Connections between reversible regular hypergroups, t-fuzzy subgroups and t-fuzzy graphs

Document Type : Original Article


1 Department of mathematics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran

2 Department Mathematics, Payame Noor University, Tehran, Iran.


In this paper, we obtain a reversible regular hypergroup from fuzzy sets by using a t-norm. Some properties of isomorphism of t-fuzzy graphs are considered and we show that a t-fuzzy subgroup can be associated with a t-fuzzy graph. Finally, using the group of automorphisms of fuzzy graph, we explain the relationship between the hypergroup and the t-fuzzy subgroup with the t-fuzzy graph.


[1] R. Ameri, M.M. Zahedi, Hypergroup and join space induced by a fuzzy subset, Pure Mathe-
matics and Applications, 8(2-4) (1997), 155{168.
[2] M. Anthony, H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets and Systems,
7(3) (1982), 297{305.
[3] M. Bakhshi, R.A. Borzooei, Some properties of t-fuzzy generalized subgroups, Iranian Journal
of Fuzzy Systems, 6(4) (2009), 73{87.
[4] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letters, 6 (1987), 297{
[5] K.R. Bhutani, On automorphisms of fuzzy graphs, Pattern Recognition Letters, 9 (1989),
[6] R.A. Borzooei, H. Rashmanlou, Cayley interval-valued fuzzy graphs, U.P.B. Scienti c Bulletin,
Series A: Applied Mathematics and Physics, 78(3) (2016), 83{94.
[7] R.A. Borzooei, H. Rashmanlou, S. Samantac, M. Pal,A study on fuzzy labeling graphs, Journal
of Intelligent and Fuzzy Systems, 30 (2016), 3349{3355.
[8] R.A. Borzooei, B. Sheikh Hoseini, M. Mohseni Takallo, Results on t-fuzzy graphs, New Math-
ematics and Natural Computation, 16 (2020), 143{161.
[9] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Tricesimo, Italy, (1993).
[10] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, In: Advances in Mathematics.
Dordrecht, Netherlands, Kluwer Academic Publishers, (2003).
[11] B. Davvaz, Polygroup theory and related systems, World Scienti c Publishing Co. Pte. Ltd.,
Hackensack, NJ, USA, (2013).
[12] B. Davvaz, Semihypergroup theory, New York, Elsevier, (2016).
[13] B. Davvaz, I. Cristea, Fuzzy algebraic hyperstructures-an introduction, in studies in fuzziness
and soft computing, Springer, Cham, Switzerland, (2015).
[14] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, Palm Harbor, FL, Interna-
tional Academic Press, (2007).
[15] B. Davvaz, T. Vougiouklis, A walk through weak hyperstructures: Hv-structures, Hackensack,
NJ, World Scienti c Publishing Co. Pte. Ltd., (2019).
[16] H. Hashimoto, Canonical form of a transitive fuzzy matrix, Fuzzy Sets and Systems, 11 (1983),
[17] Y.B. Jun, Intutionistic fuzzy subsemigroups and subgroups associated by intutionistic fuzzy
graphs, Communications of the Korean Mathematical Society, 3 (2006), 587{593.
[18] A. Kandel, Fuzzy mathematical techniques with applications, Addison-Wesley, Tokyo, (1996).
[19] K.H. Kim, F.W. Roush, Generalised fuzzy matrices, Fuzzy Sets and Systems, 4 (1980), 293{
[20] D.S. Malik, S. Mathew, J.N. Mordeson, Fuzzy incidence graphs: Applications to human tratck-
ing, Information Sciences, 447 (2018), 244{255.
[21] F. Marty, Sur une generalization de la notion de groupe, In 8th Congress Math Scandinaves,
(1934), 45{49.
[22] M. Mashinchi, M. Mukaidono, Generalized fuzzy quotient subgroups, Fuzzy Sets and Systems,
74 (1995), 245{257.
[23] J.N. Mordeson, S. Mathew,t-norm fuzzy graphs, New Mathematics and Natural Computation,
14(1) (2018), 129{143.
[24] J.N. Mordeson, S. Mathew, D.S. Malik, Fuzzy graph theory with applications to human tratck-
ing, Springer, (2018).
[25] M.Z. Ragab, E.G. Emam, The determinant and adjoint of a square fuzzy matrix, Fuzzy Sets
and Systems, 61 (1994), 297{307.
[26] S. Ray, The free product of fuzzy subgroups, Fuzzy Sets and Systems, 50 (1992), 225{235.
[27] S. Ray, Isomorphic fuzzy subgroups, Fuzzy Sets and Systems, 50 (1992), 201{207.
[28] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971),
[29] A. Rosen eld, Fuzzy sets and their applications, Academic Press, New York, (1975).
[30] M.K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft Computing, 12 (2008),
[31] M.G. Thomason, Convergence of powers of a fuzzy matrix, Journal of Mathematical Analysis
and Applications, 57 (1977), 476{480.
[32] T. Vougiouklis, Hyperstructures and their representations, Palm Harbor, FL: Hadronic Press
Inc. (1994).
[33] L.A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338{353.