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Abstract

The lattices of fractions were introduced by Brezuleanu
and Diaconescu in 1969. They used this concept in or-
der to construct a Grothendieck - style duality for the
category D01 of bounded distributive lattices. Then the
lattices of fractions are studied in connection with other
themes in lattice theory: lattices schemas, localization
of bounded distributive lattices, sheaf representations of
normal lattices,etc.
This paper continues this research vein. We relate the
lattices of fractions to flat lattice morphisms, patch and
flat topologies on the spectra of bounded distributive lat-
tices, conormal and Stone lattices, etc.
We define the flat morphisms of D01 in terms of the resid-
uation operation existing in the frames of lattice ideals.
We study how the lattices of fractions preserve the flat-
ness property of morphisms. Two characterization theo-
rems of flat and patch topologies are proved. The lattices
of fractions are used for obtaining new characterizations
of conormal and Stone lattices.
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1 Introduction
The lattices of fractions were introduced by Brezuleanu and Diaconescu in [10] in order to obtain
a Grothendieck-like duality for the category D01 of bounded distributive lattices. They are the
lattice-theoretic version of rings of fractions [4] and there exists much similarity between their
theories. The subject was developed in relationship with other themes: Lattices schemas [9], lo-
calization theory of bounded distributive lattices [19], [20], sheaf representations of normal lattices
[22], etc.
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The aim of this paper is to use the lattices of fractions in the study of flat morphisms of D01,
flat and patch topologies on the spectra of a bounded distributive lattice, as well as to obtain new
characterizations of conormal and Stone lattices.

The notion of flat ring morphism plays an important role in commutative algebra and algebraic
geometry [4], [8], [15], [1]. Usually, the flat ring morphisms are defined by using the tensor product
of commutative rings (see eg. [4], p.30).

By Exercise 22 of [8], p.65 or [32], p.46, a morphism f : R → Q of commutative rings is flat if
and only if (I : J)Q = (IQ : JQ), where I, J are ideals of R and J is finitely generated. We remark
that this characterization of flat ring morphisms is expressed in terms of residuation operation in
lattices of ring ideals. This observation is the starting point in order to define the flat morphisms
in the category D01.

If A ∈ D01, then the set Id(A) of ideals in A is a frame [27], hence Id(A) is endowed with a
residuation operation. Recall that if I is an ideal of A and a ∈ A, then (I : a) = {x ∈ A|x∧ a ∈ I}
is an ideal of A. Each morphism u : A → B of D01 induces a map u• : Id(A) → Id(B): For each
I ∈ Id(A), u•(I) is the ideal (u(I)] of B generated by u(I).

A morphism u : A → B of D01 is said to be flat if u•(I : x) = (u•(I) : u(x)), for all I ∈ Id(A)
and x ∈ A.

The first goal of this paper is to connect the lattices of fractions and the flat morphisms of
bounded distributive lattices. In particular, we emphasize how the flateness of lattice morphisms is
preserved by lattices of fractions construction. Our second goal is to characterize the flat topology
on prime spectra of a bounded distributive lattice in terms of lattices of fractions. Besides them,
by using some lattices of fractions we obtain new characterizations of conormal and Stone lattices.

The paper is organized as follows: Section 2 contains two theorems on the prime spectra of
colimits in D01. In Section 3, we recall from [10] the definition of lattice of fractions L/S associated
with a ∧-closed subset S of bounded distributive lattice L, as well as some basic properties of prime
and minimal prime spectra of L/S.

Section 4 concerns the flat morphisms in D01. Similar to the case of rings [4], [8], the main
example of flat morphism in D01 is the canonical morphism πS : L → L/S associated with a
∧-closed subset S of L. Some characterization theorems of flat lattice morphisms are proved. We
show that the flatness property is preserved by the lattice of fractions and colimit constructions.

In Section 5, we obtain an algebraic characterization of flat topology on the prime spectrum
Spec(L) in terms of lattices of fractions. Another result describes the patch topology on Spec(L).
These two theorems (= Theorems 5.4 and 5.10) can be view as a lattice counterpart of some results
of Tarizadeh [36] on the flat and patch topologies on the prime spectra of rings. Similar to the
rings case [36], much of the flat and patch topologies theory can be developed by using Theorems
5.4 and 5.10. Two theorems of Section 6 characterize conormal and Stone lattice in terms of some
lattices of fractions.

2 Preliminaries
Let L be a bounded distributive lattice. Then Id(L) the frame of its ideals [27] and Spec(L)

the set of prime ideals of L. Spec(L) is called the prime spectrum of L. For any ideal I of L we
denote D(I) = {P ∈ Spec(L)|I ̸⊆ P} and V (I) = {P ∈ Spec(L)|I ⊆ P}. In particular, if a ∈ L,
then we denote D(a) = {P ∈ Spec(L)|a /∈ P} and V (a) = {P ∈ Spec(L)|a ∈ P}. According to
[5], [27], (D(I))I∈Id(L) is the family of open sets for the Stone topology on Spec(L). The family
(D(a))a∈L is a basis of compact open sets for this topology. The set Max(L) of maximal ideals in
L is called the maximal spectrum of L. Then Max(L) ⊆ Spec(L) and Max(L) is a subspace of



Lattices of fractions and flat morphisms of bounded distributive lattices 3

Spec(L) w.r.t. the Stone topology.
Following [5], D01 will denote the category of bounded distributive lattices. Any morphism

f : L → L′ of D01 induces a map f∗ : Id(L′) → Id(L) defined by f∗(J) = f−1(J), for all J ∈ Id(L′).
By restricting f∗ to prime ideals one obtains a continuous map f∗ : Spec(L′) → Spec(L).

We shall recall from [5] the construction of direct inductive limits (= colimits) in the category
D01. Let us consider an inductive system (Li, uij : Li → Lj)i≤j in D01, indexed by the direct
ordered set (I,≤). We take the following equivalence relation ∼ on the disjoint union

⊔
i∈I Li:

For all x ∈ Li and y ∈ Lj , x ∼ y if and only if there exists an element k of I such that i ≤ k,
j ≤ k and uik(x) = ujk(y). Then colimi∈ILi =

⊔
i∈I Li/ ∼ is a bounded distributive lattice,

named the colimit of the system (Li, uij : Li → Lj)i≤j in D01. For any x ∈
⊔

i∈I Li, x/∼ will
denote the equivalence class of x. Let us consider the canonical morphisms ui : Li → colimi∈ILi,
i ∈ I, defined by ui(x) = x/∼, for all x ∈ Li. The colimit colimi∈ILi has the following property
of universality: For any family (fi : Li → A)i∈I of morphisms in D01 such that fi ◦ uij = fj , for
all i ≤ j, there exists a unique morphism f : colimi∈ILi → A such that f ◦ ui = fi, for all i ∈ I.

Keeping the previous notations we shall present some known results on the prime spectrum
Spec(colimi∈ILi). For sake of completeness we shall sketch their proofs.

