Volume 2, Number 1, (2021), pp. 1-16

The Belluce lattice associated with a bounded $B C K$-algebra

D. Busneag ${ }^{1}$, D. Piciu ${ }^{2}$ and M. Istrata ${ }^{3}$
${ }^{1,2,3}$ Faculty of Sciences, Department of Mathematics, University of Craiova, Craiova, Romania
busneag@central.ucv.ro, piciudanamarina@yahoo.com,istratamihaela@yahoo.com

Abstract

In this paper, we introduce the notions of Belluce lattice associated with a bounded $B C K$-algebra and reticulation of a bounded $B C K$-algebra. To do this, first, we define the operations \curlywedge, \curlyvee and \sqcup on $B C K$-algebras and we study some algebraic properties of them. Also, for a bounded $B C K$-algebra A we define the Zariski topology on $\operatorname{Spec}(A)$ and the induced topology $\tau_{A, \operatorname{Max}(A)}$ on $\operatorname{Max}(A)$. We prove $\left(\operatorname{Max}(A), \tau_{A, \operatorname{Max}(A)}\right)$ is a compact topological space if A has Glivenko property. Using the open and the closed sets of $\operatorname{Max}(A)$, we define a congruence relation on a bounded $B C K$-algebra A and we show L_{A}, the quotient set, is a bounded distributive lattice. We call this lattice the Belluce lattice associated with A. Finally, we show $\left(L_{A}, p_{A}\right)$ is a reticulation of A (in the sense of Definition 5.1) and the lattices L_{A} and S_{A} are isomorphic.

Article Information

Corresponding Author: D. Piciu;

Received: December 2020; Accepted: Invited paper; Papertype: Original.

Keywords:

Belluce lattice, $B C K$ algebra, prime spectrum, maximal spectrum, reticulation, bounded distributive lattice.

1 Introduction

In [4], Belluce defined the reticulation for non-commutative rings (for commutative rings see [17]). Using this model, the reticulation was defined for others classes of universal algebras: $M V$-algebras ([3]), $B L$-algebras ([13]), residuated lattices ([14, [15), Hilbert algebras ([5]) and quantales ([8]). Generally speaking, the reticulation for an algebra A of types mentioned above is a pair $\left(L_{A}, \lambda\right)$ consisting of a bounded distributive lattice L_{A} and a surjection $\lambda: A \rightarrow L_{A}$ such that the function given by the inverse image of λ induces (by reticulation) a homeomorphism of topological spaces between the prime spectrum of L_{A} and that of A. Using this construction many properties can be transferred between L_{A} and A.

In this paper, we construct the Belluce lattice associated with a bounded $B C K$-algebra and we define the reticulation of a bounded $B C K$-algebra (in the sense of Definition 5.1). Also we prove several properties of it.

[^0]The paper is organized as follows: In Section 2, we review some relevant concepts relative to $B C K$-algebras. Also, we define the new operations \curlywedge, \curlyvee and \sqcup on $B C K$-algebras and we study the algebraic properties of them.

For a bounded $B C K$-algebra A, in Section 3, we study the topological spaces $\operatorname{Spec}(A)$, the prime spectrum of A, and $\operatorname{Max}(A)$, the maximal spectrum of A, using a standard method ([1]). The family $\tau_{A}=\{D(S): S \subseteq A\}$ is a topology on $\operatorname{Spec}(A)$ having $\{D(x): x \in A\}$ as basis. The topology τ_{A} is called the Zariski topology on $\operatorname{Spec}(A)$ and the topological space $\left(\operatorname{Spec}(A), \tau_{A}\right)$ is called the prime spectrum of A. Since $\operatorname{Max}(A) \subseteq \operatorname{Spec}(A)$ we can consider on $\operatorname{Max}(A)$ the topology induced by Zariski topology. So, we obtain a topological space $\left(\operatorname{Max}(A), \tau_{A, \operatorname{Max}(A)}\right)$ called the maximal spectrum of A.

If $B C K$-algebra A has Glivenko property, then $\operatorname{Max}(A)$ is a compact topological space (Theorem 3.10).

Using the open and the closed sets of $\operatorname{Max}(A)$, in Section 4, we construct and study the Belluce lattice L_{A} associated with a bounded BCK-algebra A (Theorems 4.4, 4.9, 4.11 and 4.13).

In Section 5, we introduce the notion of reticulation of a bounded $B C K$-algebra and prove that the uniqueness of this reticulation (Theorem 5.2). Finally, we show that $\left(L_{A}, p_{A}\right)$ and $\left(S_{A}, V_{M a x}\right)$ are reticulations of A and L_{A} and S_{A} are isomorphic (Corollaries 5.4 and 5.5).

2 Preliminaries

Definition 2.1. ([11, [12]) A $B C K$-algebra is an algebra $(A, \rightarrow, 1)$ of type $(2,0)$ such that the following axioms are fulfilled for every $x, y, z \in A$:
$\left(a_{1}\right) x \rightarrow x=1 ;$
$\left(a_{2}\right)$ if $x \rightarrow y=y \rightarrow x=1$, then $x=y$;
$(B)(x \rightarrow y) \rightarrow[(y \rightarrow z) \rightarrow(x \rightarrow z)]=1 ;$
(C) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$;
$(K) x \rightarrow(y \rightarrow x)=1$.
For examples of $B C K$-algebras, see [11] and [12].
If A is a $B C K$-algebra, then the relation $x \leq y$ iff $x \rightarrow y=1$ is a partial order on A; with respect to this order 1 is the largest element of A. A bounded $B C K$-algebra is a $B C K$-algebra A with the smallest element 0 ; in this case for $x \in A$ we denote $x^{*}=x \rightarrow 0$.

A bounded BCK-algebra A has Glivenko property (see [7]) if it satisfies the following condition:
(G) $(x \rightarrow y)^{* *}=x \rightarrow y^{* *}$, for every $x, y \in A$.

For a $B C K$-algebra A and $x_{1}, \ldots, x_{n}, x \in A(n \geq 1)$ we define $\left(x_{1}, \ldots, x_{n} ; x\right)=x_{1} \rightarrow\left(x_{2} \rightarrow\right.$ $\left.\ldots\left(x_{n} \rightarrow x\right) \ldots\right)$.

From [6] and [12] we have the following rules of calculus:
$\left(c_{1}\right) x \rightarrow 1=1,1 \rightarrow x=x, x \leq y \rightarrow x, x \leq(x \rightarrow y) \rightarrow y ;$
$\left(c_{2}\right)((x \rightarrow y) \rightarrow y) \rightarrow y=x \rightarrow y ;$
$\left(c_{3}\right)$ if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z ;$
$\left(c_{4}\right) x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y) \leq z \rightarrow(x \rightarrow y)$, for every $x, y, z \in A$.
In a bounded $B C K$-algebra A, for $x, y, z \in A$ we have the following rules of calculus (see [7, [10, [11] and [12]):
$\left(c_{5}\right) 0^{*}=1,1^{*}=0, x \rightarrow y^{*}=y \rightarrow x^{*}, x \leq x^{* *}, x^{* * *}=x^{*} ;$
(c_{6}) $x^{* *} \leq x^{*} \rightarrow x, x \rightarrow y \leq y^{*} \rightarrow x^{*}$ and if $x \leq y$, then $y^{*} \leq x^{*}$.
Remark 2.2. Using (c_{5}) we deduce that a bounded BCK-algebra A has Glivenko property iff $(x \rightarrow y)^{* *}=x^{* *} \rightarrow y^{* *}$, for every $x, y \in A$.

If A is a bounded $B C K$-algebra, then for $x, y \in A$ we denote $x \curlyvee y=x^{*} \rightarrow y$ and $x \curlywedge y=(x \rightarrow$ $\left.y^{*}\right)^{*}$.

Proposition 2.3. Let A be a bounded BCK-algebra and $x, y, z \in A$. Then:
$\left(c_{7}\right) x \curlywedge 0=0, x \curlywedge 1=x^{* *}$ and $x \curlywedge x^{*}=0$;
($\left.c_{8}\right) x \curlywedge y=y \curlywedge x \leq x^{* *}, y^{* *}$;
(c_{9}) if $x \leq y$, then $x \curlywedge z \leq y \curlywedge z$;
$\left(c_{10}\right) x, y \leq x \curlyvee y, x \curlyvee 0=x^{* *}, x \curlyvee 1=1, x \curlyvee x^{*}=1$;
$\left(c_{11}\right) x \curlyvee(y \curlyvee z)=y \curlyvee(x \curlyvee z)$ and $(x \curlyvee y) \curlyvee z \leq x \curlyvee(y \curlyvee z)$;
$\left(c_{12}\right) x \curlywedge(x \rightarrow y) \leq y^{* *}, x^{* *} \curlywedge y^{* *}=x \curlywedge y$.
Proof. $\left(c_{7}\right) . x \curlywedge 0=\left(x \rightarrow 0^{*}\right)^{*}=(x \rightarrow 1)^{*}=1^{*}=0, x \curlywedge 1=\left(x \rightarrow 1^{*}\right)^{*}=x^{* *}$ and $x \curlywedge x^{*}=(x \rightarrow$ $\left.x^{* *}\right)^{*}=1^{*}=0$.
$\left(c_{8}\right) . x \curlywedge y=\left(x \rightarrow y^{*}\right)^{*} \stackrel{\left(c_{5}\right)}{=}\left(y \rightarrow x^{*}\right)^{*}=y \curlywedge x$ and since $0 \leq y^{*}$, by $\left(c_{3}\right), x^{*} \leq x \rightarrow y^{*}$, so $x \curlywedge y \leq x^{* *}$. Similarly, $x \curlywedge y \leq y^{* *}$.
$\left(c_{9}\right)$. Using $\left(c_{3}\right)$, from $x \leq y$ we deduce $y \rightarrow z^{*} \leq x \rightarrow z^{*}$, so, $\left(x \rightarrow z^{*}\right)^{*} \leq\left(y \rightarrow z^{*}\right)^{*}$. Hence x 人 $z \leq y$ 人 z.
$\left(c_{10}\right)$. From $\left(c_{1}\right)$ and $\left(c_{3}\right), x, y \leq x \curlyvee y=x^{*} \rightarrow y$. Also, $x \curlyvee 0=x^{*} \rightarrow 0=x^{* *}, x \curlyvee 1=x^{*} \rightarrow 1=1$ and $x \curlyvee x^{*}=x^{*} \rightarrow x^{*}=1$.
$\left(c_{11}\right)$. We have $x^{*} \leq\left(x^{*} \rightarrow y\right) \rightarrow y \leq y^{*} \rightarrow\left(x^{*} \rightarrow y\right)^{*} \leq\left(\left(x^{*} \rightarrow y\right)^{*} \rightarrow z\right) \rightarrow\left(y^{*} \rightarrow z\right)$. Therefore,

$$
1=x^{*} \rightarrow\left[\left(\left(x^{*} \rightarrow y\right)^{*} \rightarrow z\right) \rightarrow\left(y^{*} \rightarrow z\right)\right]=\left(\left(x^{*} \rightarrow y\right)^{*} \rightarrow z\right) \rightarrow\left(x^{*} \rightarrow\left(y^{*} \rightarrow z\right)\right) .
$$

