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Abstract

Pseudo-hoop algebras are non-commutative generaliza-
tions of hoop-algebras, originally introduced by Bosbach.
In this paper, we study ideals in pseudo-hoop algebras.
We define congruences induced by ideals and construct
the quotient structure. We show that there is a one-to-
one correspondence between the set of all normal ideals
of a pseudo-hoop algebra A with condition (pDN) and
the set of all congruences on A. Also, we prove that if
A is a good pseudo-hoop algebra with pre-linear condi-
tion, then a normal ideal P of A is prime if and only if
A/P is a pseudo-hoop chain. Furthermore, we analyse
the relationship between ideals and filters of A.
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1 Introduction
Hoop algebras were presented by Bosbach in [4, 5]. Then Büchi and Owens investigated this alge-
braic structure in an unpublished paper. Pseudo-hoop algebras were presented as non-commutative
generalizations of hoop algebras by Georgescu, Leuştean and Preoteasa in [13], following after the
notions of pseudo-MV algebras in [12] and pseudo-BL algebras ([10]). Pseudo-hoop algebras are
weaker structures. Pseudo-MV algebras and pseudo-BL algebras are particular cases of pseudo-
hoop algebras. In recent years, the study of hoop algebras and pseudo-hoop algebras has made
great progress. And the main focus has been on filters in [2, 6, 9, 15].

Ideal theory plays a fundamental role in many algebraic structures, such as lattices, rings and
pseudo-MV algebras. Georgescu and Iorgulescu in [12] introduced the notion of ideals in pseudo-MV
algebras, which was shown effective in studying structure properties of pseudo-MV algebras. In
addition, Dvurečenskij in [11] studied states on pseudo-MV algebras by exploiting ideals. In
recent years, the notion of ideals has been introduced as a dual notion of filters in some algebraic
structures using multiplication operations. Lele and Nganou in [14] presented the notion of ideals
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in BL-algebras and defined quotient algebraic structures by ideals. Using ideals, they proved that
an ideal of a BL-algebra is prime if and only if the quotient algebraic structure is a linear MV-
algebra. Also, Rachůnek and Šalounová in [16] introduced ideals of general residuated lattices. It
was proved that a congruence can be defined by an ideal in some cases, and the corresponding
quotient structure is involutive. In [1], Kologani and Borzooei introduced the notions of ideals,
implicative (maximal, prime) ideals of hoop algebras and studied the relationships between these
ideals.

In (pseudo-) MV-algebras, filters and ideals are dual. However, in pseudo-hoop algebras, we
mainly study filters. As pseudo-hoop algebras may not have lattice structures, not all pseudo-
hoop algebras are general residuated lattices. Since pseudo-MV algebras are particular cases of
general residuated lattices, the notion of ideals in pseudo-hoop algebras can not be similar to
that in pseudo-MV algebras. Therefore, we want to introduce the notion of ideals in pseudo-hoop
algebras, as a dual notion of filters in [2]. Another inspiration is the notion of ideals in hoop
algebras defined in [1]. Since pseudo-hoop algebras are non-commutative generalizations of hoop
algebras, we shall generalize the notion of ideals in hoop algebras to the case of pseudo-hoop
algebras. Also, by Theorem 6.5 and Theorem 6.6, it is noticeable that ideals and filters behave
differently in pseudo-hoop algebras. Therefore, it is meaningful to investigate ideals in pseudo-hoop
algebras.

The paper is constructed as follows. In Section 2, we recall some definitions and results on
pseudo-hoop algebras which are useful. In Section 3, we define the notions of left, right and
both-sided ideals of pseudo-hoop algebras. In Section 4, we analyse congruences induced by ideals
and construct the quotient pseudo-hoop algebras via ideals. In addition, we get an isomorphism
theorem. In Section 5, we introduce the notion of prime ideals in pseudo-hoop algebras and give
some equivalent conditions of prime ideals. In Section 6, we analyse the relationship between
ideals and filters. Also, we introduce the notion of ⊙-prime ideals in pseudo-hoop algebras. The
relationship between ⊙-prime ideals and maximal filters is discussed.

2 Preliminaries
In this section, we recall some definitions and results to be used in this paper.

Definition 2.1. [13] A pseudo-hoop algebra is an algebra (A,⊙,→,⇝, 1) of the type (2, 2, 2, 0)
that for all u, v, w ∈ A, it is satisfying in the following conditions:
(ph1) u⊙ 1 = 1⊙ u = u;
(ph2) u → u = u⇝ u = 1;
(ph3) (u⊙ v) → w = u → (v → w);
(ph4) (u⊙ v)⇝ w = v ⇝ (u⇝ w);
(ph5) (u → v)⊙ u = (v → u)⊙ v = u⊙ (u⇝ v) = v ⊙ (v ⇝ u).