Lemma 2.1. For any P ∈ Spec(colimi∈ILi) we have P =
∪

i∈I u
−1
i (P )/∼.

For any i ∈ I, consider the continuous map u∗i : Spec(colimi∈ILi) → Spec(Li) induced by the
lattice morphism ui : Li → colimi∈ILi.

Proposition 2.2. Spec(colimi∈ILi) =
∩

i∈I u
∗
i (Spec(Li)).

Proof. We shall prove that for each ideal P of colimi∈ILi, the following equivalence holds:
P ∈ Spec(colimi∈ILi) if and only if u−1

i (P ) ∈ Spec(Li), for all i ∈ I.
The implication (⇒) is obvious. In order to prove that the converse implication (⇐), assume

that u−1
i (P ) ∈ Spec(Li), for all i ∈ I. Let a, b be two elements of colimi∈ILi such that a ∧ b ∈ P ,

hence there exist i, j ∈ I such that x ∈ Li, y ∈ Lj , a = x/∼ and b = y/∼. Thus a∧ b = x/∼∧ y/∼
= uk(uik(x) ∧ ujk(y)), hence uik(x) ∧ ujk(y) ∈ u−1

k (P ). Since u−1
k (P ) is a prime ideal of Lk, it

follows that uik(x) ∈ u−1
k (P ) or ujk(y) ∈ u−1

k (P ), so a = uk(uik(x)) ∈ P or b = uk(ujk(y)) ∈ P .
Therefore P is a prime ideal of colimi∈ILi.

Proposition 2.3. f∗(Spec(colimi∈ILi)) =
∩

i∈I(f
∗
i (Spec(Li)).

Proof. The map f∗ preserves the arbitrary intersections, hence by using Proposition 2.2 the fol-
lowing equalities hold:

f∗(Spec(colimi∈ILi)) = f∗(
∩

i∈I u
∗
i (Spec(Li))) =

∩
i∈I f

∗(u∗i (Spec(Li))) =
∩

i∈I(f
∗
i (Spec(Li)).

3 Lattices of fractions
The lattices of fractions were introduced by Brezuleanu and Diaconescu in [10]. In this section

we shall recall some basic facts on the lattices of fractions and we give new proofs for some known
properties of prime ideals.

Let us fix a bounded distributive lattice L. A subset S of L is ∧-closed if 1 ∈ S and x, y ∈ S
implies x ∧ y ∈ S. For any ∧-closed subset S of L consider the following congruence relation:
x ≡S y if and only if there exists t ∈ S such that x ∧ t = y ∧ t. Following [10], the quotient lattice
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L/S = L/ ≡S is called the lattice of fractions of L modulo ≡S . We remark that any filter of L is
a ∧-closed subset of L. If [S) is the filter generated by a ∧-closed subset S of L, then ≡S = ≡[S),
hence L/S = L/[S). For any element a ∈ L, a/S will denote the congruence class of a modulo ≡S .

Let us consider the surjective morphism πS : L → L/S, defined by πS(x) = s/S, for each
x ∈ L. Thus x/S = 1/S if and only if x ∈ [S) and L/S is a nontrivial lattice if and only if 0 ̸∈ [S).
Following Proposition 1.4 of [10], recall the universality property of the lattice of fractions L/S:
For each morphism f : L → A such that f(S) = 1 there exists a unique morphism g : L/S → A
such that g ◦ πS = f .

Lemma 3.1. (1) If I ∈ Id(L), then πS(I) is an ideal of L/S;

(2) For any ideal J of L/S we have πS(π
−1
S (J)) = J .

If π∗
s : Spec(L/S) → Spec(L) is the continuous map associated with π∗

s , then Im(π∗
s) =

{P ∈ Spec(A)|P
∩
S = ∅} (see Observation 1.1 of [10]).

Lemma 3.2. [10] π∗
s : Spec(L/S) → {P ∈ Spec(L)|P

∩
S = ∅} is a homeomorphism.

We observe that the map π∗
s : Spec(L/S) → {P ∈ Spec(L)|P

∩
S = ∅} is an order-isomorphism.

Let (I,≤) be a directed ordered set and (Si)i∈I be a family of ∧-closed subsets of L such that
Si ⊆ Sj for all i ≤ j in I. For any pair (i, j) such that i ≤ j we denote uij : L/Si → L/Sj the
lattice morphism defined by uij(x/Si) = x/Sj , for all x ∈ L.

Lemma 3.3. [10]

(1) (L/Si, uij)i≤j is an inductive system in D01;

(2) S =
∪

i∈I Si is a ∧-closed subset of L and the lattices L/S and colimi∈IL/Si are isomorphic
(we shall identify these isomorphic lattices).

For any a ∈ L we shall denote by La the lattice of fractions L/[a) associated with the filter
[a) generated by {a}. If x ∈ L, then we shall denote by x/a the congruence class x/[a). Let
πa : L → La be the canonical morphism defined by πa(x) = x/a, for all x ∈ L.

Remark 3.4. If S is a ∧-closed subset of L then (S,≥) is a direct ordered set and the family (La)a∈S
provides an inductive system of bounded distributive lattices. We observe that [S) =

∪
a∈S Sa, so,

by applying Lemma 3.3 one gets L/S = colima∈SLa.

Let P be a prime filter of L. Then S = L−P is a filter. In this case we denote by LP = L/(L−P )
the lattice of fractions of L w.r.t. the ∧-closed subset L− P . For any a ∈ L, [a]P will denote the
congruence class of a (modulo ≡L−P ). Then πP : L → LP will be the canonical morphism defined
by πP (a) = [a]P , for all a ∈ L.

Consider the continuous map π∗
P : Spec(LP ) → Spec(L) associated with πP . If we denote

Λ(P ) = {Q ∈ Spec(L)|Q ⊆ P}, then Im(π∗
P ) = Λ(P ). From Lemma 3.2 on gets:

Lemma 3.5. π∗
P : Spec(LP ) → Spec(L) is a homeomorphism.

We remark that π∗
P is also an order-isomorphism. Following [14], for any prime ideal P of L

we consider the ideal: O(P ) = {x ∈ L|x ∧ y = 0, for some y ∈ L− P}.
The annihilator of an element x ∈ L is the ideal x⊥ = {y ∈ L|x ∧ y = 0}. Therefore for any

P ∈ Spec(L) we have O(P ) = {x ∈ L|x⊥ ̸⊆ P}.

Lemma 3.6. For all x ∈ L the following equivalence holds: x ∈ O(P ) if and only if πP (x) = [0]P .
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Proof. If x ∈ L, then πP (x) = [0]P if and only if x ∧ t = 0, for some t ∈ L − P if and only if
x ∈ O(P ).

Recall that a minimal prime ideal of L is a minimal element of Spec(L). The set Min(L) of
minimal prime ideals of L is said to be the minimal prime spectrum of L. By using Zorn’s axiom
it follows that for any P ∈ Spec(L) there exists Q ∈ Min(L) such that Q ⊆ P .