Thus, $\left(x^{*} \rightarrow y\right)^{*} \rightarrow z \leq x^{*} \rightarrow\left(y^{*} \rightarrow z\right)$. We deduce that

$$
x \curlyvee(y \curlyvee z)=x^{*} \rightarrow\left(y^{*} \rightarrow z\right) \geq\left(x^{*} \rightarrow y\right)^{*} \rightarrow z=(x \curlyvee y) \curlyvee z .
$$

Also, $x \curlyvee(y \curlyvee z)=x^{*} \rightarrow\left(y^{*} \rightarrow z\right) \stackrel{(C)}{=} y^{*} \rightarrow\left(x^{*} \rightarrow z\right)=y \curlyvee(x \curlyvee z)$.
$\left(c_{12}\right)$. Since $x \rightarrow y \leq y^{*} \rightarrow x^{*}$, by (C), we have $y^{*} \leq(x \rightarrow y) \rightarrow x^{*}$. So by $\left(c_{5}\right)$ and $\left(c_{6}\right)$, $y^{*} \leq x \rightarrow(x \rightarrow y)^{*}$, thus, $x \curlywedge(x \rightarrow y)=\left[x \rightarrow(x \rightarrow y)^{*}\right]^{*} \leq y^{* *}$.

Also, $x^{* *} \curlywedge y^{* *}=\left(x^{* *} \rightarrow y^{* * *}\right)^{*}=\left(x^{* *} \rightarrow y^{*}\right)^{*}=\left(y \rightarrow x^{* * *}\right)^{*}=\left(y \rightarrow x^{*}\right)^{*}=y \curlywedge x=x \curlywedge y$.

Proposition 2.4. Let A be a bounded BCK-algebra with Glivenko property and $x, y, z, x_{1}, x_{2}, \ldots, x_{n} \in$ $A, n \geq 2$. Then:
$\left(c_{13}\right)(x \curlywedge y)^{*}=x^{*} \curlyvee y^{*}$ and $(x \curlyvee y)^{*}=x^{*} \curlywedge y^{*}$;
$\left(c_{14}\right) x \curlywedge(y \curlywedge z)=(x \curlywedge y) \curlywedge z ;$
$\left(c_{15}\right) x_{1} \curlywedge x_{2} \curlywedge \ldots \curlywedge x_{n}=\left(x_{1}, x_{2}, \ldots, x_{n-1} ; x_{n}^{*}\right)^{*} ;$
(c_{16}) if $x \curlywedge z \leq y$, then $x \leq z \rightarrow y^{* *}$;
(c_{17}) $x \curlywedge z \leq y^{* *}$ iff $x \leq z \rightarrow y^{* *}$;
$\left(c_{18}\right)$ if $\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)=1$, then $x_{1} \curlywedge x_{2} \curlywedge \ldots \curlywedge x_{n} \leq y^{* *}$.
Proof. (c_{13}). We have $x^{*} \curlyvee y^{*}=x^{* *} \rightarrow y^{*}=y \rightarrow x^{* * *}=y \rightarrow x^{*}$ and $(x \curlywedge y)^{*}=\left(x \rightarrow y^{*}\right)^{* *} \stackrel{(G)}{=}$ $x \rightarrow y^{* * *}=x \rightarrow y^{*}$, hence $(x \curlywedge y)^{*}=x^{*} \curlyvee y^{*}$.

Also, $x^{*} \curlywedge y^{*}=\left(x^{*} \rightarrow y^{* *}\right)^{*} \stackrel{(G)}{=}\left(\left(x^{*} \rightarrow y\right)^{* *}\right)^{*}=\left(x^{*} \rightarrow y\right)^{*}=(x \curlyvee y)^{*}$.
$\left(c_{14}\right)$. Let $x, y, z \in A$. Then

$$
\begin{aligned}
(x \curlywedge y) \curlywedge z & \stackrel{\left(c_{8}\right)}{=} z \curlywedge(x \curlywedge y)=\left[z \rightarrow(x \curlywedge y)^{*}\right]^{*} \stackrel{\left(c_{13}\right)}{=}\left[z \rightarrow\left(x^{*} \curlyvee y^{*}\right)\right]^{*} \\
& =\left[z \rightarrow\left(x^{* *} \rightarrow y^{*}\right)\right]^{*} \stackrel{\left(c_{5}\right)}{=}\left[z \rightarrow\left(y \rightarrow x^{*}\right)\right]^{*} \stackrel{(C)}{=}\left[y \rightarrow\left(z \rightarrow x^{*}\right)\right]^{*} .
\end{aligned}
$$

Similarly, $x \curlywedge(y \curlywedge z)=\left[y \rightarrow\left(x \rightarrow z^{*}\right)\right]^{*}$. Using $\left(c_{5}\right)$ we deduce that $x \curlywedge(y \curlywedge z)=(x \curlywedge y) \curlywedge z$. $\left(c_{15}\right)$. By induction on n, using the associativity of \curlywedge we can write
$x_{1} \curlywedge x_{2} \curlywedge \ldots \curlywedge x_{n}=x_{1} \curlywedge\left(x_{2} \curlywedge \ldots \curlywedge x_{n}\right)=\left[x_{1} \rightarrow\left(x_{2} \curlywedge \ldots \curlywedge x_{n}\right)^{*}\right]^{*}=\left[x_{1} \rightarrow\left(x_{2}, \ldots, x_{n-1} ; x_{n}^{*}\right)^{* *}\right]^{*}$

$$
\stackrel{(G)}{=}\left[x_{1} \rightarrow\left(x_{2}, \ldots, x_{n-1} ; x_{n}^{*}\right)\right]^{* * *}=\left[x_{1} \rightarrow\left(x_{2}, \ldots, x_{n-1} ; x_{n}^{*}\right)\right]^{*}=\left(x_{1}, x_{2}, \ldots, x_{n-1} ; x_{n}^{*}\right)^{*} .
$$

$\left(c_{16}\right)$. If $x \curlywedge z \leq y$, then $\left(x \rightarrow z^{*}\right)^{*} \leq y$, so $y^{*} \leq\left(x \rightarrow z^{*}\right)^{* *} \stackrel{(G)}{=} x \rightarrow z^{* * *}=x \rightarrow z^{*}$, hence $x \leq y^{*} \rightarrow z^{*}=z \rightarrow y^{* *}$.
$\left(c_{17}\right)$. Suppose that $x \curlywedge z \leq y^{* *}$. From (c_{16}) we deduce that $x \leq z \rightarrow\left(y^{* *}\right)^{* *}=z \rightarrow y^{* *}$. Conversely, if $x \leq z \rightarrow y^{* *}$, then $x \leq y^{*} \rightarrow z^{*}$. Thus, $y^{*} \leq x \rightarrow z^{*}=x \rightarrow z^{* * *} \stackrel{(G)}{=}\left(x \rightarrow z^{*}\right)^{* *}$. We deduce that $\left(x \rightarrow z^{*}\right)^{*} \leq y^{* *}$, so $x \curlywedge z \leq y^{* *}$.
$\left(c_{18}\right)$. Mathematical induction on n.
Consider $n=2$ and $\left(x_{1}, x_{2} ; y\right)=1$, that is, $x_{1} \rightarrow\left(x_{2} \rightarrow y\right)=1$. From $y \leq y^{* *}$ we deduce that $1=x_{1} \rightarrow\left(x_{2} \rightarrow y\right) \leq x_{1} \rightarrow\left(x_{2} \rightarrow y^{* *}\right)$, hence $x_{1} \rightarrow\left(x_{2} \rightarrow y^{* *}\right)=1$, that is, $x_{1} \leq x_{2} \rightarrow y^{* *}=$ $y^{*} \rightarrow x_{2}^{*}$. Then $y^{*} \leq x_{1} \rightarrow x_{2}^{*}$, hence $\left(x_{1} \rightarrow x_{2}^{*}\right)^{*} \leq y^{* *}$, that is, $x_{1} \curlywedge x_{2} \leq y^{* *}$.

Suppose that the assertion is true for $n-1$ and let $\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)=1$. Since $1=\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)=$ $\left(x_{1}, x_{2}, \ldots, x_{n-1} ; x_{n} \rightarrow y\right)$ then $x_{1} \curlywedge x_{2} \curlywedge \ldots \curlywedge x_{n-1} \leq\left(x_{n} \rightarrow y\right)^{* *} \stackrel{(G)}{=} x_{n} \rightarrow y^{* *}$. From $\left(c_{17}\right)$, we obtain $x_{1} \curlywedge x_{2} \curlywedge \ldots \curlywedge x_{n} \leq y^{* *}$.

Definition 2.5. 6] Let A be a BCK-algebra. A subset D of A is called a deductive system (or filter) of A if $1 \in D$ and for every $x, y \in A$ if $x, x \rightarrow y \in D$, then $y \in D$.

A deductive system D is called proper if $D \neq A$. We denote by $D s(A)$ the set of all deductive systems of A. If A is bounded, then a deductive system D is proper iff $0 \notin D$.

