≤ y∗∗.

(c9). Using (c3), from x ≤ y we deduce y → z∗ ≤ x → z∗, so, (x → z∗)∗ ≤ (y → z∗)∗. Hence
xf z ≤ y f z.

(c10). From (c1) and (c3), x, y ≤ xgy = x∗ → y. Also, xg0 = x∗ → 0 = x∗∗, xg1 = x∗ → 1 = 1
and xg x∗ = x∗ → x∗ = 1.

(c11). We have x∗ ≤ (x∗ → y) → y ≤ y∗ → (x∗ → y)∗ ≤ ((x∗ → y)∗ → z) → (y∗ → z).
Therefore,

1 = x∗ → [((x∗ → y)∗ → z)→ (y∗ → z)] = ((x∗ → y)∗ → z)→ (x∗ → (y∗ → z)).

Thus, (x∗ → y)∗ → z ≤ x∗ → (y∗ → z). We deduce that

xg (y g z) = x∗ → (y∗ → z) ≥ (x∗ → y)∗ → z = (xg y) g z.

Also, xg (y g z) = x∗ → (y∗ → z)
(C)
= y∗ → (x∗ → z) = y g (xg z).

(c12). Since x → y ≤ y∗ → x∗, by (C), we have y∗ ≤ (x → y) → x∗. So by (c5) and (c6),
y∗ ≤ x→ (x→ y)∗, thus, xf (x→ y) = [x→ (x→ y)∗]∗ ≤ y∗∗.

Also, x∗∗fy∗∗ = (x∗∗ → y∗∗∗)∗ = (x∗∗ → y∗)∗ = (y → x∗∗∗)∗ = (y → x∗)∗ = yfx = xfy.
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Proposition 2.4. Let A be a bounded BCK-algebra with Glivenko property and x, y, z, x1, x2, ..., xn ∈
A, n ≥ 2. Then:

(c13) (xf y)∗ = x∗ g y∗ and (xg y)∗ = x∗ f y∗;

(c14) xf (y f z) = (xf y) f z;

(c15) x1 f x2 f ...f xn = (x1, x2, ..., xn−1;x
∗
n)∗;

(c16) if xf z ≤ y, then x ≤ z → y∗∗;

(c17) xf z ≤ y∗∗ iff x ≤ z → y∗∗;

(c18) if (x1, x2, ..., xn; y) = 1, then x1 f x2 f ...f xn ≤ y∗∗.

Proof. (c13). We have x∗ g y∗ = x∗∗ → y∗ = y → x∗∗∗ = y → x∗ and (x f y)∗ = (x → y∗)∗∗
(G)
=

x→ y∗∗∗ = x→ y∗, hence (xf y)∗ = x∗ g y∗.

Also, x∗ f y∗ = (x∗ → y∗∗)∗
(G)
= ((x∗ → y)∗∗)∗ = (x∗ → y)∗ = (xg y)∗.

(c14). Let x, y, z ∈ A. Then

(xf y) f z
(c8)
= z f (xf y) = [z → (xf y)∗]∗

(c13)
= [z → (x∗ g y∗)]∗

= [z → (x∗∗ → y∗)]∗
(c5)
= [z → (y → x∗)]∗

(C)
= [y → (z → x∗)]∗.

Similarly, xf (y f z) = [y → (x→ z∗)]∗. Using (c5) we deduce that xf (y f z) = (xf y) f z.
(c15). By induction on n, using the associativity of f we can write

x1 f x2 f ...f xn = x1 f (x2 f ...f xn) = [x1 → (x2 f ...f xn)∗]∗ = [x1 → (x2, ..., xn−1;x
∗
n)∗∗]∗

(G)
= [x1 → (x2, ..., xn−1;x

∗
n)]∗∗∗ = [x1 → (x2, ..., xn−1;x

∗
n)]∗ = (x1, x2, ..., xn−1;x

∗
n)∗.

(c16). If x f z ≤ y, then (x → z∗)∗ ≤ y, so y∗ ≤ (x → z∗)∗∗
(G)
= x → z∗∗∗ = x → z∗, hence

x ≤ y∗ → z∗ = z → y∗∗.
(c17). Suppose that x f z ≤ y∗∗. From (c16) we deduce that x ≤ z → (y∗∗)∗∗ = z → y∗∗.

Conversely, if x ≤ z → y∗∗, then x ≤ y∗ → z∗. Thus, y∗ ≤ x→ z∗ = x→ z∗∗∗
(G)
= (x→ z∗)∗∗. We

deduce that (x→ z∗)∗ ≤ y∗∗, so xf z ≤ y∗∗.
(c18). Mathematical induction on n.
Consider n = 2 and (x1, x2; y) = 1, that is, x1 → (x2 → y) = 1. From y ≤ y∗∗ we deduce that

1 = x1 → (x2 → y) ≤ x1 → (x2 → y∗∗), hence x1 → (x2 → y∗∗) = 1, that is, x1 ≤ x2 → y∗∗ =
y∗ → x∗2. Then y∗ ≤ x1 → x∗2, hence (x1 → x∗2)

∗ ≤ y∗∗, that is, x1 f x2 ≤ y∗∗.
Suppose that the assertion is true for n−1 and let (x1, x2, ..., xn; y) = 1. Since 1 = (x1, x2, ..., xn; y) =

(x1, x2, ..., xn−1;xn → y) then x1 f x2 f ... f xn−1 ≤ (xn → y)∗∗
(G)
= xn → y∗∗. From (c17), we

obtain x1 f x2 f ...f xn ≤ y∗∗.

Definition 2.5. [6] Let A be a BCK-algebra. A subset D of A is called a deductive system (or
filter) of A if 1 ∈ D and for every x, y ∈ A if x, x→ y ∈ D , then y ∈ D.

A deductive system D is called proper if D 6= A. We denote by Ds(A) the set of all deductive
systems of A. If A is bounded, then a deductive system D is proper iff 0 /∈ D.
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Lemma 2.6. Let A be a bounded BCK-algebra and D ∈ Ds(A). If x, y ∈ D, then xf y ∈ D.