By using Lemma 3.6 one obtains new proofs of some known results on minimal prime ideals in
bounded distributive lattices:

Corollary 3.7. For any P ∈ Spec(L) we have O(P ) =
∩
Λ(P ). If P is a minimal prime ideal of

L, then O(P ) = P . If P and O(P ) are prime ideals of L, then O(P ) is minimal prime.

Proof. Assume that Q ∈ Λ(P ) and x ∈ O(P ). Thus x ∧ y = 0 for some y /∈ P , hence y /∈ Q, so
x ∈ Q because Q is prime. It follows that x ∈

∩
Λ(P ), so O(P ) ⊆

∩
Λ(P ).

If x ∈
∩

Λ(P ), then πP (x) ∈ π∗
P (Q) for all Q ∈ Spec(L) such that Q ⊆ P . Since π∗

P :
Spec(LP ) → Spec(L) is an order-isomorphism the following hold:

πP (x) ∈
∩
{π∗

P (Q)|Q ∈ Λ(P )} = π∗
P (

∩
Spec(LP )) = {[0]P }.

Thus πP (x) = [0]P so x ∈ O(P ) (cf. Lemma 3.6). Therefore the converse inclusion
∩
Λ(P ) ⊆

O(P ) is proven, and so O(P ) =
∩
Λ(P ). The other two properties are easy consequences of this

equality.

The following known lemma follows immediatelly from Corollary 3.7.

Lemma 3.8. If P is a prime ideal of L, then the following are equivalent

(1) P is a minimal prime ideal of L;

(2) For all x ∈ P , there exists y ∈ L− P such that x ∧ y = 0.

Proposition 3.9. Let f : L → A be an injective morphism in D01 and P a minimal prime ideal
of L. Then there exists Q ∈ Spec(A) such that f−1(Q) = P .

Proof. We observe that S = f(L−P ) is a ∧-closed subset of A. Let us assume that 0 ∈ [f(L−P )),
so 0 = f(a1)∧...∧f(an) for some elements a1, ..., an ∈ L−P . Denoting a = a1, · · · , an it results that
a ∈ L− P and f(a) = 0 = f(0), hence a = 0. This contradiction shows that 0 /∈ [f(L− P )) = S,
so A/S is a non-trivial lattice. Thus there exists a prime ideal Q′ of A. According to Lemma
3.1, if Q = π∗

S(Q
′), then we have Q ∈ Spec(A) and Q′ = πS(Q). Let us consider the following

commutative diagram in D01:

L -f
A

?

πP

LP
-g

A/S

?

πS

where g : LP → A/S is the morphism defined by g([x]P ) = f(x)/S, for all x ∈ L. The above
diagram induces the following commutative diagram in the category of topological spaces and
continuous maps:
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Spec(As)
-g∗

Spec(LP )

?

π∗
S

Spec(A) -f∗

Spec(L)

?

π∗
P

hence f∗(Q) = f∗(π∗
S(Q

′)) = π∗
P (g

∗(Q′)) ⊆ P , because g∗(Q′) is a prime ideal of L and
Im(π∗

P ) = Λ(P ). Since P is a minimal prime ideal of L and f∗(Q) ∈ Spec(L), we get f∗(Q) = P .

A bounded distributive lattice L is said to be local if it has a unique maximal ideal (denoted
by ML).

Lemma 3.10. A bounded distributive lattice L is local if and only if the following sentence holds
in L:

∀xy[x ∧ y = 1 ⇒ x = 1 or y = 1].

Lemma 3.11. [10] If P ∈ Spec(L), then the lattice LP is local and its unique maximal ideal is
πP (P ) = {[x]p|x ∈ P}.

Lemma 3.12. If L is a local lattice, then the quotient lattice L/ML is isomorphic to the Boolean
algebra L2 = {0, 1}.

Proof. By Lemma 1.1 of [10], x /∈ ML implies x = 1.

Corollary 3.13. If P ∈ Spec(L), then L(P ) = LP /πP (P ) is isomorphic to the Boolean algebra
L2.

Lemma 3.14. If f : L → A is morphism in D01, then the following properties are equivalent:

(1) f(ML) ⊆ MA;

(2) f−1(MA) = ML;

(3) For all x ∈ L, f(x) = 1 implies x = 1.

If a morphism f : L → A fulfils the equivalent conditions (1)-(3) from Proposition 3.13, then
it is called a local morphism.

Remark 3.15. For any P ∈ Spec(L) consider the map ϵP : L → L(P ) = L2 defined by: For all
x ∈ L, ϵP (x) = 0 if and only if x ∈ P . It is well-known that ϵP is a morphism in D01. Let us
consider the following morphisms in D01:

L
πP−−→ LP

νP−→ L(P ) = L2,

where νP ([a]P ) = a/πP (P ), for all a ∈ L. It is easy to see that ϵP = νP ◦ πP .

Recall from [5] that the congruence ∼I associated with an ideal I of L has the following form:
x ∼I y if and only if x ∨ t = y ∨ t for some t ∈ I.

Lemma 3.16. Let P be a prime ideal of L and x, y ∈ L. If x ∼O(P ) y, then x ≡L−P y.

Proof. If x ∼O(P ) y, then x ∨ t = y ∨ t for some t ∈ O(P ). Thus there exists s ∈ L− P such that
x ∧ t = 0, hence x ∧ s = (x ∨ t) ∧ s = (y ∨ t) ∧ s = y ∧ s. It follows that x ≡L−P y.
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4 Flat morphisms of bounded distributive lattices
In this section, we shall define the flat morphisms in the category D01 and we shall prove some

of their basic properties. Firsly we shall present a description of flat ring morphisms that can be
used as inspiration point in defining the flat lattice morphisms.

Let R be a (unital) commutative ring and Id(R) the quantale of ideals in R. Recall from [4],
[8] the residuation operation in Id(R): For all ideals I, J of R, (I : J) = {x ∈ R|xJ ⊆ I}. In
terms of [4],p.8, (I : J) is the ideal quotient of I and J . Similarly, if I, J are ideals in a bounded
distributive lattice L, then we define the residuation (I : J) as the set of all x ∈ L such that
x∧ y ∈ I, for all y ∈ J . If J is the principal ideal (a] generated by a point set {a}, then we denote
(I : a) = (I : (a]).

Let ModR be the category of R-modules. We fix an R-module M and consider the functor
TM : ModR → ModR defined by TM (N) = N

⊗
R M , for all R-module N . Following [4], p.29 we

say that the R-module M is flat if TM is an exact functor, i.e. transforms exact sequences into
exact sequences. A ring morphisms f : R → S is flat if S is flat as R-module.

If we want to define a notion of ”flat morphisms” in an arbitrary category of algebras, then the
previous definition of flat ring morphism is not very useful. Fortunately there exists a characteri-
zation of flat ring morphisms in terms of residuation operations of ideals.