Lemma 2.6. Let A be a bounded $B C K$-algebra and $D \in D s(A)$. If $x, y \in D$, then $x \curlywedge y \in D$.
Proof. We have $y \rightarrow(x \curlywedge y)=y \rightarrow\left(x \rightarrow y^{*}\right)^{*}=\left(x \rightarrow y^{*}\right) \rightarrow y^{*} \in D$, since by $\left(c_{1}\right), x \leq(x \rightarrow$ $\left.y^{*}\right) \rightarrow y^{*}$. Because $y \in D$, we deduce that $x \curlywedge y \in D$.

If A is a $B C K$-algebra and $S \subseteq A$ is a nonempty subset of A, we denote by $\langle S\rangle$ the lowest deductive system of A (relative to inclusion) which contains $S ;\langle S\rangle$ is called the deductive system of A generated by S.

For two elements $x, y \in A$ and a natural number $n \geq 1$ we define $x \rightarrow_{n} y=x \rightarrow(x \rightarrow \ldots(x \rightarrow$ $y) \ldots$), where n indicates the number of occurrences of x.

Theorem 2.7. [6, [12] Let A be a $B C K$-algebra and $S \subseteq A$ be a nonempty subset of $A, D \in D s(A)$ and $a \in A$. Then:
(i) $\langle S\rangle=\left\{x \in A\right.$: there are $n \geq 1$ and $a_{1}, a_{2}, \ldots, a_{n} \in S$ such that $\left.\left(a_{1}, a_{2}, \ldots, a_{n} ; x\right)=1\right\}$; In particular, $\langle a\rangle=\langle\{a\}\rangle=\left\{x \in A: a \rightarrow_{n} x=1\right.$, for some $\left.n \geq 1\right\}$;
(ii) $(D s(A), \subseteq)$ is a complete distributive lattice, where for $D_{1}, D_{2} \in D s(A), D_{1} \wedge D_{2}=D_{1} \cap D_{2}$ and $D_{1} \vee D_{2}=\left\langle D_{1} \cup D_{2}\right\rangle$.

A proper deductive system P of a $B C K$-algebra A is called irreducible (prime) if it is a meetirreducible (meet-prime) element of the lattice $D s(A)$. Since ($D s(A), \subseteq$) is distributive, then the notions of irreducible and prime coincide. We denote by $\operatorname{Spec}(A)$ the set of all prime deductive systems of A.
Theorem 2.8. 6], [12 Let A be a $B C K$-algebra and $P \in D s(A)$ such that $P \neq A$. Then the following statements are equivalent:
(i) $P \in \operatorname{Spec}(A)$;
(ii) if $D_{1} \cap D_{2} \subseteq P$ with $D_{1}, D_{2} \in \operatorname{Ds}(A)$, then $D_{1} \subseteq P$ or $D_{2} \subseteq P$;
(iii) for every $x, y \in A$, if $U(x, y)=\{z \in A: z \geq x$ and $z \geq y\} \subseteq P$, then $x \in P$ or $y \in P$.

For a $B C K$-algebra A, a subset $I \subseteq A$ is called an ideal of A (see [6]) if:
($\left.i_{1}\right) y \in I$ and $x \leq y$ imply $x \in I$;
(i_{2}) for every $x, y \in I$ there exists $z \in I$ such that $x, y \leq z$.
Theorem 2.9. (6]) Let A be a $B C K$-algebra and $D \in D s(A)$.
(i) If I is an ideal of A such that $D \cap I=\emptyset$, then there exists $P \in \operatorname{Spec}(A)$ such that $D \subseteq P$ and $I \cap P=\emptyset$;
(ii) For each $a \notin D$ there exists $P \in \operatorname{Spec}(A)$ such that $a \notin P$ and $D \subseteq P$;
(iii) $D=\cap\{P \in \operatorname{Spec}(A): D \subseteq P\}$.

A proper deductive system M of a $B C K$-algebra A is called maximal if it is a maximal element in the lattice $(D s(A), \subseteq)$. We denote by $\operatorname{Max}(A)$ the set of all maximal deductive systems of A. Obviously, $\operatorname{Max}(A) \subseteq \operatorname{Spec}(A)$.

In a $B C K$-algebra A, for $x, y \in A$ we denote $x \sqcup y=(x \rightarrow y) \rightarrow y$. Using $\left(c_{1}\right)$ and $\left(c_{2}\right)$, we deduce that $x, y \leq x \sqcup y$ and $(x \sqcup y) \rightarrow y=x \rightarrow y$.

Theorem 2.10. ([9]) Let M be a proper deductive system of a bounded BCK-algebra A. Then the following are equivalent:
(i) $M \in \operatorname{Max}(A)$;
(ii) if $x \notin M$, then there exists $n \geq 1$ such that $x \rightarrow_{n} 0 \in M$.

Theorem 2.11. ([9], Corollary 6.7) Let A be a $B C K$-algebra and $M \in \operatorname{Max}(A)$. For $x, y \in A$, if $x \sqcup y \in M$, then $x \in M$ or $y \in M$.

Lemma 2.12. Let A be a bounded BCK-algebra, $x \in A$ and $M \in \operatorname{Max}(A)$. Then $x \in M$ iff $x^{* *} \in M$.

Proof. If $x \in M$, then since $x \leq x^{* *}$ we deduce that $x^{* *} \in M$.
Conversely, suppose that $x^{* *} \in M$. If $x \notin M$, then by Theorem 2.10 (ii), we deduce that $x \rightarrow_{n} 0 \in M$, for some $n \geq 1$.

If $n=1$, then $x^{*}, x^{* *} \in M$ imply that $0 \in M$, which is a contradiction.
If $n \geq 2$, then $x \rightarrow_{n} 0 \in M$ and $x^{* *}=(x \rightarrow 0) \rightarrow 0 \in M$ implies $x \rightarrow_{n-1} 0 \in M$, hence $x \rightarrow 0 \in M$. Since $x^{* *} \in M$ we obtain $0 \in M$, a contradiction. We conclude that $x \in M$.

3 The topological spaces $\operatorname{Spec}(\mathrm{A})$ and $\operatorname{Max}(\mathrm{A})$

Let A be a bounded $B C K$-algebra, $S \subseteq A$ and $x \in A$. We denote $D(S)=\{P \in \operatorname{Spec}(A): S \nsubseteq P\}$ and $D(x)=\{P \in \operatorname{Spec}(A): x \notin P\}$.

Proposition 3.1. Let A be a bounded $B C K$-algebra and $S, S_{1}, S_{2} \subseteq A$. Then the following hold:
(i) $D(\emptyset)=\emptyset$ and $D(A)=\operatorname{Spec}(A)$;
(ii) if $S_{1} \subseteq S_{2}$, then $D\left(S_{1}\right) \subseteq D\left(S_{2}\right)$;
(iii) $D(S)=D(\langle S\rangle) ;$
(iv) $D\left(S_{1}\right)=D\left(S_{2}\right)$ iff $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle$;
(v) if $F, G \in D s(A)$, then $F=G$ iff $D(F)=D(G)$;
(vi) if $S_{i} \subseteq A, i \in I$, then $D\left(\cup_{i \in I} S_{i}\right)=\underset{i \in I}{\cup} D\left(S_{i}\right)$;
(vii) if $F_{i} \in D s(A), i \in I$, then $D\left(\underset{i \in I}{\vee} F_{i}\right)=\cup_{i \in I} D\left(F_{i}\right)$;
(viii) $D\left(\left\langle S_{1}\right\rangle\right) \cap D\left(\left\langle S_{2}\right\rangle\right)=D\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$.

Proof. (i), (ii). Obviously.
(iii). A deductive system of A that includes S also includes $\langle S\rangle$, so, $D(S)=D(\langle S\rangle)$.
(iv). First, we suppose that $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle$. From (iii) we have $D\left(S_{1}\right)=D\left(\left\langle S_{1}\right\rangle\right)=D\left(\left\langle S_{2}\right\rangle\right)=$ $D\left(S_{2}\right)$. Conversely, we suppose that $D\left(S_{1}\right)=D\left(S_{2}\right)$. If $\left\langle S_{1}\right\rangle=A$, then $D\left(S_{1}\right)=D\left(\left\langle S_{1}\right\rangle\right)=D(A)=$ $\operatorname{Spec}(A)$ and $D\left(S_{2}\right)=\operatorname{Spec}(A)$ so, $\left\langle S_{2}\right\rangle=A$. If we suppose that $\left\langle S_{1}\right\rangle$ and $\left\langle S_{2}\right\rangle$ are proper filters of A, then applying Theorem 2.9 (iii), we obtain

$$
\begin{aligned}
\left\langle S_{1}\right\rangle & =\cap\left\{P \in \operatorname{Spec}(A):\left\langle S_{1}\right\rangle \subseteq P\right\}=\cap\left\{P \in \operatorname{Spec}(A): P \notin D\left(\left\langle S_{1}\right\rangle\right)\right\} \\
& =\cap\left\{P \in \operatorname{Spec}(A): P \notin D\left(\left\langle S_{2}\right\rangle\right)\right\}=\cap\left\{P \in \operatorname{Spec}(A):\left\langle S_{2}\right\rangle \subseteq P\right\}=\left\langle S_{2}\right\rangle
\end{aligned}
$$

(v). Follows from (iv) since $F, G \in D s(A)$ implies $F=\langle F\rangle$ and $G=\langle G\rangle$.
(vi). Using (ii), we deduce that $\cup_{i \in I} D\left(S_{i}\right) \subseteq D\left(\cup_{i \in I} S_{i}\right)$. Conversely, let $P \in D\left(\cup_{i \in I} S_{i}\right)$. Then there exists $i \in I$ such that $S_{i} \nsubseteq P$. This is equivalent with $P \in D\left(S_{i}\right) \subseteq \underset{i \in I}{\cup} D\left(S_{i}\right)$. Thus $D\left(\cup_{i \in I} S_{i}\right)=$ $\cup_{i \in I} D\left(S_{i}\right)$.
(vii). Follows from (iii) and (vi).
(viii). Using (ii) we deduce that $D\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right) \subseteq D\left(\left\langle S_{1}\right\rangle\right) \cap D\left(\left\langle S_{2}\right\rangle\right)$. Let $P \in D\left(\left\langle S_{1}\right\rangle\right) \cap D\left(\left\langle S_{2}\right\rangle\right)$. From Theorem 2.8(ii), $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle \nsubseteq P$, so $P \in D\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$.
Theorem 3.2. For a BCK-algebra A, the family $\tau_{A}=\{D(S): S \subseteq A\}$ is a topology on Spec (A) having $\{D(x): x \in A\}$ as basis.
Proof. Using Proposition 3.1 we deduce that τ_{A} is a topology on $\operatorname{Spec}(A)$. For $S \subseteq A, S=\underset{x \in S}{ }\{x\}$, so $D(S)=D\left(\bigcup_{x \in S}\{x\}\right)=\bigcup_{x \in S} D(x)$.