Proof. We have y → (x f y) = y → (x → y∗)∗ = (x → y∗) → y∗ ∈ D, since by (c1), x ≤ (x →
y∗)→ y∗. Because y ∈ D, we deduce that xf y ∈ D.

If A is a BCK-algebra and S ⊆ A is a nonempty subset of A, we denote by 〈S〉 the lowest
deductive system of A (relative to inclusion) which contains S; 〈S〉 is called the deductive system
of A generated by S.

For two elements x, y ∈ A and a natural number n ≥ 1 we define x→n y = x→ (x→ ...(x→
y)...), where n indicates the number of occurrences of x.

Theorem 2.7. [6], [12] Let A be a BCK-algebra and S ⊆ A be a nonempty subset of A, D ∈ Ds(A)
and a ∈ A. Then:

(i) 〈S〉 = {x ∈ A : there are n ≥ 1 and a1, a2, ..., an ∈ S such that (a1, a2, ..., an;x) = 1}; In
particular, 〈a〉 = 〈{a}〉 = {x ∈ A : a→n x = 1, for some n ≥ 1};

(ii) (Ds(A),⊆) is a complete distributive lattice, where for D1, D2 ∈ Ds(A), D1 ∧D2 = D1 ∩D2

and D1 ∨D2 = 〈D1 ∪D2〉.

A proper deductive system P of a BCK-algebra A is called irreducible (prime) if it is a meet-
irreducible (meet-prime) element of the lattice Ds(A). Since (Ds(A),⊆) is distributive, then the
notions of irreducible and prime coincide. We denote by Spec(A) the set of all prime deductive
systems of A.

Theorem 2.8. [6], [12] Let A be a BCK-algebra and P ∈ Ds(A) such that P 6= A. Then the
following statements are equivalent:

(i) P ∈ Spec(A);

(ii) if D1 ∩D2 ⊆ P with D1, D2 ∈ Ds(A), then D1 ⊆ P or D2 ⊆ P ;

(iii) for every x, y ∈ A, if U(x, y) = {z ∈ A : z ≥ x and z ≥ y} ⊆ P , then x ∈ P or y ∈ P.

For a BCK-algebra A, a subset I ⊆ A is called an ideal of A (see [6]) if:

(i1) y ∈ I and x ≤ y imply x ∈ I;

(i2) for every x, y ∈ I there exists z ∈ I such that x, y ≤ z.

Theorem 2.9. ([6]) Let A be a BCK-algebra and D ∈ Ds(A).

(i) If I is an ideal of A such that D ∩ I = ∅, then there exists P ∈ Spec(A) such that D ⊆ P
and I ∩ P = ∅ ;

(ii) For each a /∈ D there exists P ∈ Spec(A) such that a /∈ P and D ⊆ P ;

(iii) D = ∩{P ∈ Spec(A) : D ⊆ P}.

A proper deductive system M of a BCK-algebra A is called maximal if it is a maximal element
in the lattice (Ds(A),⊆). We denote by Max(A) the set of all maximal deductive systems of A.
Obviously, Max(A) ⊆ Spec(A).

In a BCK-algebra A, for x, y ∈ A we denote x t y = (x → y) → y. Using (c1) and (c2), we
deduce that x, y ≤ x t y and (x t y)→ y = x→ y.
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Theorem 2.10. ([9]) Let M be a proper deductive system of a bounded BCK-algebra A. Then the
following are equivalent:

(i) M ∈Max(A);

(ii) if x /∈M, then there exists n ≥ 1 such that x→n 0 ∈M.

Theorem 2.11. ([9], Corollary 6.7) Let A be a BCK-algebra and M ∈Max(A). For x, y ∈ A, if
x t y ∈M , then x ∈M or y ∈M.

Lemma 2.12. Let A be a bounded BCK-algebra, x ∈ A and M ∈ Max(A). Then x ∈ M iff
x∗∗ ∈M .

Proof. If x ∈M , then since x ≤ x∗∗ we deduce that x∗∗ ∈M.
Conversely, suppose that x∗∗ ∈ M. If x /∈ M, then by Theorem 2.10 (ii), we deduce that

x→n 0 ∈M , for some n ≥ 1.
If n = 1, then x∗, x∗∗ ∈M imply that 0 ∈M, which is a contradiction.
If n ≥ 2, then x →n 0 ∈ M and x∗∗ = (x → 0) → 0 ∈ M implies x →n−1 0 ∈ M, hence

x→ 0 ∈M. Since x∗∗ ∈M we obtain 0 ∈M, a contradiction. We conclude that x ∈M.

3 The topological spaces Spec(A) and Max(A)

Let A be a bounded BCK-algebra, S ⊆ A and x ∈ A. We denote D(S) = {P ∈ Spec(A) : S * P}
and D(x) = {P ∈ Spec(A) : x /∈ P}.

Proposition 3.1. Let A be a bounded BCK-algebra and S, S1, S2 ⊆ A. Then the following hold:

(i) D(∅) = ∅ and D(A) = Spec(A);

(ii) if S1 ⊆ S2, then D(S1) ⊆ D(S2);

(iii) D(S) = D(〈S〉);

(iv) D(S1) = D(S2) iff 〈S1〉 = 〈S2〉;

(v) if F,G ∈ Ds(A), then F = G iff D(F ) = D(G);

(vi) if Si ⊆ A, i ∈ I, then D( ∪
i∈I
Si) = ∪

i∈I
D(Si);

(vii) if Fi ∈ Ds(A), i ∈ I, then D( ∨
i∈I
Fi) = ∪

i∈I
D(Fi);

(viii) D(〈S1〉) ∩D(〈S2〉) = D(〈S1〉 ∩ 〈S2〉).