According to Exercise 22 of [8], p.65 or [32], p.46, a ring morphism f : R → S is flat if and only
if for each ideal I of R and for each finitely generated ideal J of R we have (I : J)S = (IS : JS).
By taking into account this equivalent definition of flat ring morphisms we are able to introduce a
notion of flat morphism for the algebras whose lattices of congruences have a residuation operation.
We shall apply this observation to define the flat morphisms of bounded distributive lattices.

Let f : A → B be a morphism of bounded distributive lattices. For each ideal I of A we
denote by f•(I) the ideal (f(I)] of B generated by f(I). In this way we obtain a function f• :
Id(A) → Id(B) with the following property: For all I ∈ Id(A) and J ∈ Id(B), f•(I) ⊆ J if and
only if I ⊆ f∗(J). Thus f• : Id(A) → Id(B) is the left adjoint functor of f∗ : Id(B) → Id(A)
and f• preseves the arbitrary joins. If f : A → B and g : B → C are two morphisms of D01, then
(g ◦ f)• = g• ◦ f•.

We remind that any finitely generated ideal in a bounded distributive lattice is principal. Then
a morphism f : A → B of D01 is said to be flat if for any ideal I and x ∈ A we have f•(I : x) =
(f•(I) : f(x)).

Lemma 4.1. If f : A → B is a morphism of D01, then the following are equivalent:

(1) f is flat;

(2) For all ideals I of A and x ∈ A we have (f•(I) : f(x)) ⊆ f•(I : x).

Proof. If f : A → B is an arbitrary morphism of D01, then it is easy to prove that for all ideals I
and x ∈ A we have f•(I : x) ⊆ (f•(I) : f(x)).

Proposition 4.2. If f : A → B and g : B → C are two flat morphisms of D01, then g ◦ f is a
flat morphism.

Proof. For all ideals I of A and x ∈ A the following equalities hold:

(g ◦ f)•(I : x) = g•(f•(I : x)) = g•(f•(I) : g(f(x))) = ((g ◦ f)•(I) : g(f(x))).
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Proposition 4.3. If S is a ∧-closed subset of the bounded distributive lattice A, then πS : A → A/S
is a flat morphism.

Proof. In accordance with Lemma 4.1 it suffices to prove that (π•
S(I) : x/S) ⊆ π•

S(I : x), for all
ideals I of A and x ∈ A. By Lemma 3.1 we have π•

S(I) = {x/S|x ∈ I} and π•
S(I : x) = {y/S|y ∈

A, x ∧ y ∈ I}.
Let y be an element of A such that y/S ∈ (π•

S(I) : x/S), so (x ∧ y)/S ∈ π•
S(I). Then there

exists z ∈ I such that (x ∧ y)/S = z/S, hence x ∧ y ∧ t = z ∧ t, for some t ∈ S. Since z ∧ t ∈ I,
it follows that y ∧ t ∈ (I : x). We remark that y/S = y/S ∧ t/S = (y ∧ t)/S = πS(y ∧ t). Thus
y/S ∈ π•

S(I : x), so (π•
S(I) : x/S) ⊆ π•

S(I : x). We conclude that πS is a flat morphism.

Lemma 4.4. If f : A → B is a morphism of D01, then the following are equivalent:

(1) f is flat;

(2) For all I ∈ Id(A), x ∈ A and y ∈ B, the following implication holds:

∃a ∈ I[y ∧ f(x) ≤ f(a)] ⇒ ∃b ∈ A[b ∧ x ∈ I, y ≤ f(b)].

Proof. For all I ∈ Id(A), x ∈ A and y ∈ B, the following equivalences hold:
(i) y ∈ (f•(I) : f(x)) if and only if y ∧ f(x) ∈ f•(I) if and only if y ∧ f(x) ≤ f(a), for some

a ∈ I;
and
(ii) y ∈ f•(I : x) if and only if there exists b ∈ (I : x) such that y ≤ f(b) if and only if there

exists b ∈ A such that b ∧ x ∈ I and y ≤ f(b).
The previous equivalences together Lemma 4.1 imply that the properties (1) and (2) are equiv-

alent.

The previous proposition offers a criterion to check if a morphism of D01 is flat.

Lemma 4.5. If S is a ∧-closed subset of a bounded distributive lattice A and f : A/S → B is a
morphism of D01, then the following properties are equivalent:

(1) f is flat;

(2) f ◦ πS is flat.

Proof. (1) ⇒ (2) By Propositions 4.2 and 4.3.
(2) ⇒ (1) Let J be an ideal of A/S, z ∈ A/S and y ∈ B, so I = π−1

S (J) ∈ Id(A) and there
exists x ∈ A and there exists x ∈ A such that z = πS(x). By Lemma 3.1(2) we have J = π•

S(I).
Assume that there exists a ∈ A such that πS(a) ∈ J and y∧f(πS(a)) ≤ f(πS(x)). We observe that
a ∈ I. Since f ◦ πS is flat, there exists b ∈ A such that b∧ x ∈ I and y ≤ f(πS(b)) (cf. Proposition
4.4). Then πS(b) ∧ z = πS(b ∧ x) is an element of π•

S(I) = J . By using again Proposition 4.4 it
follows that f is flat.

Lemma 4.6. Let f : A → B be a morphism of D01, Q ∈ Spec(B) and P = f−1(Q) ∈ Spec(A).
For all x, y ∈ A the following implication holds:

x ≡A−P y ⇒ f(x) ≡B−Q f(y).
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Proof. Assume that x ≡A−P y, so x ∧ t = y ∧ t, for some t ∈ A − P . Then f(t) ∈ B − Q and
f(x) ∧ f(t) = f(y) ∧ f(t), so f(x) ≡B−Q f(y).

Let f : A → B be a morphism of D01, Q ∈ Spec(B) and P = f−1(Q) ∈ Spec(A). According
to Lemma 4.6, one can define a map fQ : AP → BQ by fQ([x]P ) = [f(x)]Q, for each x ∈ a. Then
fQ is a morphism of bounded distributive lattices and the following diagram is commutative:

A -f
B

?

πP

AP
-fQ

BQ

?

πQ

Proposition 4.7. If f : A → B is flat, then fQ : AP → BQ is a flat morphism.

Proof. Assume that f : A → B is flat. By Proposition 4.3, πP and πQ are flat morphisms.
According to Proposition 4.2, πq ◦ f is flat. By using the previous commutative diagram it follows
that fQ ◦ πP is flat, therefore, in accordance with Lemma 4.5, we conclude that fQ is a flat
morphism.

Proposition 4.8. Let A,B be two non-trivial bounded distributive lattices and f : A → B be a
morphism in D01. The following are equivalent:

(1) f is flat;

(2) For any Q ∈ Spec(B), the morphism fQ : Af−1(Q) → BQ is flat;

(3) For any N ∈ Max(B), the morphism fN : Af−1(N) → BN is flat.

Proof. (1) ⇒ (2) By Proposition 4.7.
(2) ⇒ (3) Obviously.
(3) ⇒ (1) Since B is a non-trivial bounded distributive lattice there exists a maximal ideal N

in B. Let us consider the following commutative diagram

A -f
B

?