Definition 3.3. The topology τ_{A} is called the Zariski topology on $\operatorname{Spec}(A)$ and the topological space $\left(\operatorname{Spec}(A), \tau_{A}\right)$ is called the prime spectrum of A.

For $S \subseteq A$ and $x \in A$ we define $V(S)=\operatorname{Spec}(A) \backslash D(S)=\{P \in \operatorname{Spec}(A): S \subseteq P\}$ and $V(x)=\operatorname{Spec}(A) \backslash D(x)=\{P \in \operatorname{Spec}(A): x \in P\}$.

Proposition 3.4. Let A be a bounded $B C K$-algebra and $S, S_{1}, S_{2} \subseteq A$. Then the following assertions hold:
(i) $V(0)=\emptyset$ and $V(\emptyset)=V(1)=\operatorname{Spec}(A)$;
(ii) if $S_{1} \subseteq S_{2}$, then $V\left(S_{2}\right) \subseteq V\left(S_{1}\right)$;
(iii) $V(S)=\emptyset$ iff $\langle S\rangle=A$;
(iv) $V(S)=S p e c(A)$ iff $S=\emptyset$ or $S=\{1\} ;$
(v) $V(S)=V(\langle S\rangle) ;$
(vi) $V\left(S_{1}\right)=V\left(S_{2}\right)$ iff $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle$;
(vii) for $F, G \in D s(A), V(F)=V(G)$ iff $F=G$;
(viii) $V\left(S_{1}\right) \cup V\left(S_{2}\right)=V\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$.
(ix) if $S_{i} \subseteq A, i \in I$, then $V\left(\cup \cup_{i \in I} S_{i}\right)=\bigcap_{i \in I} V\left(S_{i}\right)$.

Proof. (i), (ii), (v). Obviously.
(iii). Suppose that $V(S)=\emptyset$ and $\langle S\rangle \neq A$. By Theorem 2.9(i), there exists $P \in \operatorname{Spec}(A)$ such that $S \subseteq\langle S\rangle \subseteq P$. We deduce that $P \in V(S)$, a contradiction. Conversely, we suppose that $\langle S\rangle=A$. If $V(S) \neq \emptyset$, then there is some $P \in \operatorname{Spec}(A)$ such that $S \subseteq P$. Thus $\langle S\rangle \subseteq P \neq A$, a contradiction.
(iv). For $S=\emptyset$ or $S=\{1\}$, by (i), we deduce that $V(S)=\operatorname{Spec}(A)$.

Conversely, we suppose that $V(S)=\operatorname{Spec}(A)$ but $S \neq \emptyset$ and $S \neq\{1\}$. Then there is $s \in S, s \neq$ 1. By Theorem $2.9($ ii $)$, there exists $P \in \operatorname{Spec}(A)$ such that $s \notin P$. Thus, $S \nsubseteq P$, so $P \notin V(S)$. We conclude that $V(S) \neq \operatorname{Spec}(A)$, a contradiction.
(vi). Let $S_{1}, S_{2} \subseteq A$ such that $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle$. Using $(v), V\left(S_{1}\right)=V\left(\left\langle S_{1}\right\rangle\right)=V\left(\left\langle S_{2}\right\rangle\right)=V\left(S_{2}\right)$. Conversely, let $S_{1}, S_{2} \subseteq A$ such that $V\left(S_{1}\right)=V\left(S_{2}\right)$. Thus $D\left(S_{1}\right)=D\left(S_{2}\right)$, so by Proposition 3.1 (iv), $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle$.
(vii). Follows from (vi), since $F=\langle F\rangle$ and $G=\langle G\rangle$.
(viii). From (ii) and (v), since $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle \subseteq\left\langle S_{1}\right\rangle,\left\langle S_{2}\right\rangle$ we deduce that $V\left(S_{1}\right)=V\left(\left\langle S_{1}\right\rangle\right) \subseteq$ $V\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$ and $V\left(S_{2}\right) \subseteq V\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$. Thus, $V\left(S_{1}\right) \cup V\left(S_{2}\right) \subseteq V\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$.

If $P \in V\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)$, then $P \in \operatorname{Spec}(A)$ and $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle \subseteq P$.
Using Theorem 2.8 (ii), we deduce that $\left\langle S_{1}\right\rangle \subseteq P$ or $\left\langle S_{2}\right\rangle \subseteq P$. Hence $P \in V\left(\left\langle S_{1}\right\rangle\right) \cup V\left(\left\langle S_{2}\right\rangle\right)=$ $V\left(S_{1}\right) \cup V\left(S_{2}\right)$. We conclude that, $V\left(\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle\right)=V\left(S_{1}\right) \cup V\left(S_{2}\right)$.
(ix). By duality from Proposition 3.1(vi).

Proposition 3.5. Let A be a bounded BCK-algebra and $x, y \in A$. Then the following hold:
(i) if $x \leq y$, then $D(y) \subseteq D(x)$;
(ii) $D(x)=\emptyset$ iff $x=1$;
(iii) $D(x)=\operatorname{Spec}(A)$ iff $\langle x\rangle=A$ iff $x \rightarrow_{n} 0=1$, for some $n \geq 1$;
(iv) $D\left(x^{* *}\right) \cup D\left(y^{* *}\right)=D(x \curlywedge y)$;
(v) $D(x) \cap D(y)=D(U(x, y))$;
(vi) $D(x)=D(y)$ iff $\langle x\rangle=\langle y\rangle$.

Proof. (i). If $P \in D(y)$, then $y \notin P$. Clearly, $x \notin P$, since if $x \in P$, from $x \leq y$ we deduce that $y \in P$, a contradiction. So, $P \in D(x)$, that is, $D(y) \subseteq D(x)$.
(ii). $D(x)=\emptyset$ iff $V(x)=\operatorname{Spec}(A)$ iff $x=1$, by Proposition 3.4(iv).
(iii). $D(x)=\operatorname{Spec}(A)$ iff $V(x)=\emptyset$ iff $\langle x\rangle=A$, by Proposition[3.4(iii), iff $0 \in\langle x\rangle$ iff $x \rightarrow_{n} 0=1$, for some $n \geq 1$.
(iv). Since $x \curlywedge y \leq x^{* *}, y^{* *}$, by (i), we deduce that $D\left(x^{* *}\right), D\left(y^{* *}\right) \subseteq D(x \curlywedge y)$, so, $D\left(x^{* *}\right) \cup$ $D\left(y^{* *}\right) \subseteq D(x \curlywedge y)$. Let $P \in D(x \curlywedge y)$. Hence $x \curlywedge y \notin P$. Then $x^{* *} \notin P$ or $y^{* *} \notin P$ since if we suppose by contrary that $x^{* *} \in P$ and $y^{* *} \in P$, using Lemma 2.6 and (c_{12}) we deduce that $x^{* *} \curlywedge y^{* *}=x \curlywedge y \in P$, a contradiction. Thus, $P \in D\left(x^{* *}\right) \cup D\left(y^{* *}\right)$ and $D(x \curlywedge y) \subseteq D\left(x^{* *}\right) \cup D\left(y^{* *}\right)$. We conclude that $D\left(x^{* *}\right) \cup D\left(y^{* *}\right)=D(x \curlywedge y)$.
(v). Let $P \in D(x) \cap D(y)$. Thus, $x \notin P$ and $y \notin P$. If we suppose that $P \notin D(U(x, y))$, thus, $U(x, y) \subseteq P$, so by Theorem 2.8 (iii), $x \in P$ or $y \in P$, a contradiction. Conversely, we suppose that $P \in D(U(x, y))$. Thus, $U(x, y) \nsubseteq P$, so there exists $z \in U(x, y)$ such that $z \geq x, z \geq y$ and $z \notin P$. If by contrary, $P \notin D(x) \cap D(y)$, then $x \in P$ or $y \in P$. Since $z \geq x, y$ we deduce that $z \in P$, a contradiction. Hence $D(x) \cap D(y)=D(U(x, y))$.
(vi). Using Proposition 3.1(iv), $D(x)=D(y)$ iff $\langle x\rangle=\langle y\rangle$.

Proposition 3.6. Let A be a bounded BCK-algebra and $x, y \in A$. Then the following hold:
(i) if $x \leq y$, then $V(x) \subseteq V(y)$;
(ii) $V(x)=\emptyset$ iff $\langle x\rangle=A$ iff $x \rightarrow_{n} 0=1$, for some $n \geq 1$;
(iii) $V(x)=\operatorname{Spec}(A)$ iff $x=1$;
(iv) $V\left(x^{* *}\right) \cap V\left(y^{* *}\right)=V(x \curlywedge y) ;$
(v) $V(x) \cup V(y)=V(U(x, y))$;
$(v i) V(x) \subseteq D\left(x^{*}\right)$.
Proof. $(i)-(v)$. Follows from Proposition 3.5, $(i)-(v i)$.
(vi). If $P \in V(x)$, then $x \in P$. If by contrary, $x^{*} \in P$, then $0 \in P$, so, $P=A$, a contradiction. So, $x^{*} \notin P$, that is, $P \in D\left(x^{*}\right)$. Hence $V(x) \subseteq D\left(x^{*}\right)$.