Proof. (i), (ii). Obviously.
(iii). A deductive system of A that includes S also includes 〈S〉, so, D(S) = D(〈S〉).
(iv). First, we suppose that 〈S1〉 = 〈S2〉. From (iii) we have D(S1) = D(〈S1〉) = D(〈S2〉) =

D(S2). Conversely, we suppose that D(S1) = D(S2). If 〈S1〉 = A, then D(S1) = D(〈S1〉) = D(A) =
Spec(A) and D(S2) = Spec(A) so, 〈S2〉 = A. If we suppose that 〈S1〉 and 〈S2〉 are proper filters of
A, then applying Theorem 2.9 (iii), we obtain

〈S1〉 = ∩{P ∈ Spec(A) : 〈S1〉 ⊆ P} = ∩{P ∈ Spec(A) : P /∈ D(〈S1〉)}
= ∩{P ∈ Spec(A) : P /∈ D(〈S2〉)} = ∩{P ∈ Spec(A) : 〈S2〉 ⊆ P} = 〈S2〉.
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(v). Follows from (iv) since F,G ∈ Ds(A) implies F = 〈F 〉 and G = 〈G〉.
(vi). Using (ii), we deduce that ∪

i∈I
D(Si) ⊆ D( ∪

i∈I
Si). Conversely, let P ∈ D( ∪

i∈I
Si). Then there

exists i ∈ I such that Si * P. This is equivalent with P ∈ D(Si) ⊆ ∪
i∈I
D(Si). Thus D( ∪

i∈I
Si) =

∪
i∈I
D(Si).

(vii). Follows from (iii) and (vi).
(viii). Using (ii) we deduce that D(〈S1〉∩〈S2〉) ⊆ D(〈S1〉)∩D(〈S2〉). Let P ∈ D(〈S1〉)∩D(〈S2〉).

From Theorem 2.8(ii), 〈S1〉 ∩ 〈S2〉 * P, so P ∈ D(〈S1〉 ∩ 〈S2〉).

Theorem 3.2. For a BCK-algebra A, the family τA = {D(S) : S ⊆ A} is a topology on Spec(A)
having {D(x) : x ∈ A} as basis.

Proof. Using Proposition 3.1 we deduce that τA is a topology on Spec(A). For S ⊆ A, S = ∪
x∈S
{x},

so D(S) = D( ∪
x∈S
{x}) = ∪

x∈S
D(x).

Definition 3.3. The topology τA is called the Zariski topology on Spec(A) and the topological
space (Spec(A), τA) is called the prime spectrum of A.

For S ⊆ A and x ∈ A we define V (S) = Spec(A)\D(S) = {P ∈ Spec(A) : S ⊆ P} and
V (x) = Spec(A)\D(x) = {P ∈ Spec(A) : x ∈ P}.

Proposition 3.4. Let A be a bounded BCK-algebra and S, S1, S2 ⊆ A. Then the following asser-
tions hold:

(i) V (0) = ∅ and V (∅) = V (1) = Spec(A);

(ii) if S1 ⊆ S2, then V (S2) ⊆ V (S1);

(iii) V (S) = ∅ iff 〈S〉 = A;

(iv) V (S) = Spec(A) iff S = ∅ or S = {1};

(v) V (S) = V (〈S〉);

(vi) V (S1) = V (S2) iff 〈S1〉 = 〈S2〉;

(vii) for F,G ∈ Ds(A), V (F ) = V (G) iff F = G;

(viii) V (S1) ∪ V (S2) = V (〈S1〉 ∩ 〈S2〉).

(ix) if Si ⊆ A, i ∈ I, then V ( ∪
i∈I
Si) = ∩

i∈I
V (Si).

Proof. (i), (ii), (v). Obviously.
(iii). Suppose that V (S) = ∅ and 〈S〉 6= A. By Theorem 2.9(i), there exists P ∈ Spec(A)

such that S ⊆ 〈S〉 ⊆ P. We deduce that P ∈ V (S), a contradiction. Conversely, we suppose that
〈S〉 = A. If V (S) 6= ∅, then there is some P ∈ Spec(A) such that S ⊆ P. Thus 〈S〉 ⊆ P 6= A, a
contradiction.

(iv). For S = ∅ or S = {1}, by (i), we deduce that V (S) = Spec(A).
Conversely, we suppose that V (S) = Spec(A) but S 6= ∅ and S 6= {1}. Then there is s ∈ S, s 6=

1. By Theorem 2.9(ii), there exists P ∈ Spec(A) such that s /∈ P. Thus, S * P, so P /∈ V (S). We
conclude that V (S) 6= Spec(A), a contradiction.
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(vi). Let S1, S2 ⊆ A such that 〈S1〉 = 〈S2〉. Using (v), V (S1) = V (〈S1〉) = V (〈S2〉) = V (S2).
Conversely, let S1, S2 ⊆ A such that V (S1) = V (S2). Thus D(S1) = D(S2), so by Proposition
3.1(iv), 〈S1〉 = 〈S2〉.

(vii). Follows from (vi), since F = 〈F 〉 and G = 〈G〉.
(viii). From (ii) and (v), since 〈S1〉 ∩ 〈S2〉 ⊆ 〈S1〉, 〈S2〉 we deduce that V (S1) = V (〈S1〉) ⊆

V (〈S1〉 ∩ 〈S2〉) and V (S2) ⊆ V (〈S1〉 ∩ 〈S2〉). Thus, V (S1) ∪ V (S2) ⊆ V (〈S1〉 ∩ 〈S2〉).
If P ∈ V (〈S1〉 ∩ 〈S2〉), then P ∈ Spec(A) and 〈S1〉 ∩ 〈S2〉 ⊆ P.
Using Theorem 2.8(ii), we deduce that 〈S1〉 ⊆ P or 〈S2〉 ⊆ P. Hence P ∈ V (〈S1〉) ∪ V (〈S2〉) =

V (S1) ∪ V (S2). We conclude that, V (〈S1〉 ∩ 〈S2〉) = V (S1) ∪ V (S2).
(ix). By duality from Proposition 3.1(vi).

Proposition 3.5. Let A be a bounded BCK-algebra and x, y ∈ A. Then the following hold:

(i) if x ≤ y, then D(y) ⊆ D(x);

(ii) D(x) = ∅ iff x = 1;

(iii) D(x) = Spec(A) iff 〈x〉 = A iff x→n 0 = 1, for some n ≥ 1;

(iv) D(x∗∗) ∪D(y∗∗) = D(xf y);

(v) D(x) ∩D(y) = D(U(x, y));

(vi) D(x) = D(y) iff 〈x〉 = 〈y〉.