πf−1(N)

Af−1(N)
-fN

BN

?

πN

The morphisms πf−1(N), πN and fN are flat, therefore by using Propositions 4.2 and 4.5, from
πN ◦ f = fN ◦ πf−1(N) it follows that f is flat.

Assume that (Li, uij : Li → Lj)i≤j is an inductive system in the category of bounded distribu-
tive lattices, colimi∈ILi is its colimit and ui : Li → colimi∈ILi, i ∈ I are the canonical morphisms.
Let fi : Li → A, i ∈ I be a family of morphisms such that fj ◦ uij = fi, for all i ≤ j and
f : colimi∈ILi → A the induced morphism. Recall that f ◦ ui = fi, for all i ∈ I.
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Proposition 4.9. If the morphisms f : Li → A, i ∈ I are flat, then the morphism f : colimi∈ILi →
A is flat.

Proof. Let J be an ideal of colimi∈ILi, x ∈ colimi∈ILi and y ∈ A. Suppose that there exists
a ∈ J such that y∧f(x) ≤ f(a). According to the construction of the colimit there exist i ∈ I and
c, d ∈ Li such that x = ui(c) and a = ui(d). We remark that u−1

i (J) is an ideal of the lattice Li,
d ∈ u−1

i (J), f(x) = f(ui(c)) = fi(c) and f(a) = f(ui(d)) = fi(d), hence y ∧ fi(c) ≤ fi(d). Since
the morphism fi is flat, by Proposition 4.4, there exists an element e ∈ Li such that e∧ c ∈ u−1

i (J)
and y ≤ fi(e). Denoting b = ui(e) we have b ∈ colimi∈ILi and the following implications hold:

(a) e ∧ c ∈ u−1
i (J) ⇒ b ∧ x = ui(e) ∧ ui(c) = ui(e ∧ c) ∈ J ;

(b) fi(e) = f(ui(e)) = f(b) ⇒ y ≤ fi(e) = f(b).
In accordance with Proposition 4.4, from (a) and (b) it follows that f is a flat morphism.

Let J be an ideal of a bounded distributive lattice L and pJ : L → L/J the canonical surjective
morphism. Then [J) = {I ∈ Id(L)|J ⊆ I} is a frame and the function Φ : [J) → Id(L/J) is
defined by I 7→ I/J , is a frame isomorphism. If I,K ∈ [J), then the residuation (I : K)J in the
frame [J) has the form (I : K)J = (I : K) ∨ J . Let us consider the function Ψ : Id(L) → [J),
defined by Ψ(I) = I ∨ J , for all I ∈ Id(L). Then the following diagram is commutative:

Id(L)
p•J - Id(L/J)

HHHHHjΨ �����*

Φ

[J)

Lemma 4.10. For any ideal J of L the following properties are equivalent:

(1) pJ : L → L/J is flat;

(2) For all I ∈ Id(L) and x ∈ L, ((I ∨ J) : x) ⊆ (I : x) ∨ J .

Proof. If I ∈ Id(L) and x ∈ L, then by using the properties of residuation we get((I ∨ J) :
((x] ∨ J)) = ((I ∨ J) : x). Then by using Lemma 4.1 and the above commutative diagram (where
Φ is a frame isomorphism) the following assertions are equivalent:

(a) pJ is flat:
(b) For all I ∈ Id(L) and x ∈ L, (p•J(I) : pJ(x)) ⊆ p•J(I : x)
(c) For all I ∈ Id(L) and x ∈ L, (Ψ(I) : Ψ((x])J ⊆ Ψ(I : x)
(d) For all I ∈ Id(L) and x ∈ L, ((I ∨ J) : ((x] ∨ J))J ⊆ (I : x) ∨ J
(e) For all I ∈ Id(L) and x ∈ L, ((I ∨ J) : x) ∨ J ⊆ (I : x) ∨ J
(f) For all I ∈ Id(L) and x ∈ L, ((I ∨ J) : x) ⊆ (I : x) ∨ J .

Recall from [14], [22] that an ideal J of a bounded distributive lattice L is a σ-ideal if J∨x⊥ = L,
for x ∈ J .

Proposition 4.11. For each ideal J of L the following properties are equivalent:

(1) pJ : L → L/J is a flat morphism;

(2) J is a σ-ideal.
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Proof. (1) ⇒ (2) Assume that pJ : L → L/J is a flat morphism. By taking I = {0} in Lemma
4.10,(2) we obtain (J : x) ⊆ J ∨ x⊥. If x ∈ J , then (J : x) = L, hence J ∨ x⊥ = L. Thus J is a
σ-ideal.

(2) ⇒ (1) Let J be a σ-ideal and a ∈ ((I ∨ J) : x), hence a ∧ x ∈ I ∨ J . Then there exist c ∈ I
and d ∈ J such that a∧x = c∨d. Since J is a σ-ideal we have J ∨d⊥ = L, hence there exist e ∈ J
and f ∈ d⊥ such that e ∨ f = 1. Thus d ∧ f = 0, so

a ∧ f ∧ x = (c ∨ d) ∧ f = (c ∧ f) ∨ (d ∧ f) = c ∧ f.

We observe that c∧ f ∈ I, hence a∧ f ∈ (I : x). From a = a∧ (e∨ f) = (a∧ e)∨ (a∧ f), a∧ e ∈ J
and a ∧ f ∈ (I : x) we get that a ∈ (I : x) ∨ J . We have proven that ((J ∨ J) : x) ⊆ (I : x) ∨ J ,
therefore, by using Lemma 4.10, it follows that pJ is flat.

According to Lemma 3.6, one can define a function uP : L/O(P ) → LP by uP (x/O(P )) = [x]P ,
for all x ∈ L. Then uP is a surjective morphism of D01 and the following diagram is commutative:

L
πP - LP

HHHHHjvP �����*

uP
L/O(P )

where vP : L → L/O(P ) is the lattice morphism defined by uP (x) = x/O(P ), for all x ∈ L.
In the following proposition we shall keep the notations from the previous commutative dia-

gram.

Proposition 4.12. If vP is a flat morphism, then uP is flat.

Proof. Let J be an ideal of L/O(P ) and x ∈ L. Then there exists an ideal I of L such that
v•P (I) = J . By Proposition 4.3, πP is a flat morphism, hence, by taking into account that vP is
flat, the following equalities hold:

(u•P (J) : uP (x/P )) = (u•P (v
•
P (I)) : uP (vP (x))) = (π•

P (I) : πP (x)) = π•
P (I : x)

= u•P (v
•
P (I : x)) = u•P (v

•
P (I) : vP (x)) = u•P (J : x/O(P )).

We conclude that uP is a flat morphism.

Corollary 4.13. Let P be a prime ideal of L such that O(P ) be a σ-ideal. Then uP is a flat
morphism.

Proof. By Propositions 4.11 and 4.12.