We define u0 = 1 and un = un−1 ⊙ u for any n ∈ N+ on A. The relation ≤ defined by
u ≤ v ⇔ u → v = 1 ⇔ u ⇝ v = 1 is a partial order on A. If ⊙ is commutative or equivalently
→=⇝, A is called to be a hoop algebra. Also, A is called bounded if u ≥ 0 for any u ∈ A. In
this case, we define u− = u → 0 and u∼ = u ⇝ 0 on A. If u−∼ = u∼− for all u ∈ A, then
the bounded pseudo-hoop algebra is called good (see [8]). In a bounded pseudo-hoop algebra A, if
u−∼ = u∼− = u for all u ∈ A, then A is called satisfying the (pDN) condition (see [8]). A good
pseudo-hoop algebra A is called normal if it satisfies (u⊙ v)−∼ = u−∼ ⊙ v−∼ for all u, v ∈ A.

We summarize some properties of pseudo-hoop algebras that we will use later. For more details,
see [8] and [13].
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Proposition 2.2. [13] Let (A,⊙,→,⇝, 1) be a pseudo-hoop algebra. Then for all u, v, w ∈ A, the
following conditions hold:
(1) u⊙ v ≤ w iff u ≤ v → w iff v ≤ u⇝ w;
(2) (A,⊙, 1) is a monoid;
(3) if u ≤ v, then u⊙ w ≤ v ⊙ w and w ⊙ u ≤ w ⊙ v;
(4) u ∧ v = (u → v)⊙ u = (v → u)⊙ v = u⊙ (u⇝ v) = v ⊙ (v ⇝ u);
(5) if u ≤ v, then v → w ≤ u → w and v ⇝ w ≤ u⇝ w;
(6) if u ≤ v, then w → u ≤ w → v and w ⇝ u ≤ w ⇝ v;
(7) (v → w)⊙ (u → v) ≤ u → w, (u⇝ v)⊙ (v ⇝ w) ≤ u⇝ w.

Proposition 2.3. [8] Let A be a bounded pseudo-hoop algebra. Then for all u, v, w ∈ A the
following statements hold:
(1) u⊙ 0 = 0⊙ u = 0;
(2) u− ⊙ u = 0, u⊙ u∼ = 0;
(3) u⊙ v = 0 iff u ≤ v− iff v ≤ u∼;
(4) u ≤ u−∼, u ≤ u∼−;
(5) u−∼− = u−, u∼−∼ = u∼;
(6) if A is good, then (u → v)−∼ = u−∼ → v−∼ and (u⇝ v)−∼ = u−∼ ⇝ v−∼;
(7) if A is good, then u → v− = u−∼ → v− and u⇝ v∼ = u−∼ ⇝ v∼.

A pseudo-hoop algebra A is said to satisfy the pre-linear condition if we have (x → y) ∨ (y →
x) = (x ⇝ y) ∨ (y ⇝ x) = 1 for any x, y ∈ A. By [7, Proposition 3.4], (A,⊙,→,⇝, 0, 1) is a
bounded pseudo-hoop algebra with pre-linear condition if and only if (A,∧,∨,⊙,→,⇝, 0, 1) is a
pseudo-BL algebra.

A filter F of a pseudo-hoop algebra A is a nonempty subset of A which satisfies (F1): u, v ∈ F
implies u ⊙ v ∈ F and (F2): for any u, v ∈ A, if u ≤ v and u ∈ F , then v ∈ F (see [13]). In
a pseudo-hoop algebra A, filters are coincided with deductive systems. A filter F of A satisfying
F ̸= A is called proper. If F is a proper filter of A and there is no proper filter containing F , F is
called maximal. A filter F of A is normal if u → v ∈ F iff u⇝ v ∈ F for any u, v ∈ A. Let X be a
subset of A. We use (X] to denote the filter of A generated by X.

Proposition 2.4. [13] Let A be a pseudo-hoop algebra, W a normal filter of A and u ∈ A. Then

(W ∪ {u}] = {a ∈ A|w ⊙ un ≤ a, for some n ∈ N, w ∈ W}
= {a ∈ A|un ⊙ w ≤ a, for some n ∈ N, w ∈ W}.