For a bounded $B C K$-algebra $A, \operatorname{Max}(A) \subseteq \operatorname{Spec}(A)$, so we can consider on $\operatorname{Max}(A)$ the topology induced by the Zariski topology and we obtain a topological space called the maximal spectrum of A.

For $S \subseteq A$ and $x \in A$, we define $D_{M a x}(S)=D(S) \cap \operatorname{Max}(A)=\{M \in \operatorname{Max}(A): S \nsubseteq M\}$, $D_{M a x}(x)=D(x) \cap \operatorname{Max}(A)=\{M \in \operatorname{Max}(A): x \notin M\}$ and $V_{M a x}(x)=V(x) \cap \operatorname{Max}(A)=\{M \in$ $\operatorname{Max}(A): x \in M\}$. Obviously, $D_{M a x}(x)=\operatorname{Max}(A) \backslash V_{M a x}(x)$.

Theorem 3.7. The set $\tau_{A, M a x(A)}=\left\{D_{M a x}(S): S \subseteq A\right\}$ is the family of open sets of the maximal spectrum of A and the family $\left\{D_{M a x}(x): x \in A\right\}$ is a basis for the topology $\tau_{A, M a x(A)}$ of $\operatorname{Max}(A)$.

Proposition 3.8. Let A be a bounded BCK-algebra and $x, y, z \in A$. Then the following hold:
(i) $V_{M a x}(0)=\emptyset, V_{M a x}(1)=\operatorname{Max}(A), D_{M a x}(0)=\operatorname{Max}(A), D_{M a x}(1)=\emptyset$;
(ii) if $x \leq y$, then $V_{M a x}(x) \subseteq V_{M a x}(y)$ and $D_{M a x}(y) \subseteq D_{M a x}(x)$;
(iii) $V_{M a x}\left(x^{* *}\right)=V_{M a x}(x)$ and $D_{M a x}\left(x^{* *}\right)=D_{M a x}(x)$;
(iv) $V_{M a x}(x \curlywedge(y \sqcup z))=V_{M a x}((x \curlywedge y) \sqcup(x \curlywedge z))$;
(v) $V_{M a x}(x) \cap V_{M a x}(y)=V_{M a x}(x \curlywedge y)$ and $D_{M a x}(x) \cup D_{M a x}(y)=D_{M a x}(x \curlywedge y)$;
(vi) $V_{M a x}(x) \cup V_{M a x}(y)=V_{M a x}(x \sqcup y)$ and $D_{M a x}(x) \cap D_{M a x}(y)=D_{M a x}(x \sqcup y)$.

Proof. (i) and (ii). Follows from Propositions 3.5 and 3.6 .
(iii). For $M \in \operatorname{Max}(A)$, using Lemma 2.12, $x \in M$ iff $x^{* *} \in M$. Thus, $V_{M a x}\left(x^{* *}\right)=V_{M a x}(x)$ and $D_{M a x}\left(x^{* *}\right)=D_{M a x}(x)$.
(iv). Let $M \in V_{M a x}(x \curlywedge(y \sqcup z))$. Then $x \curlywedge(y \sqcup z) \in M$. Since $x \curlywedge(y \sqcup z) \leq x^{* *},(y \sqcup z)^{* *}$, from Lemma 2.12, $x, y \sqcup z \in M$. But $M \in \operatorname{Max}(A)$, so, from Theorem 2.11, $y \in M$ or $z \in M$. If $x, y \in M$, by Lemma 2.6, $x \curlywedge y \in M$, so, $(x \curlywedge y) \sqcup(x \curlywedge z) \in M$. Analogous if $x, z \in M$. We deduce that $M \in V_{M a x}((x \curlywedge y) \sqcup(x \curlywedge z))$, so $V_{M a x}(x \curlywedge(y \sqcup z)) \subseteq V_{M a x}((x \curlywedge y) \sqcup(x \curlywedge z))$.

Conversely, let $M \in V_{\operatorname{Max}}((x \curlywedge y) \sqcup(x \curlywedge z))$. We deduce that $(x \curlywedge y) \sqcup(x \curlywedge z) \in M$. Using Theorem 2.11, $x \curlywedge y \in M$ or $x \curlywedge z \in M$. Thus, $x^{* *} \in M$ and $y^{* *}$ or $z^{* *} \in M$. By Lemma 2.12, we have $x \in M$ and y or $z \in M$. Since $y, z \leq y \sqcup z$ we obtain $y \sqcup z \in M$ and from Lemma 2.6, $x \curlywedge(y \sqcup z) \in M$, so $M \in V_{M a x}(x \curlywedge(y \sqcup z))$. We deduce that $V_{M a x}((x \curlywedge y) \sqcup(x \curlywedge z)) \subseteq V_{M a x}(x \curlywedge(y \sqcup z))$.
(v). From Proposition 3.6, we deduce that

$$
V_{\operatorname{Max}}(x) \cap V_{\operatorname{Max}}(y)=V_{\operatorname{Max}}\left(x^{* *}\right) \cap V_{M a x}\left(y^{* *}\right)=V_{\operatorname{Max}}(x \curlywedge y) .
$$

Then, $D_{M a x}(x) \cup D_{M a x}(y)=D_{M a x}(x \curlywedge y)$.
(vi). Since $x, y \leq x \sqcup y$, by $(i i)$, we deduce that $V_{M a x}(x), V_{M a x}(y) \subseteq V_{M a x}(x \sqcup y)$ so, $V_{M a x}(x) \cup$ $V_{M a x}(y) \subseteq V_{M a x}(x \sqcup y)$. Conversely, let $M \in V_{M a x}(x \sqcup y)$. Using Theorem 2.11, we deduce that $x \in M$ or $y \in M$. Hence $M \in V_{M a x}(x) \cup V_{\operatorname{Max}}(y)$, so, $V_{M a x}(x) \cup V_{M a x}(y)=V_{M a x}(x \sqcup y)$. We conclude that $D_{M a x}(x) \cap D_{M a x}(y)=D_{M a x}(x \sqcup y)$.

Proposition 3.9. Let A be a bounded BCK-algebra with Glivenko property. Then $D_{M a x}(x)$ is a compact set in $\operatorname{Max}(A)$, for every $x \in A$.

Proof. We prove that any cover of $D_{M a x}(x)$ with basic open sets contains a finite cover of $D_{M a x}(x)$. Let $D_{M a x}(x)=\cup_{i \in I} D_{M a x}\left(x_{i}\right)$. Using Proposition 3.1. $(v i), D_{M a x}(x)=D_{M a x}\left(\cup_{i \in I}\left\{x_{i}\right\}\right)$. From Proposition 3.1(iv), we deduce that $\langle x\rangle=\left\langle\left\{x_{i}: i \in I\right\}\right\rangle$, so, $x \in\left\langle\left\{x_{i}: i \in I\right\}\right\rangle$. Using Theorem 2.7, there are $n \geq 1$ and $i_{1}, \ldots, i_{n} \in I$ such that $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}} ; x\right)=1$.

We prove that $D_{\operatorname{Max}}(x)=D_{\operatorname{Max}}\left(x_{i_{i}}\right) \cup \ldots \cup D_{\operatorname{Max}}\left(x_{i_{n}}\right)$.
From $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}} ; x\right)=1$, using $\left(c_{18}\right)$ we deduce that $x_{i_{i}} \curlywedge \ldots \curlywedge x_{i_{n}} \leq x^{* *}$, so, by Proposition 3.8, we obtain

$$
D_{M a x}(x)=D_{M a x}\left(x^{* *}\right) \subseteq D_{M a x}\left(x_{i_{i}} \curlywedge \ldots \curlywedge x_{i_{n}}\right)=D_{M a x}\left(x_{i_{i}}\right) \cup \ldots \cup D_{M a x}\left(x_{i_{n}}\right) .
$$

Since $D_{M a x}\left(x_{i_{i}}\right) \cup \ldots \cup D_{M a x}\left(x_{i_{n}}\right) \subseteq \cup_{i \in I} D_{M a x}\left(x_{i}\right)=D_{M a x}(x)$, the other inclusion is obvious.
Theorem 3.10. If A is a bounded $B C K$-algebra with Glivenko property, then $\operatorname{Max}(A)$ is a compact topological space.

Proof. Since $\operatorname{Max}(A)=D_{\operatorname{Max}}(0)$, by Proposition 3.9 we deduce that $\operatorname{Max}(A)$ is compact.

4 The Belluce lattice associated with a bounded $B C K$-algebra

Let L be a bounded lattice. A nonempty subset F of L is called a filter of L (2]) if it satisfies:
$\left(f_{1}\right) 1 \in F ;$
$\left(f_{2}\right)$ if $x, y \in F$, then $x \wedge y \in F$;
$\left(f_{3}\right)$ if $x \in F, y \in L$, and $x \leq y$, then $y \in F$.
The set of all filters of L is denoted by $F(L)$; if L is a distributive lattice, then $(F(L), \subseteq)$ is also a distributive lattice, see [2]. A filter F of L is called proper if $F \neq L$.

For a distributive lattice L and $P \in F(L), P \neq L$, the following are equivalent: [P is a meet-prime element in $F(L)$] iff [P is a meet-irreducible element in $F(L)$] iff [for every $x, y \in L$ if $x \vee y \in P$, then $x \in P$ or $y \in P]$.

A proper filter P of a distributive lattice L is called prime if it verifies one of the above equivalent conditions, see [2]. The set of all prime filters of L is denoted by $\operatorname{Spec}(L)$ and it is called the prime spectrum of L. For $S \subseteq L, x \in L$ we denote $D(S)=\{P \in \operatorname{Spec}(L): S \nsubseteq P\}$ and $D(x)=\{P \in \operatorname{Spec}(L): x \notin P\}$. It is known that the family $\{D(S): S \subseteq L\}$ is a topology on $\operatorname{Spec}(L)$ and the family $\{D(x): x \in L\}$ is a basis for this topology.

Also, we recall that a proper filter M of a lattice L is called maximal (see [2]) if it is a maximal element of the set of all proper filters of L. The set of all maximal filters of L is called the maximal spectrum of L and it is denoted by $\operatorname{Max}(L)$.