Proof. (i). If P ∈ D(y), then y /∈ P. Clearly, x /∈ P, since if x ∈ P, from x ≤ y we deduce that
y ∈ P , a contradiction. So, P ∈ D(x), that is, D(y) ⊆ D(x).

(ii). D(x) = ∅ iff V (x) = Spec(A) iff x = 1, by Proposition 3.4(iv).
(iii). D(x) = Spec(A) iff V (x) = ∅ iff 〈x〉 = A, by Proposition 3.4(iii), iff 0 ∈ 〈x〉 iff x→n 0 = 1,

for some n ≥ 1.
(iv). Since x f y ≤ x∗∗, y∗∗, by (i), we deduce that D(x∗∗), D(y∗∗) ⊆ D(x f y), so, D(x∗∗) ∪

D(y∗∗) ⊆ D(x f y). Let P ∈ D(x f y). Hence x f y /∈ P. Then x∗∗ /∈ P or y∗∗ /∈ P since if
we suppose by contrary that x∗∗ ∈ P and y∗∗ ∈ P, using Lemma 2.6 and (c12) we deduce that
x∗∗fy∗∗ = xfy ∈ P, a contradiction. Thus, P ∈ D(x∗∗)∪D(y∗∗) and D(xfy) ⊆ D(x∗∗)∪D(y∗∗).
We conclude that D(x∗∗) ∪D(y∗∗) = D(xf y).

(v). Let P ∈ D(x) ∩D(y). Thus, x /∈ P and y /∈ P. If we suppose that P /∈ D(U(x, y)), thus,
U(x, y) ⊆ P, so by Theorem 2.8(iii), x ∈ P or y ∈ P, a contradiction. Conversely, we suppose that
P ∈ D(U(x, y)). Thus, U(x, y) * P, so there exists z ∈ U(x, y) such that z ≥ x, z ≥ y and z /∈ P.
If by contrary, P /∈ D(x) ∩D(y), then x ∈ P or y ∈ P. Since z ≥ x, y we deduce that z ∈ P, a
contradiction. Hence D(x) ∩D(y) = D(U(x, y)).

(vi). Using Proposition 3.1(iv), D(x) = D(y) iff 〈x〉 = 〈y〉.

Proposition 3.6. Let A be a bounded BCK-algebra and x, y ∈ A. Then the following hold:

(i) if x ≤ y, then V (x) ⊆ V (y);

(ii) V (x) = ∅ iff 〈x〉 = A iff x→n 0 = 1, for some n ≥ 1;

(iii) V (x) = Spec(A) iff x = 1;

(iv) V (x∗∗) ∩ V (y∗∗) = V (xf y);
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(v) V (x) ∪ V (y) = V (U(x, y));

(vi) V (x) ⊆ D(x∗).

Proof. (i)− (v). Follows from Proposition 3.5, (i)− (vi).
(vi). If P ∈ V (x), then x ∈ P. If by contrary, x∗ ∈ P, then 0 ∈ P , so, P = A, a contradiction.

So, x∗ /∈ P, that is, P ∈ D(x∗). Hence V (x) ⊆ D(x∗).

For a bounded BCK-algebra A, Max(A) ⊆ Spec(A), so we can consider on Max(A) the
topology induced by the Zariski topology and we obtain a topological space called the maximal
spectrum of A.

For S ⊆ A and x ∈ A, we define DMax(S) = D(S) ∩Max(A) = {M ∈ Max(A) : S * M},
DMax(x) = D(x) ∩Max(A) = {M ∈Max(A) : x /∈M} and VMax(x) = V (x) ∩Max(A) = {M ∈
Max(A) : x ∈M}. Obviously, DMax(x) = Max(A)\VMax(x).

Theorem 3.7. The set τA,Max(A) = {DMax(S) : S ⊆ A} is the family of open sets of the maximal
spectrum of A and the family {DMax(x) : x ∈ A} is a basis for the topology τA,Max(A) of Max(A).

Proposition 3.8. Let A be a bounded BCK-algebra and x, y, z ∈ A. Then the following hold:

(i) VMax(0) = ∅, VMax(1) = Max(A), DMax(0) = Max(A), DMax(1) = ∅;

(ii) if x ≤ y, then VMax(x) ⊆ VMax(y) and DMax(y) ⊆ DMax(x);

(iii) VMax(x∗∗) = VMax(x) and DMax(x∗∗) = DMax(x);

(iv) VMax(xf (y t z)) = VMax((xf y) t (xf z));

(v) VMax(x) ∩ VMax(y) = VMax(xf y) and DMax(x) ∪DMax(y) = DMax(xf y);

(vi) VMax(x) ∪ VMax(y) = VMax(x t y) and DMax(x) ∩DMax(y) = DMax(x t y).

Proof. (i) and (ii). Follows from Propositions 3.5 and 3.6.
(iii). For M ∈ Max(A), using Lemma 2.12, x ∈ M iff x∗∗ ∈ M. Thus, VMax(x∗∗) = VMax(x)

and DMax(x∗∗) = DMax(x).
(iv). Let M ∈ VMax(x f (y t z)). Then x f (y t z) ∈ M. Since x f (y t z) ≤ x∗∗, (y t z)∗∗,

from Lemma 2.12, x, y t z ∈ M. But M ∈ Max(A), so, from Theorem 2.11, y ∈ M or z ∈ M. If
x, y ∈M, by Lemma 2.6, xf y ∈M, so, (xf y)t (xf z) ∈M. Analogous if x, z ∈M. We deduce
that M ∈ VMax((xf y) t (xf z)), so VMax(xf (y t z)) ⊆ VMax((xf y) t (xf z)).

Conversely, let M ∈ VMax((x f y) t (x f z)). We deduce that (x f y) t (x f z) ∈ M. Using
Theorem 2.11, x f y ∈ M or x f z ∈ M. Thus, x∗∗ ∈ M and y∗∗ or z∗∗ ∈ M. By Lemma 2.12,
we have x ∈ M and y or z ∈ M. Since y, z ≤ y t z we obtain y t z ∈ M and from Lemma 2.6,
xf(ytz) ∈M, so M ∈ VMax(xf(ytz)). We deduce that VMax((xfy)t(xfz)) ⊆ VMax(xf(ytz)).