5 Patch and flat topologies on the prime spectrum
Let us fix a bounded distributive lattice L. If we endow the prime spectrum Spec(L) with

the Stone topology then we obtain a spectral topological space, denoted by Spec(L) (see [5], [27]).
Following [24], [16], [27] one can define on Spec(L) two important topologies:

• the patch topology, having as basis the family (D(a)
∩
V (b))a,b∈L;
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• the flat topology, having as basis the family (V (b))b∈L.
We shall denote by SpecP (L) (resp. SpecF (L)) the prime spectrum Spec(L) endowed with the

patch topology (resp. the flat topology). According to [16] and [27], SpecP (L) is a Boolean space
and SpecF (L) is a spectral space. If L is a Boolean algebra, then Stone topology, flat topology
and patch topology are identical.

Lemma 5.1. [16] If f : A → B is a morphism of bounded distributive lattices, then f∗ : Spec(B) →
Spec(A) is both patch and flat continuous.

Now, we shall describe the closed subsets of SpecF (L) in terms of lattices of fractions.

Proposition 5.2. If S is a ∧-closed subset of L, then Im(π∗
S) is closed subset of SpecF (L).

Proof. We shall prove that U = Spec(L) − Im(π∗
S) is an open subset of SpecF (L). Recall from

Section 3 that Im(π∗
s) = {P ∈ Spec(A)|P

∩
S = ∅}, so for each P ∈ Spec(L), the following

equivalences hold: P ∈ U if and only if P
∩
S ̸= ∅ if and only if there exists an element s ∈ P

∩
S.

Let us consider a point P ∈ U , hence there exists an element s of P
∩
S. If Q ∈ V (s), then

s ∈ Q
∩

S, hence Q ∈ U . Thus P ∈ V (s) ⊆ U and V (s) is a basic open subset of SpecF (L), hence
U is an open subset of SpecF (L).

Proposition 5.3. If E is a closed subset of SpecF (L), then there exists a ∧-closed subset of L
such that E = Im(π∗

S).

Proof. (a) Firstly we consider the particular case of a basic open subset E = D(a), where a is
an element of L. Let us take the canonical morphism πa : L → La. Recall that La is the lattice
of fractions of L associated with the principal filter [a). From Section 3 we know that Im(π∗

a)
= {P ∈ Spec(A)|P

∩
[a) = ∅}, therefore for any Q ∈ Spec(L) the following equivalences hold:

Q ∈ Im(π∗
a) if and only if Q

∩
[a) = ∅ if and only if a /∈ Q if and only if Q ∈ D(a). Hence Im(π∗

S)
is exactly the flat closed set D(a).

(b) In general, a closed subset E of SpecF (L) has the form E =
∩

i∈I D(ai), for some family
(ai)i∈I ⊆ L. Let Sω(I) be the family of finite subsets of I. For each J ∈ Sω(I) let us denote
bJ =

∧
i∈J ai. It is easy to see that S = {bj |J ∈ Sω(I) is a ∧ - closed subset of L. According

to (a), for each J ∈ Sω(I) we have D(bJ) = Im(π∗
bJ
). By taking into account Remark 3.4,

Spec(L/S) = Spec(colimJ∈Sω(I)LbJ ), so by using Corollary 2.3, the following equalities hold:

Im(π∗
S) = π∗

S(Spec(L/S)) = π∗
S(Spec(colimJ∈Sω(I)LbJ )) =

∩
{Im(π∗

bJ
)|J ∈ Sω(I)}

=
∩

{D(bJ)|J ∈ Sω(I)} =
∩
i∈I

D(ai) = E.

Theorem 5.4. For any subset E of Spec(L) the following properties are equivalent:

(1) E is a closed subset of SpecF (L);

(2) There exists a ∧-closed subset S of L such that E = Im(π∗
S).

Proof. By Propositions 5.2 and 5.3.

Corollary 5.5. If E is a closed subset of SpecF (L), then there exists a flat morphism f : L → A
such that E = Im(f∗).
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Proof. By Propositions 5.3 and 4.3.

We don’t know if the converse of Corollary 5.5 holds: Im(f∗) is a flat subset of Spec(L) for
any flat lattice morphism f : L → A?

The previous results can be used in obtaining new proofs for most of properties of flat topology.
For any P ∈ Spec(L) we shall denote by clF (P ) the flat closure clF ({P}) of the point subset

{P} of Spec(L).

Proposition 5.6. For any prime ideal P of L we have clF (P ) = Λ(P ).

Proof. By applying Proposition 5.2, Λ(P ) = Im(π∗
P ) is a flat closed subset of Spec(L). Assume

that E is a closed subset of SpecF (L) such that P ∈ E. According to Proposition 5.3 there exists
a ∧-closed subset of L such that E = Im(π∗

S) = {Q ∈ Spec(L)|Q
∩
S = ∅}. From any P ∈ E we

get P
∩
S = ∅, hence the following implications hold:

Q ∈ Λ(P ) ⇒ Q ⊆ P ⇒ Q
∩

S = ∅ ⇒ Q ⊆ E.

This shows that Λ(P ) ⊆ E, hence clF (P ) = Λ(P ).

Corollary 5.7. If E is a compact subset of SpecZ(L), then the flat closure clF (E) of E is
clF (E) =

∪
P∈E Λ(P ).

Proof. The corollary follows from Proposition 5.6 by using a similar argument as in the proof of
Lemma 3.7 of [1].

Now, we shall establish a characterization theorem for the closed subsets of SpecP (L).

Lemma 5.8. If f : L → A is an arbitrary morphism of bounded distributive lattices, then Im(f∗)
is a closed subset of SpecP (L).

Proof. By Lemma 5.1, f∗ : Spec(A) → Spec(L) is patch continuous. The topological space
SpecP (A) is compact, hence its image Im(f∗) is a compact subset of the Boolean space SpecP (L).
Then Im(f∗) is a closed subset of SpecP (L).

Let E be a subset of Spec(L) and ϵ : L →
∏

P∈E LP /πP (P ) = LE
2 the lattice morphism is

defined by ϵ(P ) = (ϵP (x))P∈E (see the notations from Remark 3.13). Thus ϵ∗ : Spec(LE
2 ) →

Spec(L) is patch continuous.
The following result is the lattice version of Theorem 3.1 of [35].

Proposition 5.9. The patch closure of E ⊆ Spec(L) is clP (E) = Im(ϵ∗).

Proof. For each P ∈ E let us consider the projection prP : LE
2 → L2, is defined by prP (a) = aP ,

for each element a = (aP )P∈E of LE
2 . Thus IP = pr−1

P (0) = {a ∈ LE
2 |aP = 0} is a prime ideal of

LE
2 . For each x ∈ L the following equivalences hold:

x ∈ ϵ−1(IP ) iff ϵ(x) ∈ IP iff (ϵQ(x))Q∈E ∈ IP iff ϵP (x) = 0 iff x ∈ P,

hence P = ϵ−1(IP ) = ϵ∗(IP ), for all P ∈ E. Therefore we get the inclusion E ⊆ Im(ϵ∗). In
accordance with Lemma 5.8, Im(ϵ∗) is patch closed, so clP (E) ⊆ Im(ϵ∗).