Let A1 and A2 be pseudo-hoop algebras. In [9], a map f : A1 → A2 is called a pseudo-hoop
homomorphism if f preserves the operations ⊙, → and ⇝. The pseudo-hoop homomorphism
f : A1 → A2 is called a bounded pseudo-hoop homomorphism if A1, A2 are bounded and f(0) = 0.

3 Ideals
In this section, we shall introduce two kinds of binary operations (left and right additions) and
the notion of ideals in pseudo-hoop algebras. We give some equivalent characterizations of ideals
of good pseudo-hoop algebras.

Definition 3.1. Let (A,⊙,→,⇝, 1) be a bounded pseudo-hoop algebra. We define left addition ⊘
and right addition � as follows: for any x, y ∈ A,

x⊘ y = y− ⇝ x and x � y = x∼ → y.
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Example 3.2. [15] Let A = {0, a, b, c, d, 1}. Define the operations →, ⇝ and ⊙ on A as follows:

→=⇝ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a d 0 d a
b 0 d c c 0 b
c 0 0 c c 0 c
d 0 d 0 0 0 d
1 0 a b c d 1

Then (A,⊙,→,⇝, 1) is a bounded hoop algebra. It is easy to see that b⊘c = c− ⇝ b = a⇝ b = b
and c � a = c∼ → a = a → a = 1.

Proposition 3.3. Let A be a pseudo-hoop algebra. For all x, y,m, n ∈ A, if x ≤ y and m ≤ n,
then x⊘m ≤ y ⊘ n and x � m ≤ y � n.

Proof. If x ≤ y and m ≤ n, then y∼ ≤ x∼, n− ≤ m−. By Proposition 2.2(5) and (6), we have
x⊘m = m− ⇝ x ≤ n− ⇝ x ≤ n− ⇝ y = y ⊘ n. Similarly, we have x � m ≤ y � n.

Proposition 3.4. Let A be a pseudo-hoop algebra. If A is normal, then left addition ⊘ and right
addition � are associative.

Proof. For all x, y, z ∈ A, we obtain

x � (y � z) = x∼ → (y∼ → z) (ph3)

= (x∼ ⊙ y∼) → z (Proposition 2.3(5))

= (x∼−∼ ⊙ y∼−∼) → z (A is normal)

= (x∼ ⊙ y∼)−∼ → z (ph3)

= (x∼ → y∼−)∼ → z (A is good and Proposition 2.3(5))

= (x∼−∼ → y−∼)∼ → z (A is good and Proposition 2.3(6))

= (x∼ → y)∼−∼ → z (Proposition 2.3(5))

= (x∼ → y)∼ → z

= (x � y) � z.

Similarly, we can prove (x⊘ y)⊘ z = x⊘ (y ⊘ z).

Definition 3.5. Let I be a nonempty subset of a bounded pseudo-hoop algebra A. Then I is called
a left ideal of A if it satisfies:
(LI1) x, y ∈ I implies x⊘ y ∈ I;
(I2) for any x, y ∈ A, x ≤ y and y ∈ I imply x ∈ I.

Similarly, I is called a right ideal of A if it satisfies:
(RI1) x, y ∈ I implies x � y ∈ I;
(I2) for any x, y ∈ A, x ≤ y and y ∈ I imply x ∈ I.

If I is both a left ideal and a right ideal of A, we call I to be an ideal of A.
For any ideal I of A, we have 0 ∈ I. For all x ∈ A, we have x ∈ I iff x−∼ ∈ I iff x∼− ∈ I. An

ideal I of A is called proper if I ̸= A. An ideal I of A is called normal if x− ⊙ y ∈ I iff y⊙ x∼ ∈ I
for all x, y ∈ A. The intersection of any family of ideals of a bounded pseudo-hoop algebra A is
also an ideal of A. For any subset H ⊆ A, the smallest ideal of A containing H is said to be the
ideal generated by H, and it is denoted by ⟨H⟩.
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Example 3.6. Let A be a pseudo-hoop algebra as in Example 3.2. Then I1 = {0}, I2 = {0, c},
I3 = {0, a, d} and I4 = A are all ideals of A.

Example 3.7. [13] Let u be an element of an arbitrary ℓ-group G = (G,+,−, 0,∨,∧) and u ≥ 0.
Define the operations →, ⇝ and ⊙ on G[u] = [0, u] as follows:

x⊙ y = (x− u+ y) ∨ 0, x → y = (y − x+ u) ∧ u, and x⇝ y = (u− x+ y) ∧ u.