(v). From Proposition 3.6, we deduce that

VMax(x) ∩ VMax(y) = VMax(x∗∗) ∩ VMax(y∗∗) = VMax(xf y).

Then, DMax(x) ∪DMax(y) = DMax(xf y).
(vi). Since x, y ≤ xt y, by (ii), we deduce that VMax(x), VMax(y) ⊆ VMax(xt y) so, VMax(x)∪

VMax(y) ⊆ VMax(x t y). Conversely, let M ∈ VMax(x t y). Using Theorem 2.11, we deduce that
x ∈ M or y ∈ M. Hence M ∈ VMax(x) ∪ VMax(y), so, VMax(x) ∪ VMax(y) = VMax(x t y). We
conclude that DMax(x) ∩DMax(y) = DMax(x t y).
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Proposition 3.9. Let A be a bounded BCK-algebra with Glivenko property. Then DMax(x) is a
compact set in Max(A), for every x ∈ A.

Proof. We prove that any cover of DMax(x) with basic open sets contains a finite cover of DMax(x).
Let DMax(x) = ∪

i∈I
DMax(xi). Using Proposition 3.1, (vi), DMax(x) = DMax( ∪

i∈I
{xi}). From Propo-

sition 3.1(iv), we deduce that 〈x〉 = 〈{xi : i ∈ I}〉, so, x ∈ 〈{xi : i ∈ I}〉. Using Theorem 2.7, there
are n ≥ 1 and i1, ..., in ∈ I such that (xi1 , xi2 , ..., xin ;x) = 1.

We prove that DMax(x) = DMax(xii) ∪ ... ∪DMax(xin).
From (xi1 , xi2 , ..., xin ;x) = 1, using (c18) we deduce that xii f ...fxin ≤ x∗∗, so, by Proposition

3.8, we obtain

DMax(x) = DMax(x∗∗) ⊆ DMax(xii f ...f xin) = DMax(xii) ∪ ... ∪DMax(xin).

Since DMax(xii) ∪ ... ∪DMax(xin) ⊆ ∪
i∈I
DMax(xi) = DMax(x), the other inclusion is obvious.

Theorem 3.10. If A is a bounded BCK-algebra with Glivenko property, then Max(A) is a com-
pact topological space.

Proof. Since Max(A) = DMax(0), by Proposition 3.9 we deduce that Max(A) is compact.

4 The Belluce lattice associated with a bounded BCK-algebra

Let L be a bounded lattice. A nonempty subset F of L is called a filter of L ([2]) if it satisfies:

(f1) 1 ∈ F ;

(f2) if x, y ∈ F, then x ∧ y ∈ F ;

(f3) if x ∈ F, y ∈ L, and x ≤ y, then y ∈ F.

The set of all filters of L is denoted by F (L); if L is a distributive lattice, then (F (L),⊆) is
also a distributive lattice, see [2]. A filter F of L is called proper if F 6= L.

For a distributive lattice L and P ∈ F (L), P 6= L, the following are equivalent: [P is a
meet-prime element in F (L)] iff [P is a meet-irreducible element in F (L)] iff [for every x, y ∈ L if
x ∨ y ∈ P , then x ∈ P or y ∈ P ].

A proper filter P of a distributive lattice L is called prime if it verifies one of the above
equivalent conditions, see [2]. The set of all prime filters of L is denoted by Spec(L) and it is
called the prime spectrum of L. For S ⊆ L, x ∈ L we denote D(S) = {P ∈ Spec(L) : S * P} and
D(x) = {P ∈ Spec(L) : x /∈ P}. It is known that the family {D(S) : S ⊆ L} is a topology on
Spec(L) and the family {D(x) : x ∈ L} is a basis for this topology.

Also, we recall that a proper filter M of a lattice L is called maximal (see [2]) if it is a maximal
element of the set of all proper filters of L. The set of all maximal filters of L is called the maximal
spectrum of L and it is denoted by Max(L).

In a lattice L for S ⊆ L and x ∈ L we denote DMax(S) = {M ∈ Max(L) : S * M} and
DMax(x) = {M ∈ Max(L) : x /∈ M}. If L is distributive, since Max(L) ⊆ Spec(L), the family
{DMax(S) : S ⊆ L} is a topology on Max(L) having {DMax(x) : x ∈ L} as a basis.

Now let A be a bounded BCK-algebra. We define a binary relation ≡ on A as follows: for
x, y ∈ A, x ≡ y iff for any M ∈ Max(A), (x /∈ M iff y /∈ M) iff for any M ∈ Max(A), (x ∈ M iff
y ∈M).
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Remark 4.1. From Proposition 3.5, for x, y ∈ A, x ≡ y iff VMax(x) = VMax(y) iff DMax(x) =
DMax(y) iff 〈x〉 = 〈y〉.

Proposition 4.2. ≡ is a congruence relation on A with respect to f and t.

Proof. It is obvious that ≡ is an equivalence relation on A. Let x, y, z, t ∈ A such that x ≡ y and
z ≡ t. We prove that xf z ≡ y f t and x t z ≡ y t t .

Let M ∈Max(A). If xfz ∈M, since by (c8), xfz ≤ x∗∗, z∗∗ then x∗∗, z∗∗ ∈M. From Lemma
2.12, we deduce that x, z ∈M. Since x ≡ y and z ≡ t we have y, t ∈M. By Lemma 2.6 we obtain
y f t ∈M.

If x t z ∈ M , by Theorem 2.11, x ∈ M or z ∈ M. Since x ≡ y and z ≡ t we deduce that y or
t ∈M, hence y t t ∈M, since y, t ≤ y t t.

For x ∈ A we denote by [x] the congruence class of x and by LA the quotient set LA = A/ ≡
= {[x] : x ∈ A}. Also, let pA : A → LA be the canonical surjection defined by pA(x) = [x], for
every x ∈ A.