In a lattice L for $S \subseteq L$ and $x \in L$ we denote $D_{\operatorname{Max}}(S)=\{M \in \operatorname{Max}(L): S \nsubseteq M\}$ and $D_{\operatorname{Max}}(x)=\{M \in \operatorname{Max}(L): x \notin M\}$. If L is distributive, since $\operatorname{Max}(L) \subseteq \operatorname{Spec}(L)$, the family $\left\{D_{M a x}(S): S \subseteq L\right\}$ is a topology on $\operatorname{Max}(L)$ having $\left\{D_{M a x}(x): x \in L\right\}$ as a basis.

Now let A be a bounded $B C K$-algebra. We define a binary relation \equiv on A as follows: for $x, y \in A, x \equiv y$ iff for any $M \in \operatorname{Max}(A),(x \notin M$ iff $y \notin M)$ iff for any $M \in \operatorname{Max}(A),(x \in M$ iff $y \in M)$.

Remark 4.1. From Proposition 3.5, for $x, y \in A, x \equiv y$ iff $V_{M a x}(x)=V_{M a x}(y)$ iff $D_{M a x}(x)=$ $D_{\text {Max }}(y)$ iff $\langle x\rangle=\langle y\rangle$.

Proposition 4.2. \equiv is a congruence relation on A with respect to \curlywedge and \sqcup.
Proof. It is obvious that \equiv is an equivalence relation on A. Let $x, y, z, t \in A$ such that $x \equiv y$ and $z \equiv t$. We prove that $x \curlywedge z \equiv y \curlywedge t$ and $x \sqcup z \equiv y \sqcup t$.

Let $M \in \operatorname{Max}(A)$. If $x \curlywedge z \in M$, since by $\left(c_{8}\right), x \curlywedge z \leq x^{* *}, z^{* *}$ then $x^{* *}, z^{* *} \in M$. From Lemma 2.12, we deduce that $x, z \in M$. Since $x \equiv y$ and $z \equiv t$ we have $y, t \in M$. By Lemma 2.6 we obtain $y \curlywedge t \in M$.

If $x \sqcup z \in M$, by Theorem 2.11, $x \in M$ or $z \in M$. Since $x \equiv y$ and $z \equiv t$ we deduce that y or $t \in M$, hence $y \sqcup t \in M$, since $y, t \leq y \sqcup t$.

For $x \in A$ we denote by $[x]$ the congruence class of x and by L_{A} the quotient set $L_{A}=A / \equiv$ $=\{[x]: x \in A\}$. Also, let $p_{A}: A \rightarrow L_{A}$ be the canonical surjection defined by $p_{A}(x)=[x]$, for every $x \in A$.

Obviously, on L_{A} the relation $[x] \sqsubseteq[y]$ iff for every $M \in \operatorname{Max}(A), x \in M$ implies $y \in M$ is an order relation on A.

Proposition 4.3. Let A be a bounded $B C K$-algebra and $x, y \in A$. The following assertions hold:
(i) $[x]=\left[x^{* *}\right]$;
(ii) if $x \leq y$, then $[x] \sqsubseteq[y]$;
(iii)
$[x] \sqsubseteq[y]$ iff $[x \curlywedge y]=[x] ;$
(iv) $[x] \sqsubseteq[y]$ iff $[x \sqcup y]=[y]$.

Proof. (i). Follows from Lemma 2.12.
(ii). Let $M \in \operatorname{Max}(L)$ such that $x \in M$. Since $x \leq y$ we deduce that $y \in M$, so, $[x] \sqsubseteq[y]$.
(iii). Suppose that $[x] \sqsubseteq[y]$. Since $x \curlywedge y \leq x^{* *}$, by (i) and (ii) we deduce that $[x \curlywedge y] \sqsubseteq\left[x^{* *}\right]=[x]$.

Now, let $M \in \operatorname{Max}(L)$ such that $x \in M$. Since $[x] \sqsubseteq[y]$ we deduce that $y \in M$. Using Lemma 2.6, $x \curlywedge y \in M$, so, $[x] \sqsubseteq[x \curlywedge y]$. We conclude that $[x \curlywedge y]=[x]$. Conversely, we suppose that $[x \curlywedge y]=[x]$. Since $x \curlywedge y \leq y^{* *}$, using (ii), we have $[x \curlywedge y] \sqsubseteq\left[y^{* *}\right]=[y]$. Thus, $[x] \sqsubseteq[y]$.
(iv). If $[x] \sqsubseteq[y]$, since $y \leq x \sqcup y$, from (ii) we deduce that $[y] \sqsubseteq[x \sqcup y]$. Now, let $M \in \operatorname{Max}(L)$ such that $x \sqcup y \in M$. From Theorem 2.11, $x \in M$ or $y \in M$. If $y \in M$, then $[x \sqcup y] \sqsubseteq[y]$, so, $[x \sqcup y]=[y]$. If $x \in M$, since $[x] \sqsubseteq[y]$, we deduce that $y \in M$, so, $[x \sqcup y]=[y]$. Conversely, suppose that $[x \sqcup y]=[y]$ and let $M \in \operatorname{Max}(L)$ such that $x \in M$. Since $x \leq x \sqcup y$ we obtain that $x \sqcup y \in M$, so $y \in M$. Thus, $[x] \sqsubseteq[y]$.

Theorem 4.4. $\left(L_{A}, \wedge, \vee,[0],[1]\right)$ is a bounded distributive lattice, relative to the above order, in which $[x] \wedge[y]=[x \curlywedge y]$ and $[x] \vee[y]=[x \sqcup y]$, for every $x, y \in A$.

Proof. Obviously, $[x \curlywedge y] \sqsubseteq[x]$, $[y]$, for every $x, y \in A$. Let $z \in A$ such that $[z] \sqsubseteq[x]$, $[y]$. To prove that $[z] \sqsubseteq[x \curlywedge y]$ we consider $M \in \operatorname{Max}(A)$ such that $z \in M$. By definition we deduce that $x, y \in M$, hence, using Lemma 2.6, $x \curlywedge y \in M$. Thus, $[x] \wedge[y]=[x \curlywedge y]$.

Clearly, $[x],[y] \sqsubseteq[x \sqcup y]$. Let $z \in A$ such that $[x],[y] \sqsubseteq[z]$. To prove that $[x \sqcup y] \sqsubseteq[z]$ we consider $M \in \operatorname{Max}(A)$ such that $x \sqcup y \in M$. By Theorem 2.11 we deduce that $x \in M$ or $y \in M$. In both cases, $z \in M$, hence $[x] \vee[y]=[x \sqcup y]$.

Since $[0] \wedge[x]=[0 \curlywedge x]=[0]$ and $[x] \wedge[1]=[x \curlywedge 1]=\left[x^{* *}\right]=[x]$ we deduce that $[0] \sqsubseteq[x] \sqsubseteq[1]$, for every $x \in A$, so ($\left.L_{A}, \wedge, \vee,[0],[1]\right)$ is a bounded lattice.

To prove the distributivity of L_{A}, let $x, y, z \in A$. We show that $[x] \wedge([y] \vee[z])=([x] \wedge[y]) \vee$ $([x] \wedge[z])$. This is equivalent to show that $[x \curlywedge(y \sqcup z)]=[(x \curlywedge y) \sqcup(x \curlywedge z)]$. First, let $M \in \operatorname{Max}(A)$ such that $x \curlywedge(y \sqcup z) \in M$. Thus, $M \in V_{\operatorname{Max}}(x \curlywedge(y \sqcup z))=V_{M a x}(x) \cap V_{M a x}(y \sqcup z)$. Hence $x \in M$ and $(y \in M$ or $z \in M)$. If $x, y \in M$, then $x \curlywedge y \in M$, so, $(x \curlywedge y) \sqcup(x \curlywedge z) \in M$. Similarly if $x, z \in M$. We conclude that $[x \curlywedge(y \sqcup z)] \sqsubseteq[(x \curlywedge y) \sqcup(x \curlywedge z)]$. Conversely, let $M \in \operatorname{Max}(A)$ such that $(x \curlywedge y) \sqcup(x \curlywedge z) \in M$. Thus, $x \curlywedge y \in M$ or $x \curlywedge z \in M$. Since $x \curlywedge y, x \curlywedge z \leq x \curlywedge(y \sqcup z)$ we deduce that $x \curlywedge(y \sqcup z) \in M$. Thus, $[(x \curlywedge y) \sqcup(x \curlywedge z)] \sqsubseteq[x \curlywedge(y \sqcup z)]$. We conclude that L_{A} is a distributive lattice.

Definition 4.5. For a bounded $B C K$-algebra A, the bounded distributive lattice L_{A} is called the Belluce lattice associated with A.

Proposition 4.6. Let A be a bounded BCK-algebra and $x, y \in A$. Then the following assertions hold:
(i) $[x] \sqsubseteq[y]$ iff $D_{M a x}(y) \subseteq D_{M a x}(x)$;
(ii) $[x]=[y]$ iff $\langle x\rangle=\langle y\rangle$;
(iii) $[x]=[0]$ iff $x \rightarrow_{n} 0=1$ for some $n \geq 1$;
(iv) $[x]=[1]$ iff $x=1$.

Proof. (i). We have $[x] \sqsubseteq[y]$ iff $[x \curlywedge y]=[x]$ iff $D_{M a x}(x)=D_{M a x}(x \curlywedge y)=D_{M a x}(x) \cup D_{M a x}(y)$ iff $D_{M a x}(y) \subseteq D_{M a x}(x)$.
(ii). Follows from Remark 4.1 .
(iii). By (ii), $[x]=[0]$ iff $\langle x\rangle=\langle 0\rangle=A$ iff $x \rightarrow_{n} 0=1$, for some $n \geq 1$.
(iv). By (ii), $[x]=[1]$ iff $\langle x\rangle=\langle 1\rangle$ iff $\langle x\rangle=\{1\}$ iff $x=1$.