Now, we shall establish the converse inclusion Im(ϵ∗) ⊆ clP (E). Firstly we shall prove that
E′ = {IP |P ∈ E} is a dense subset of SpecP (L

E
2 ). Since LE

2 is a Boolean algebra, the patch
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topology of Spec(LE
2 ) coincides with the Stone topology, so it suffices to show that any non-empty

basic open set U in Stone’s topology of Spec(LE
2 ) intersects E′. One can assume that U = D(x),

where x is a non-zero element of LE
2 . Then there exists Q ∈ E such that x /∈ IQ, i.e. IQ ∈ D(x).

Since IQ ∈ E′ it follows that IQ ∈ E′∩D(x), therefore clP (E
′) = SpecP (L

E
2 ).

We remark that
ϵ∗(E′) = {ϵ−1(IQ)|Q ∈ E} = {Q|Q ∈ E} = E,

hence ϵ∗(E′) ⊆ clP (E). It follows that E′ ⊆ (ϵ∗)−1(clP (E)). Since (ϵ∗)−1(clP (E)) is closed in
SpecP (L

E
2 ), we get clP (E

′) ⊆ ϵ∗)−1(clP (E)), hence ϵ∗(clP (E
′)) ⊆ clP (E). Thus we obtain

Im(ϵ∗) = ϵ∗(SpecP (L
E
2 )) = ϵ∗(clP (E

′)) ⊆ clP (E).

Theorem 5.10. For any subset E of Spec(L) the following properties are equivalent:

(1) E is a closed subset of SpecP (L);

(2) There exists a morphism f : L → A of D01 such that E = Im(f∗).

Proof. By Lemma 5.8 and Proposition 5.9.

6 Applications to conormal and Stone lattices
The conormal lattices were introduced in [13] under the name of normal lattices (for this

terminology see the discussion of [27], p.78). Recall that a bounded distributive lattice L is said
to be conormal if for all a, b ∈ L such that a∧ b = 0 there exist x, y ∈ L such that a∧x = b∧y = 0
and x ∨ y = 1.

The following proposition collects several properties that characterize the conormal lattices.

Proposition 6.1. [13] If L is a bounded distributive lattice, then the following are equivalent:

(1) L is a conormal lattice;

(2) If P and Q are distinct minimal prime ideals of L, then P ∨Q = L;

(3) Each prime ideal of L contains a unique minimal prime ideal;

(4) Any minimal prime ideal of L is a σ-ideal;

(5) If x, y ∈ L, then x ∧ y = 0 implies x⊥ ∨ y⊥ = L;

(6) For all x, y ∈ L we have (x ∧ y)⊥ = x⊥ ∨ y⊥;

(7) For each x ∈ L, x⊥ is a σ-ideal.

Let us fix a bounded distributive lattice L. Then L is called dense if for all x, y ∈ L, x∧ y = 0
implies x = 0 or y = 0. It is easy to see that L is dense if and only if {0} is a prime ideal if and
only if L has a unique minimal prime ideal.

Theorem 6.2. If L is a bounded distributive lattice, then the following properties are equivalent:

(1) L is a conormal lattice;
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(2) For all distinct minimal prime ideals P and Q of L, O(P ) ∨O(Q) = L;

(3) For each prime ideal P of L, LP is a dense lattice;

(4) For each maximal ideal M of L, LM is a dense lattice;

(5) For each P ∈ Spec(L), O(P ) is a prime ideal;

(6) For each M ∈ Max(A), O(M) is a prime ideal;

(7) For all P,Q ∈ Spec(L), P ⊆ Q implies O(P ) = O(Q).

Proof. (1) ⇒ (2) Let P and Q be two distinct minimal prime ideals of L. By Corollary 3.7,
P = O(P ) and Q = O(Q), hence, by using Proposition 6.1(2), we get O(P ) ∨O(Q) = L.

(2) ⇒ (1) If P,Q ∈ Min(A) and P ̸= Q, then P ∨Q = O(P ) ∨O(Q) = L.
(1) ⇒ (5) Let P be a prime ideal of L. In order to show that O(P ) is a prime ideal, assume

that x and y are two elements of L such that x ∧ y ∈ O(P ), hence (x ∧ y)⊥ ̸⊆ P . By Proposition
6.1(6) we have (x ∧ y)⊥ = x⊥ ∨ y⊥, so x⊥ ∨ y⊥ ̸⊆ P . Thus x⊥ ̸⊆ P and y⊥ ̸⊆ P , hence x ∈ P or
y ∈ P , because P is prime. Conclude that O(P ) is prime.

(5) ⇒ (3) Let P be a prime ideal of L, so O(P ) is prime. According to Corollary 3.7 and
Proposition 6.1(3), O(P ) is the unique minimal prime ideal of L included in P . Since π∗

P :
Spec(LP ) → Λ(P ) is an order-isomorphism it follows that πP (O(P )) is the unique minimal prime
ideal of LP , therefore LP is a dense lattice.

(3) ⇒ (4) Obviously.
(4) ⇒ (1) Assume by absurdum that there exist two distinct minimal prime ideals P and Q

such that P ∨ Q ̸= L, so P,Q ⊆ M , for some maximal ideal M of L. We know that Spec(LM ),
Λ(M) are order-isomorphic and LM is a dense lattice, so Λ(M) has a unique minimal element. We
have obtained a contradiction, hence L is conormal (cf. Proposition 6.1(2)).

(5) ⇒ (6) Obviously.
(6) ⇒ (1) Let P be a prime ideal of L and M ∈ Max(A) such that P ⊆ M . Consider an

arbitrary minimal prime ideal Q such that Q ⊆ P . Thus Q = O(Q) ⊆ O(M) and O(M) =
∩

Λ(M)
is prime, so Q and O(M) are two minimal prime ideals. It follows that Q = O(M), so P contains
a unique minimal prime ideal.

(5) ⇒ (7) Assume that P,Q ∈ Spec(L) and P ⊆ Q, hence O(P ) ⊆ O(Q). By Corollary 3.7,
O(P ) and O(Q) are minimal prime, so O(P ) = O(Q).

(7) ⇒ (1) Let P and Q two distinct minimal prime ideals of L. Assume that P ∨ Q ̸= L, so
P ∨Q ⊆ M , for some maximal ideal M . Applying the hypothesis (7) and Corollary 3.7 one obtains
P = O(P ) = O(M) = O(Q) = Q, contradicting that P , Q are distinct. Therefore P ∨ Q = L,
hence L is conormal (cf. Proposition 6.1(2)).