Obviously, on LA the relation [x] v [y] iff for every M ∈Max(A), x ∈M implies y ∈M is an
order relation on A.

Proposition 4.3. Let A be a bounded BCK-algebra and x, y ∈ A. The following assertions hold:

(i) [x] = [x∗∗];

(ii) if x ≤ y, then [x] v [y];

(iii) [x] v [y] iff [xf y] = [x];

(iv) [x] v [y] iff [x t y] = [y].

Proof. (i). Follows from Lemma 2.12.
(ii). Let M ∈Max(L) such that x ∈M. Since x ≤ y we deduce that y ∈M, so, [x] v [y].
(iii). Suppose that [x] v [y]. Since xfy ≤ x∗∗, by (i) and (ii) we deduce that [xfy] v [x∗∗] = [x].

Now, let M ∈ Max(L) such that x ∈ M. Since [x] v [y] we deduce that y ∈ M. Using Lemma
2.6, x f y ∈ M, so, [x] v [x f y]. We conclude that [x f y] = [x]. Conversely, we suppose that
[xf y] = [x]. Since xf y ≤ y∗∗, using (ii), we have [xf y] v [y∗∗] = [y]. Thus, [x] v [y].

(iv). If [x] v [y], since y ≤ xt y, from (ii) we deduce that [y] v [xt y]. Now, let M ∈Max(L)
such that x t y ∈ M. From Theorem 2.11, x ∈ M or y ∈ M. If y ∈ M, then [x t y] v [y], so,
[xt y] = [y]. If x ∈M, since [x] v [y], we deduce that y ∈M, so, [xt y] = [y]. Conversely, suppose
that [xty] = [y] and let M ∈Max(L) such that x ∈M. Since x ≤ xty we obtain that xty ∈M,
so y ∈M. Thus, [x] v [y].

Theorem 4.4. (LA,∧,∨, [0], [1]) is a bounded distributive lattice, relative to the above order, in
which [x] ∧ [y] = [xf y] and [x] ∨ [y] = [x t y], for every x, y ∈ A.

Proof. Obviously, [x f y] v [x], [y], for every x, y ∈ A. Let z ∈ A such that [z] v [x], [y]. To prove
that [z] v [x f y] we consider M ∈ Max(A) such that z ∈ M. By definition we deduce that
x, y ∈M, hence, using Lemma 2.6, xf y ∈M . Thus, [x] ∧ [y] = [xf y].

Clearly, [x], [y] v [x t y]. Let z ∈ A such that [x], [y] v [z]. To prove that [x t y] v [z] we
consider M ∈ Max(A) such that x t y ∈ M. By Theorem 2.11 we deduce that x ∈ M or y ∈ M.
In both cases, z ∈M, hence [x] ∨ [y] = [x t y] .
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Since [0]∧ [x] = [0f x] = [0] and [x]∧ [1] = [xf 1] = [x∗∗] = [x] we deduce that [0] v [x] v [1],
for every x ∈ A, so (LA,∧,∨, [0], [1]) is a bounded lattice.

To prove the distributivity of LA, let x, y, z ∈ A. We show that [x] ∧ ([y] ∨ [z]) = ([x] ∧ [y]) ∨
([x]∧ [z]). This is equivalent to show that [xf (yt z)] = [(xf y)t (xf z)]. First, let M ∈Max(A)
such that xf (y t z) ∈M. Thus, M ∈ VMax(xf (y t z)) = VMax(x) ∩ VMax(y t z). Hence x ∈M
and (y ∈ M or z ∈ M). If x, y ∈ M , then x f y ∈ M, so, (x f y) t (x f z) ∈ M. Similarly if
x, z ∈ M. We conclude that [x f (y t z)] v [(x f y) t (x f z)]. Conversely, let M ∈ Max(A) such
that (x f y) t (x f z) ∈ M. Thus, x f y ∈ M or x f z ∈ M. Since x f y, x f z ≤ x f (y t z) we
deduce that x f (y t z) ∈ M. Thus, [(x f y) t (x f z)] v [x f (y t z)]. We conclude that LA is a
distributive lattice.

Definition 4.5. For a bounded BCK-algebra A, the bounded distributive lattice LA is called the
Belluce lattice associated with A.

Proposition 4.6. Let A be a bounded BCK-algebra and x, y ∈ A. Then the following assertions
hold:

(i) [x] v [y] iff DMax(y) ⊆ DMax(x);

(ii) [x] = [y] iff 〈x〉 = 〈y〉;

(iii) [x] = [0] iff x→n 0 = 1 for some n ≥ 1;

(iv) [x] = [1] iff x = 1.

Proof. (i). We have [x] v [y] iff [xf y] = [x] iff DMax(x) = DMax(xf y) = DMax(x)∪DMax(y) iff
DMax(y) ⊆ DMax(x).

(ii). Follows from Remark 4.1.
(iii). By (ii), [x] = [0] iff 〈x〉 = 〈0〉 = A iff x→n 0 = 1, for some n ≥ 1.
(iv). By (ii), [x] = [1] iff 〈x〉 = 〈1〉 iff 〈x〉 = {1} iff x = 1.

We recall that if A and B are two BCK-algebras, then f : A → B is a morphism of BCK-
algebras if f(x → y) = f(x) → f(y), for every x, y ∈ A. If A and B are bounded BCK-algebras,
we ask that f(0) = 0, see [12].

We denote by BCK the category of bounded BCK-algebras and by Ld(0,1) the category of
bounded distributive lattices.

Remark 4.7. If f : A→ B is a morphism in BCK, then for every x, y ∈ A, f(x∗) = (f(x))∗, f(xf
y) = f(x) f f(y) and f(x t y) = f(x) t f(y).

Proposition 4.8. Let f : A→ B be a morphism in BCK.

(i) If D ∈ Ds(B), then f−1(D) ∈ Ds(A) and if D is proper, then f−1(D) is also proper;

(ii) If M ∈Max(B), then f−1(M) ∈Max(A);

(iii) If x, y ∈ A such that DMax(x) = DMax(y), then DMax(f(x)) = DMax(f(y)).