We recall that if A and B are two $B C K$-algebras, then $f: A \rightarrow B$ is a morphism of $B C K$ algebras if $f(x \rightarrow y)=f(x) \rightarrow f(y)$, for every $x, y \in A$. If A and B are bounded $B C K$-algebras, we ask that $f(0)=0$, see [12].

We denote by $\overline{\mathcal{B C K}}$ the category of bounded $B C K$-algebras and by $\mathbf{L d}(\mathbf{0}, \mathbf{1})$ the category of bounded distributive lattices.

Remark 4.7. If $f: A \rightarrow B$ is a morphism in $\overline{\mathcal{B C K}}$, then for every $x, y \in A, f\left(x^{*}\right)=(f(x))^{*}, f(x \curlywedge$ $y)=f(x) \curlywedge f(y)$ and $f(x \sqcup y)=f(x) \sqcup f(y)$.

Proposition 4.8. Let $f: A \rightarrow B$ be a morphism in $\overline{\mathcal{B C K}}$.
(i) If $D \in D s(B)$, then $f^{-1}(D) \in D s(A)$ and if D is proper, then $f^{-1}(D)$ is also proper;
(ii) If $M \in \operatorname{Max}(B)$, then $f^{-1}(M) \in \operatorname{Max}(A)$;
(iii) If $x, y \in A$ such that $D_{M a x}(x)=D_{M a x}(y)$, then $D_{M a x}(f(x))=D_{M a x}(f(y))$.

Proof. (i). For $D \in D s(B)$, since $f(1)=1$ we deduce that $1 \in f^{-1}(D)$. Let $x, y \in A$ such that $x, x \rightarrow y \in f^{-1}(D)$. Then $f(x), f(x \rightarrow y)=f(x) \rightarrow f(y) \in D$. Since $D \in D s(B)$ we deduce that $f(y) \in D$, hence $y \in f^{-1}(D)$, that is, $f^{-1}(D) \in D s(A)$. If D is proper, then $D \neq B$, so $0 \notin D$. If
$f^{-1}(D)=A$, then $0 \in f^{-1}(D)$, hence $0=f(0) \in D$, a contradiction. We deduce that $f^{-1}(D)$ is a proper filter of A.
(ii). For $M \in \operatorname{Max}(B)$, using $(i), f^{-1}(M) \neq A$. To prove that $f^{-1}(M) \in \operatorname{Max}(A)$, let $x \in A$ such that $x \notin f^{-1}(M)$. By Theorem 2.10, there exists $n \geq 1$ such that $f\left(x \rightarrow_{n} 0\right)=f(x) \rightarrow_{n} 0 \in$ M. Thus $x \rightarrow_{n} 0 \in f^{-1}(M)$, so, $f^{-1}(M) \in \operatorname{Max}(A)$.
(iii). For $M \in \operatorname{Max}(B)$, using $(i i), f^{-1}(M) \in \operatorname{Max}(A)$. We have $M \in D_{M a x}(f(x))$ iff $f(x) \notin M$ iff $x \notin f^{-1}(M)$ iff $f^{-1}(M) \in D_{M a x}(x)$ iff $f^{-1}(M) \in D_{M a x}(y)$ iff $y \notin f^{-1}(M)$ iff $f(y) \notin M$ iff $M \in D_{M a x}(f(y))$. We deduce that $D_{M a x}(f(x))=D_{M a x}(f(y))$.

Theorem 4.9. Let $f: A \rightarrow B$ be a morphism in $\overline{\mathcal{B C K}}$. Then $\mathcal{R}(f): L_{A} \rightarrow L_{B}$ defined by $\mathcal{R}(f)([x])=[f(x)]$, for every $x \in A$, is a morphism in $\mathbf{L d}(\mathbf{0}, \mathbf{1})$ with the property that $p_{B} \circ f=$ $\mathcal{R}(f) \circ p_{A}$.

Proof. By Proposition 4.8 (iii), we deduce that $R(f)$ is well-defined. Clearly, $\mathcal{R}(f)([0])=[f(0)]=$ $[0]$ and $\mathcal{R}(f)([1])=[f(1)]=[1]$. Let $x, y \in A$. We have
$\mathcal{R}(f)([x] \wedge[y])=\mathcal{R}(f)([x \curlywedge y])=[f(x \curlywedge y)]=[f(x) \curlywedge f(y)]=[f(x)] \wedge[f(y)]=\mathcal{R}(f)([x]) \wedge \mathcal{R}(f)([y])$, and
$\mathcal{R}(f)([x] \vee[y])=\mathcal{R}(f)([x \sqcup y])=[f(x \sqcup y)]=[f(x) \sqcup f(y)]=[f(x)] \vee[f(y)]=\mathcal{R}(f)([x]) \vee \mathcal{R}(f)([y])$.
We deduce that $\mathcal{R}(f)$ is a morphism in $\mathbf{L d}(\mathbf{0}, \mathbf{1})$.
Since $p_{A}(x)=[x]$ and $p_{B}(f(x))=[f(x)]$ we deduce that $\mathcal{R}(f)\left(p_{A}(x)\right)=p_{B}(f(x))$, so $(\mathcal{R}(f) \circ$ $\left.p_{A}\right)(x)=\left(p_{B} \circ f\right)(x)$, for every $x \in A$. Thus, $p_{B} \circ f=\mathcal{R}(f) \circ p_{A}$.

For every $A \in O b(\overline{\mathcal{B C K}})$ we denote $\mathcal{R}(A)=L_{A}$. In this way, we define a functor $\mathcal{R}: \overline{\mathcal{B C K}} \rightarrow$ $\mathbf{L d}(\mathbf{0}, \mathbf{1})$ and we called \mathcal{R} the reticulation functor.

Lemma 4.10. Let $f: A \rightarrow B$ be an injective morphism in $\overline{\mathcal{B C K}}$ and $x, y \in A$ such that $\langle f(x)\rangle=$ $\langle f(y)\rangle$. Then $\langle x\rangle=\langle y\rangle$.
Proof. Let $z \in\langle x\rangle$. Then $x \rightarrow_{n} z=1$ for some $n \geq 1$ and $f(x) \rightarrow_{n} f(z)=f(1)=1$. Thus, $f(z) \in$ $\langle f(x)\rangle=\langle f(y)\rangle$, so there exists $m \geq 1$ such that $f(y) \rightarrow_{m} f(z)=1$. Hence, $f\left(y \rightarrow_{m} z\right)=f(1)$. Since f is injective we deduce that $y \rightarrow_{m} z=1$, so, $z \in\langle y\rangle$. Hence $\langle x\rangle \subseteq\langle y\rangle$. Similarly, $\langle y\rangle \subseteq\langle x\rangle$, so $\langle x\rangle=\langle y\rangle$.

Theorem 4.11. The reticulation functor \mathcal{R} preserves injective and surjective morphisms.
Proof. Let $f: A \rightarrow B$ be an injective morphism in $\overline{\mathcal{B C K}}$ and $x, y \in A$ such that $\mathcal{R}(f)([x])=$ $\mathcal{R}(f)([y])$. Then $[f(x)]=[f(y)]$ and using Proposition $4.6(i i)$, we obtain $\langle f(x)\rangle=\langle f(y)\rangle$. Since f is injective, by Lemma $4.10,\langle x\rangle=\langle y\rangle$, hence $[x]=[y]$. We deduce that $\mathcal{R}(f)$ is injective.

Now, let $f: A \rightarrow B$ be a surjective morphism in $\overline{\mathcal{B C K}}$ and we consider $y \in B$. Then there exists $x \in A$ such that $y=f(x)$. We obtain $\mathcal{R}(f)([x])=[f(x)]=[y]$, that is, $\mathcal{R}(f)$ is surjective.

We recall that for a set T we denote $\mathcal{P}(T)=\{X: X \subseteq T\}$.
Using this notation, for a bounded $B C K$-algebra A, we consider the map $p_{A}^{*}: \mathcal{P}\left(L_{A}\right) \rightarrow \mathcal{P}(A)$, $p_{A}^{*}(S)=p_{A}^{-1}(S)=\left\{x \in A: p_{A}(x)=[x] \in S\right\}$, for every $S \subseteq L_{A}$.
Remark 4.12. Since p_{A} is a surjective map, we get p_{A}^{*} is one-to-one and $p_{A}\left(p_{A}^{*}(S)\right)=S$, for every $S \subseteq L_{A}$.

Theorem 4.13. Let A be a bounded BCK-algebra.
(i) If $F \in F\left(L_{A}\right)$, then $p_{A}^{*}(F) \in D s(A)$ and if F is proper, then $p_{A}^{*}(F)$ is also proper;
(ii) If $M \in \operatorname{Max}(A)$, then $p_{A}(M) \in \operatorname{Max}\left(L_{A}\right)$.