Remark 6.3. By [33], the reticulation of a commutative ring R is a bounded distributive lattice
L(A) whose prime spectrum Spec(L(R)) is homeomorphic to the prime spectrum Spec(R) of R. In
fact, we have a reticulation functor from the category Rings of commutative rings to the category
D01. The reticulation functor allows us to transport some results from D01 to Rings and viceversa.
Then the previous result can be viewed as a lattice version of Theorem 3.2 of [39] and each of these
two results can be obtained as a consequence of the other (by using the reticulation functor).

Corollary 6.4. Let L be a conormal lattice and P ∈ Spec(L). Then O(P ) is the unique prime
ideal of L included in P .
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Proof. By Theorem 6.2(5), O(P ) is a prime ideal, therefore, by applying Proposition 6.1(3), it
follows that O(P ) is the unique minimal prime ideal of L included in P .

Let us consider the topological space MinF (L) obtained by restricting the flat topology of
Spec(L) to the minimal prime spectrum Min(L). If we apply Theorem 8.14 of [21] to the frame
Id(L) of ideals in L, then we get the following equivalence: L is a conormal lattice if and only if
the inclusion Min(L) ⊆ Spec(L) has a flat continuous retraction Spec(L) → Min(L).

Corollary 6.5. Let L be an arbitrary bounded distributive lattice. If γ : Spec(L) → Min(L)
is a continuous flat retraction of the inclusion Min(L) ⊆ Spec(L), then γ(P ) = O(P ), for all
P ∈ Spec(L).

Proof. Let P be a prime ideal of L and Q a minimal prime ideal such that Q ⊆ P . By Proposition
5.6 we have Q ∈ Λ(P ) = clF (P ). Since γ is a continuous flat retraction of Min(L) ⊆ Spec(L), it
follows that

Q = γ(Q) ∈ clF (γ(P ))
∩

Min(L) = Λ(γ(P ))
∩

Min(L) = {γ(P )}.

Thus γ(P ) = Q, so γ(P ) is the unique minimal prime ideal of L included in P . In accordance with
Proposition 6.1(3), L is a conormal lattice. Applying Corollary 6.4, we get γ(P ) = O(P ).

Corollary 6.6. If P is a minimal prime ideal of a conormal lattice L, then the morphism uP :
L/O(P ) → LP is flat.

Proof. By Theorem 6.2(5), O(P ) is a prime ideal. According to Proposition 6.3(4), O(P ) is a
minimal prime ideal, hence, by Corollary 4.13, it follows that uP is a flat morphism.

Recall that a bounded distributive lattice L is a Stone lattice if for any x ∈ L there exists
e ∈ B(L) such that the annihilator ideal x⊥ is equal to the principal ideal (x] generated by {x}.
In what follows we shall find new properties that characterize the Stone lattices.

We observe that D = L − {x ∈ L|x⊥ = {0}} is a σ-closed subset of L. One can prove
that D =

∪
Min(L). Following [21] we shall denote by T (L) the lattice of fractions L/D and

π : L → T (L) the canonical morphism π(x) = x/D, for all x ∈ L.

Proposition 6.7. [21] The following properties are equivalent:

(1) T (L) is a Boolean algebra;

(2) Min(L) is a compact space.

Proposition 6.8. [2] A bounded distributive lattice L is a Stone lattice if and only if L is conormal
and Min(L) is compact.

Recall that the set B(L) of complemented elements in bounded distributive lattice L is a
Boolean algebra. The complement of an element e ∈ B(L) is denoted by ¬e. Let u : L → L′ be a
morphism of bounded distributive lattices. We say that the complemented elements of L can be
lifted along u if for each f ∈ B(L′) there exists e ∈ B(L) such that u(e) = f .

Theorem 6.9. If L is a bounded distributive lattice, then the following properties are equivalent:

(1) L is a Stone lattice;
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(2) L is conormal and T (L) is a Boolean algebra;

(3) T (L) is a Boolean algebra and for each ∧-closed subset S of L, the complemented elements
of L can be lifted along πS : L → L/S;

(4) T (L) is a Boolean algebra and the complemented elements of L can be lifted along π : L →
T (L).

Proof. The equivalence of (1) and (2) follows from Propositions 6.7 and 6.8.
(1) ⇒ (3) From the equivalence of (1) and (2) follows that T (L) is a Boolean algebra. Let S

be a ∧-closed subset of L and πS : L → L/S the canonical morphism associated with S. One can
suppose that S is a filter of L. Assume that x is an element of L such that x/S ∈ B(L/S), so
there exists y ∈ L such that x/S ∨ y/S = 1/S and x/S ∧ y/S = 0/S. From (x ∨ y)/S = 1/S
we get x ∨ y ∈ S and (x ∧ y)/S = 0/S implies that x ∧ y ∧ t = 0, for some t ∈ S. Since L is a
Stone lattice it follows that x⊥ = (e], for some complemented element e of L. Then e ∧ x = 0, so
x ≤ ¬e, therefore x/S ≤ ¬e/S. From x ∧ y ∧ t = 0 we obtain y ∧ t ∈ x⊥, so y ∧ t ≤ e. We observe
that t/S = 1, because t ∈ S. Thus y/S = y/S ∧ t/S ≤ e/S, hence ¬e/S ∧ y/S = 0/S. Then the
following equalities hold:

¬e/S = ¬e/S ∧ (x/S ∨ y/S) = (¬e/S ∧ x/S) ∨ (¬e/S ∧ y/S) = ¬e/S ∧ x/S = x/S.

Thus ¬e ∈ B(L) and πS(¬e) = ¬e/S = x/S, so the complemented elements of L can be lifted
along πS .

(3) ⇒ (4) Obviously.
(4) ⇒ (1) Let x be an arbitrary element of L. Since T (L) is a Boolean algebra and the

complemented elements of L can be lifted along π : L → T (L), there exists e ∈ B(L) such that
π(e) = x/D. Thus e/S = x/S, so there exists t ∈ D such that e ∧ t = x ∧ t.

We shall prove that x⊥ = (¬e]. From ¬e ∧ x ∧ t = ¬e ∧ e ∧ t = 0 we get ¬e ∧ x ∈ t⊥ = {0},
hence ¬e ∧ x = 0. Then ¬e ∈ x⊥ so the inclusion (¬e] ⊆ x⊥ is established. In order to show that
x⊥ ⊆ (¬e] assume z ∈ x⊥, i.e. z∧x = 0. It follows that z∧e∧ t = z∧x∧ t = 0, so z∧e ∈ t⊥ = {0},
hence z ≤ ¬e. Therefore we get x⊥ ⊆ (¬e], so x⊥ = (¬e]. We conclude that L is a Stone lattice.

7 Conclusion
In this paper, the relation betwee the lattices of fractions to flat lattice morphisms, patch and
flat topologies on the spectra of bounded distributive lattices, conormal and Stone lattices, etc is
investigated.

The flat morphisms of D01 in terms of the residuation operation existing in the frames of
lattice ideals is defined. We studied how the lattices of fractions preserve the flatness property of
morphisms. Two characterization theorems of flat and patch topologies are proved. The lattices
of fractions are used for obtaining new characterizations of conormal and Stone lattices.
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