Proof. (i). For D ∈ Ds(B), since f(1) = 1 we deduce that 1 ∈ f−1(D). Let x, y ∈ A such that
x, x → y ∈ f−1(D). Then f(x), f(x → y) = f(x) → f(y) ∈ D. Since D ∈ Ds(B) we deduce that
f(y) ∈ D, hence y ∈ f−1(D), that is, f−1(D) ∈ Ds(A). If D is proper, then D 6= B, so 0 /∈ D. If
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f−1(D) = A, then 0 ∈ f−1(D), hence 0 = f(0) ∈ D, a contradiction. We deduce that f−1(D) is a
proper filter of A.

(ii). For M ∈ Max(B), using (i), f−1(M) 6= A. To prove that f−1(M) ∈ Max(A), let x ∈ A
such that x /∈ f−1(M). By Theorem 2.10, there exists n ≥ 1 such that f(x→n 0) = f(x)→n 0 ∈
M. Thus x→n 0 ∈ f−1(M), so, f−1(M) ∈Max(A).

(iii). For M ∈Max(B), using (ii), f−1(M) ∈Max(A). We have M ∈ DMax(f(x)) iff f(x) /∈M
iff x /∈ f−1(M) iff f−1(M) ∈ DMax(x) iff f−1(M) ∈ DMax(y) iff y /∈ f−1(M) iff f(y) /∈ M iff
M ∈ DMax(f(y)). We deduce that DMax(f(x)) = DMax(f(y)).

Theorem 4.9. Let f : A → B be a morphism in BCK. Then R(f) : LA → LB defined by
R(f)([x]) = [f(x)], for every x ∈ A, is a morphism in Ld(0,1) with the property that pB ◦ f =
R(f) ◦ pA.

Proof. By Proposition 4.8 (iii), we deduce that R(f) is well-defined. Clearly, R(f)([0]) = [f(0)] =
[0] and R(f)([1]) = [f(1)] = [1]. Let x, y ∈ A. We have

R(f)([x]∧[y]) = R(f)([xfy]) = [f(xfy)] = [f(x)ff(y)] = [f(x)]∧[f(y)] = R(f)([x])∧R(f)([y]),

and

R(f)([x]∨ [y]) = R(f)([xty]) = [f(xty)] = [f(x)tf(y)] = [f(x)]∨ [f(y)] = R(f)([x])∨R(f)([y]).

We deduce that R(f) is a morphism in Ld(0,1).
Since pA(x) = [x] and pB(f(x)) = [f(x)] we deduce that R(f)(pA(x)) = pB(f(x)), so (R(f) ◦

pA)(x) = (pB ◦ f)(x), for every x ∈ A. Thus, pB ◦ f = R(f) ◦ pA.

For every A ∈ Ob(BCK) we denote R(A) = LA. In this way, we define a functor R : BCK →
Ld(0,1) and we called R the reticulation functor.

Lemma 4.10. Let f : A→ B be an injective morphism in BCK and x, y ∈ A such that 〈f(x)〉 =
〈f(y)〉. Then 〈x〉 = 〈y〉.

Proof. Let z ∈ 〈x〉. Then x→n z = 1 for some n ≥ 1 and f(x)→n f(z) = f(1) = 1. Thus, f(z) ∈
〈f(x)〉 = 〈f(y)〉, so there exists m ≥ 1 such that f(y) →m f(z) = 1. Hence, f(y →m z) = f(1).
Since f is injective we deduce that y →m z = 1, so, z ∈ 〈y〉. Hence 〈x〉 ⊆ 〈y〉. Similarly, 〈y〉 ⊆ 〈x〉,
so 〈x〉 = 〈y〉.

Theorem 4.11. The reticulation functor R preserves injective and surjective morphisms.

Proof. Let f : A → B be an injective morphism in BCK and x, y ∈ A such that R(f)([x]) =
R(f)([y]). Then [f(x)] = [f(y)] and using Proposition 4.6(ii), we obtain 〈f(x)〉 = 〈f(y)〉. Since f
is injective, by Lemma 4.10, 〈x〉 = 〈y〉, hence [x] = [y]. We deduce that R(f) is injective.

Now, let f : A→ B be a surjective morphism in BCK and we consider y ∈ B. Then there exists
x ∈ A such that y = f(x). We obtain R(f)([x]) = [f(x)] = [y], that is, R(f) is surjective.

We recall that for a set T we denote P(T ) = {X : X ⊆ T}.
Using this notation, for a bounded BCK-algebra A, we consider the map p∗A : P(LA)→ P(A),

p∗A(S) = p−1A (S) = {x ∈ A : pA(x) = [x] ∈ S}, for every S ⊆ LA.

Remark 4.12. Since pA is a surjective map, we get p∗A is one-to-one and pA(p∗A(S)) = S, for
every S ⊆ LA.
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Theorem 4.13. Let A be a bounded BCK-algebra.

(i) If F ∈ F (LA), then p∗A(F ) ∈ Ds(A) and if F is proper, then p∗A(F ) is also proper;

(ii) If M ∈Max(A), then pA(M) ∈Max(LA).

Proof. (i). Obviously, 1 ∈ p∗A(F ) since pA(1) = [1] ∈ F. Let x, y ∈ A such that x, x→ y ∈ p∗A(F ).
Then [x], [x→ y] ∈ F, hence [x]∧ [x→ y] = [xf (x→ y)] ∈ F. Using (c12), xf (x→ y) ≤ y∗∗, so,
by Proposition 4.3, [xf (x→ y)] v [y∗∗] = [y]. We deduce that [y] ∈ F, so y ∈ p∗A(F ) and p∗A(F ) ∈
Ds(A). If F is proper, then F 6= LA. Since p∗A is one-to-one we deduce that p∗A(F ) 6= p∗A(LA) = A,
so p∗A(F ) is proper.