Proof. (i). Obviously, $1 \in p_{A}^{*}(F)$ since $p_{A}(1)=[1] \in F$. Let $x, y \in A$ such that $x, x \rightarrow y \in p_{A}^{*}(F)$. Then $[x],[x \rightarrow y] \in F$, hence $[x] \wedge[x \rightarrow y]=[x \curlywedge(x \rightarrow y)] \in F$. Using $\left(c_{12}\right), x \curlywedge(x \rightarrow y) \leq y^{* *}$, so, by Proposition 4.3, $[x \curlywedge(x \rightarrow y)] \sqsubseteq\left[y^{* *}\right]=[y]$. We deduce that $[y] \in F$, so $y \in p_{A}^{*}(F)$ and $p_{A}^{*}(F) \in$ $D s(A)$. If F is proper, then $F \neq L_{A}$. Since p_{A}^{*} is one-to-one we deduce that $p_{A}^{*}(F) \neq p_{A}^{*}\left(L_{A}\right)=A$, so $p_{A}^{*}(F)$ is proper.
(ii). Since $M \in \operatorname{Max}(A)$ we have $M \neq A$, so, there exists $x \in A \backslash M$. If $p_{A}(M)=L_{A}$, then $p_{A}^{*}\left(p_{A}(M)\right)=p_{A}^{*}\left(L_{A}\right)=A$. Thus $x \in p_{A}^{*}\left(p_{A}(M)\right)$, hence $p_{A}(x)=[x] \in p_{A}(M)$, so there exists $y \in M$ such that $[x]=[y]$. Since $x \equiv y$ and $y \in M$ we deduce that $x \in M$, a contradiction. Thus $M \neq A$ implies $p_{A}(M) \neq L_{A}$. To prove $p_{A}(M) \in F\left(L_{A}\right)$, obviously [1] $=p_{A}(1) \in p_{A}(M)$ and let $\alpha, \beta \in p_{A}(M)$, that is, $\alpha=[x], \beta=[y]$ with $x, y \in M$. We have $\alpha \wedge \beta=[x] \wedge[y]=[x \curlywedge y]$. Using Lemma 2.6, $x \curlywedge y \in M$, so $\alpha \wedge \beta \in p_{A}(M)$. Now, let $\alpha \in p_{A}(M)$ and $\beta \in L_{A}$ such that $\alpha \sqsubseteq \beta$. Then $\alpha=[x], x \in M$ and $\beta=[y], y \in A$. Since $\alpha \sqsubseteq \beta$, we have $\alpha=\alpha \wedge \beta=[x] \wedge[y]=[x \curlywedge y]$, hence $x \equiv(x \curlywedge y)$. But $x \in M$ so $x \curlywedge y \in M$ and $M \in V_{M a x}(x \curlywedge y)=V_{M a x}(x) \cap V_{M a x}(y)$. Thus, $M \in V_{M a x}(y)$, so, $y \in M$. Hence $\beta=[y] \in p_{A}(M)$ and $p_{A}(M) \in F\left(L_{A}\right)$. To prove that $p_{A}(M) \in \operatorname{Max}\left(L_{A}\right)$, let $F \in F\left(L_{A}\right)$ such that $p_{A}(M) \subseteq F$. Then $p_{A}^{*}\left(p_{A}(M)\right) \subseteq p_{A}^{*}(F)$. Since $M \subseteq p_{A}^{*}\left(p_{A}(M)\right)$ we have $M \subseteq p_{A}^{*}(F)$. Since $p_{A}^{*}(F) \in D s(A)$ and $M \in M a x(A)$ we obtain $M=p_{A}^{*}(F)$ or $p_{A}^{*}(F)=A$. If $p_{A}^{*}(F)=A$, then $p_{A}\left(p_{A}^{*}(F)\right)=p_{A}(A)=L_{A}$, hence by Remark 4.12, $F=L_{A}$. If $M=p_{A}^{*}(F)$, then $p_{A}(M)=p_{A}\left(p_{A}^{*}(F)\right)=F$. So, $p_{A}(M) \in \operatorname{Max}\left(L_{A}\right)$.

5 The reticulation of a bounded $B C K$-algebra

Definition 5.1. A reticulation of a bounded $B C K$-algebra A is a pair (L, λ), where $(L, \wedge, \vee, 0,1)$ is a bounded distributive lattice and $\lambda: A \rightarrow L$ is a surjective map that satisfies the following conditions for every $x, y \in A$:
$\left(r_{1}\right) \lambda(0)=0, \lambda(1)=1, \lambda(x \curlywedge y)=\lambda(x) \wedge \lambda(y)$ and $\lambda(x \sqcup y)=\lambda(x) \vee \lambda(y)$;
$\left(r_{2}\right) \lambda(x)=\lambda(y)$ iff $\langle x\rangle=\langle y\rangle$.
Theorem 5.2. Let A be a bounded BCK-algebra. If $\left(L_{1}, \lambda_{1}\right)$ and $\left(L_{2}, \lambda_{2}\right)$ are two reticulations of A, then there exists a unique isomorphism of bounded lattices $f: L_{1} \rightarrow L_{2}$ such that $f \circ \lambda_{1}=\lambda_{2}$.

Proof. Let $z \in L_{1}$ and $x \in A$ such that $z=\lambda_{1}(x)$. We define $f(z)=\lambda_{2}(x)$. Obviously, $f \circ \lambda_{1}=\lambda_{2}$. If $x_{1}, x_{2} \in A$ such that $z_{1}=\lambda_{1}\left(x_{1}\right)$ and $z_{2}=\lambda_{1}\left(x_{2}\right)$, using $\left(r_{2}\right)$ we have $\lambda_{1}\left(x_{1}\right)=\lambda_{1}\left(x_{2}\right)$ iff $\left\langle x_{1}\right\rangle=\left\langle x_{2}\right\rangle$ iff $\lambda_{2}\left(x_{1}\right)=\lambda_{2}\left(x_{2}\right)$.

These implications prove that f is well-defined and injective. The surjectivity of λ_{2} implies that f is surjective. We conclude that f is bijective. Also, we have $f(0)=f\left(\lambda_{1}(0)\right)=\lambda_{2}(0)=0$ and $f(1)=f\left(\lambda_{1}(1)\right)=\lambda_{2}(1)=1$.

Let $x, y \in L_{1}$. Since λ_{1} is surjective, there are $a, b \in A$ such that $x=\lambda_{1}(a)$ and $y=\lambda_{1}(b)$. Applying $\left(r_{1}\right)$ we obtain the following equalities:

$$
\begin{aligned}
f(x \wedge y) & =f\left(\lambda_{1}(a) \wedge \lambda_{1}(b)\right)=f\left(\lambda_{1}(a \curlywedge b)\right)=\lambda_{2}(a \curlywedge b) \\
& =\lambda_{2}(a) \wedge \lambda_{2}(b)=f\left(\lambda_{1}(a)\right) \wedge f\left(\lambda_{1}(b)\right)=f(x) \wedge f(y),
\end{aligned}
$$

and analogous $f(x \vee y)=f(x) \vee f(y)$. We conclude that f is an isomorphism in $\mathbf{L d}(\mathbf{0}, \mathbf{1})$ such that $f \circ \lambda_{1}=\lambda_{2}$.

If we have two isomorphisms of bounded lattices $f, g: L_{1} \rightarrow L_{2}$ such that $f \circ \lambda_{1}=g \circ \lambda_{1}=\lambda_{2}$, then for $y \in L_{1}$ there exists $x \in A$ such that $y=\lambda_{1}(x)$. We have $f(y)=f\left(\lambda_{1}(x)\right)=\lambda_{2}(x)$ and $g(y)=g\left(\lambda_{1}(x)\right)=\lambda_{2}(x)=f(y)$, hence $f(y)=g(y)$ for every $y \in L_{1}$. We conclude that $f=g$.

From Theorem 4.4 and Proposition 4.6 we deduce that:
Corollary 5.3. If A is a bounded $B C K$-algebra, then the pair $\left(L_{A}, p_{A}\right)$ is a reticulation of A.
We recall that in Section 4, for $x \in A$ we defined $V_{\operatorname{Max}}(x)=\{M \in \operatorname{Max}(A): x \in M\}$.
Now, we consider $S_{A}=\left\{V_{\operatorname{Max}}(x): x \in A\right\} \subseteq \mathcal{P}(\operatorname{Max}(A))$.
Following Proposition 3.8 and Remark 4.1 we deduce that S_{A} is a distributive sublattice of the lattice $(\mathcal{P}(\operatorname{Max}(A)), \subseteq)$ and

Corollary 5.4. If A is a bounded $B C K$-algebra, then the pair $\left(S_{A}, V_{M a x}\right)$ is a reticulation of A.
From Theorem 5.2, Corollaries 5.3 and 5.4 we obtain:
Corollary 5.5. The lattices L_{A} and S_{A} are isomorphic.

6 Conclusion

We have introduced the concept of Belluce lattice L_{A} associated with a bounded BCK algebra A, that enables us to transfer many properties between L_{A} and A. Moreover, we gave a description of the reticulation for a bounded BCK algebra and we proved the uniqueness of this reticulation.

For future work, we could generalize these results to the non-commutative case.

References

[1] M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley Series in Mathematics 361, Addison-Wesley (Reading, M A), 1969.
[2] R. Balbes, P. Dwinger, Distributive lattices, University of Missouri Press, XIII, 1974.
[3] L.P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canadian Journal of Mathematics, 38(6) (1986), 1356-1379.
[4] L.P. Belluce, Spectral spaces and non-commutative rings, Communications in Algebra, 19 (1991), 1855-1865.
[5] D. Buşneag, D. Piciu, The Belluce lattice associated with a bounded Hilbert algebra, Soft Computing, 19 (2015), 3031-3042.
[6] S.A. Celani, Deductive systems of BCK-algebras, Acta Univ. Palackianae Olomoucensis, Facultas Rervoum Naturalium Mathematisa, 43(1) (2004), 27-32.
[7] L. Ciungu, Non-commutative multiple-valued logic algebras, Springer International Publishing, 2014.
[8] G. Georgescu, The reticulation of a quantale, Revue Roumaine des Mathematiques Pures et Appliquees, 7-8 (1995), 619-631.
[9] M. Ghita, Contributions to the study of the category of Hilbert algebras, Ph. D. Thesis, University of Craiova, 2011.
[10] K. Iseki, On some ideals in BCK-algebras, Mathematics Seminar Notes, 3 (1975), 65-70.
[11] K. Isèki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 23(1) (1978), 1-26.
[12] J. Kühr, Pseudo BCK-algebras and related structures, Univerzita Palackého v Olomouci, 2007.
[13] L. Leustean, The prime and maximal spectra and the reticulation of BL-algebras, Central European Journal of Mathematics, 3 (2003), 382-397.
[14] C. Mureşan, The reticulation of a residuated lattice, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 51(1) (2008), 47-65.
[15] C. Mureşan, Characterization of the reticulation of a residuated lattice, Journal of MultipleValued Logic and Soft Computing, 16 (2010), 427-447.
[16] A.B. Saeid, C. Flaut, S. Hoskova-Mayerova, M. Afshar, Some connections between BCKalgebras and n-ary block codes, Soft Computing, 22(1) (2018), 41-46.
[17] H. Simmons, Reticulated rings, Journal of Algebra, 66 (1980), 169-192.

[^0]: https://doi.org/10.52547/HATEF.JAHLA.2.1.1