(ii). Since M ∈ Max(A) we have M 6= A, so, there exists x ∈ A\M. If pA(M) = LA, then
p∗A(pA(M)) = p∗A(LA) = A. Thus x ∈ p∗A(pA(M)), hence pA(x) = [x] ∈ pA(M), so there exists
y ∈ M such that [x] = [y]. Since x ≡ y and y ∈ M we deduce that x ∈ M, a contradiction. Thus
M 6= A implies pA(M) 6= LA. To prove pA(M) ∈ F (LA), obviously [1] = pA(1) ∈ pA(M) and let
α, β ∈ pA(M), that is, α = [x], β = [y] with x, y ∈ M. We have α ∧ β = [x] ∧ [y] = [x f y]. Using
Lemma 2.6, x f y ∈ M, so α ∧ β ∈ pA(M). Now, let α ∈ pA(M) and β ∈ LA such that α v β.
Then α = [x], x ∈ M and β = [y], y ∈ A. Since α v β, we have α = α ∧ β = [x] ∧ [y] = [x f y],
hence x ≡ (x f y). But x ∈ M so x f y ∈ M and M ∈ VMax(x f y) = VMax(x) ∩ VMax(y).
Thus, M ∈ VMax(y), so, y ∈ M. Hence β = [y] ∈ pA(M) and pA(M) ∈ F (LA). To prove that
pA(M) ∈ Max(LA), let F ∈ F (LA) such that pA(M) ⊆ F. Then p∗A(pA(M)) ⊆ p∗A(F ). Since
M ⊆ p∗A(pA(M)) we have M ⊆ p∗A(F ). Since p∗A(F ) ∈ Ds(A) and M ∈ Max(A) we obtain
M = p∗A(F ) or p∗A(F ) = A. If p∗A(F ) = A, then pA(p∗A(F )) = pA(A) = LA, hence by Remark 4.12,
F = LA. If M = p∗A(F ), then pA(M) = pA(p∗A(F )) = F. So, pA(M) ∈Max(LA).

5 The reticulation of a bounded BCK-algebra

Definition 5.1. A reticulation of a bounded BCK-algebra A is a pair (L, λ), where (L,∧,∨, 0, 1)
is a bounded distributive lattice and λ : A → L is a surjective map that satisfies the following
conditions for every x, y ∈ A:

(r1) λ(0) = 0, λ(1) = 1, λ(xf y) = λ(x) ∧ λ(y) and λ(x t y) = λ(x) ∨ λ(y);

(r2) λ(x) = λ(y) iff 〈x〉 = 〈y〉.

Theorem 5.2. Let A be a bounded BCK-algebra. If (L1, λ1) and (L2, λ2) are two reticulations of
A, then there exists a unique isomorphism of bounded lattices f : L1 → L2 such that f ◦ λ1 = λ2.

Proof. Let z ∈ L1 and x ∈ A such that z = λ1(x). We define f(z) = λ2(x). Obviously, f ◦λ1 = λ2.
If x1, x2 ∈ A such that z1 = λ1(x1) and z2 = λ1(x2), using (r2) we have λ1(x1) = λ1(x2) iff
〈x1〉 = 〈x2〉 iff λ2(x1) = λ2(x2).

These implications prove that f is well-defined and injective. The surjectivity of λ2 implies
that f is surjective. We conclude that f is bijective. Also, we have f(0) = f(λ1(0)) = λ2(0) = 0
and f(1) = f(λ1(1)) = λ2(1) = 1.

Let x, y ∈ L1. Since λ1 is surjective, there are a, b ∈ A such that x = λ1(a) and y = λ1(b).
Applying (r1) we obtain the following equalities:

f(x ∧ y) = f(λ1(a) ∧ λ1(b)) = f(λ1(af b)) = λ2(af b)

= λ2(a) ∧ λ2(b) = f(λ1(a)) ∧ f(λ1(b)) = f(x) ∧ f(y),
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and analogous f(x∨y) = f(x)∨f(y). We conclude that f is an isomorphism in Ld(0,1) such that
f ◦ λ1 = λ2.

If we have two isomorphisms of bounded lattices f, g : L1 → L2 such that f ◦ λ1 = g ◦ λ1 = λ2,
then for y ∈ L1 there exists x ∈ A such that y = λ1(x). We have f(y) = f(λ1(x)) = λ2(x) and
g(y) = g(λ1(x)) = λ2(x) = f(y), hence f(y) = g(y) for every y ∈ L1. We conclude that f = g.

From Theorem 4.4 and Proposition 4.6 we deduce that:

Corollary 5.3. If A is a bounded BCK-algebra, then the pair (LA, pA) is a reticulation of A.

We recall that in Section 4, for x ∈ A we defined VMax(x) = {M ∈Max(A) : x ∈M}.
Now, we consider SA = {VMax(x) : x ∈ A} ⊆ P(Max(A)).
Following Proposition 3.8 and Remark 4.1 we deduce that SA is a distributive sublattice of the

lattice (P(Max(A)),⊆) and

Corollary 5.4. If A is a bounded BCK-algebra, then the pair (SA, VMax) is a reticulation of A.

From Theorem 5.2, Corollaries 5.3 and 5.4 we obtain:

Corollary 5.5. The lattices LA and SA are isomorphic.

6 Conclusion

We have introduced the concept of Belluce lattice LA associated with a bounded BCK algebra A,
that enables us to transfer many properties between LA and A. Moreover, we gave a description
of the reticulation for a bounded BCK algebra and we proved the uniqueness of this reticulation.

For future work, we could generalize these results to the non-commutative case.
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[12] J. Kühr, Pseudo BCK-algebras and related structures, Univerzita Palackého v Olomouci,
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[15] C. Mureşan, Characterization of the reticulation of a residuated lattice, Journal of Multiple-
Valued Logic and Soft Computing, 16 (2010), 427–447.

[16] A.B. Saeid, C. Flaut, S. Hoskova-Mayerova, M. Afshar, Some connections between BCK-
algebras and n-ary block codes, Soft Computing, 22(1) (2018), 41–46.

[17] H. Simmons, Reticulated rings, Journal of Algebra, 66 (1980), 169–192.


	Introduction
	Preliminaries
	The topological spaces Spec(A) and Max(A)
	The Belluce lattice associated with a bounded BCK-algebra
	The reticulation of a bounded BCK-algebra
	Conclusion