By [13, Example 5.1], G[u] is a bounded pseudo-hoop algebra. Let W be a normal convex ℓ-
subgroup of G and F = {x ∈ G[u] : u − x ∈ W}. We define I0 = {x ∈ G[u] : x− ∈ F} and
I ′0 = {x ∈ G[u] : x∼ ∈ F}. Then I0 and I ′0 are ideals of G[u].

We shall show that I0 is an ideal of G[u]. Let x, y ∈ G[u]. Then x → 0 = (0−x+u)∧u = −x+u,
x⇝ 0 = (u− x+ 0) ∧ u = u− x,

x � y = x∼ → y = (y − (u− x) + u) ∧ u = (y + x− u+ u) ∧ u = (y + x) ∧ u,

and x⊘ y = y− ⇝ x = (u− (−y + u) + x) ∧ u = (y + x) ∧ u. Also, we have x � y = x⊘ y.
By [13, Proposition 5.2], F is a normal filter of G[u]. Suppose x, y ∈ G[u] such that x ≤ y and

y ∈ I0. Then y− ≤ x− and y− ∈ F . Using (F2), we obtain x− ∈ F , i.e. x ∈ I0. Suppose x, y ∈ I0,
i.e. x−, y− ∈ F . We have x− ⊙ y− ∈ F , by (F1). Since

x− ⊙ y− = (x− − u+ y−) ∨ 0 = [(−x+ u)− u+ (−y + u)] ∨ 0 = (−x− y + u) ∨ 0,

and

(x � y)− = ((y + x) ∧ u)− = −((y + x) ∧ u) + u = (−x− y + u) ∨ (−u+ u) = (−x− y + u) ∨ 0,

we obtain (x ⊘ y)− = (x � y)− = x− ⊙ y− ∈ F . Hence, x ⊘ y, x � y ∈ I0. Thus, I0 is an ideal of
G[u].

Similarly, we can show that I ′0 is an ideal of G[u].

Theorem 3.8. Let I be a nonempty subset of a good pseudo-hoop algebra A containing 0. The
following conditions are equivalent:
(1) I is an ideal of A;
(2) for any x, y ∈ A, x− ⊙ y ∈ I and x ∈ I imply y ∈ I;
(3) for any x, y ∈ A, y ⊙ x∼ ∈ I and x ∈ I imply y ∈ I.

Proof. (1) ⇒ (2) Suppose I is an ideal of A. If x, y ∈ A such that x, x−⊙y ∈ I, then (x−⊙y)⊘x ∈
I. Since x−⊙y ≤ x−⊙y, we obtain y ≤ x− ⇝ (x−⊙y) = (x−⊙y)⊘x by Proposition 2.2(1). Using
(I2), we have y ∈ I.

(2) ⇒ (1) Let x, y ∈ A such that y ∈ I and x ≤ y. Then y− ≤ x−. Thus, y− ⊙ x ≤ x− ⊙ x = 0.
So y− ⊙ x = 0 ∈ I. By (2), we obtain x ∈ I. Therefore, condition (I2) holds. Let x, y ∈ I. Since
y− ⊙ (x ⊘ y) = y− ⊙ (y− ⇝ x) ≤ x ∈ I, we have y− ⊙ (x ⊘ y) ∈ I. Therefore, x ⊘ y ∈ I. In
addition, we have x ∈ I and x− ⊙ x−∼ = 0 ∈ I. It follows that x−∼ ∈ I. Since x∼− = x−∼, we
have y− ⊙ (x ⊘y) = y− ⊙ (x∼ → y) ≤ x∼− ∈ I by Proposition 2.2(7). Using (I2), we obtain
y− ⊙ (x � y) ∈ I. Thus, x � y ∈ I. Therefore, I is an ideal of A.

This proves that (1) ⇔ (2). Similarly, we can prove that (1) ⇔ (3).

Remark 3.9. Let I be a nonempty subset of a bounded pseudo-hoop algebra A containing 0, where
A does not have to be good. By the previous proof, if I is an ideal of A, then conditions (2) and
(3) hold. Also, I is a left (right) ideal of A if and only if condition (2) ((3)) holds.
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Theorem 3.10. Let I be a nonempty subset of a good pseudo-hoop algebra A containing 0. The
following conditions are equivalent:
(1) I is an ideal of A;
(2) for x, y ∈ A, (x− → y−)∼ ∈ I and x ∈ I imply y ∈ I;
(3) for x, y ∈ A, (x∼ ⇝ y∼)− ∈ I and x ∈ I imply y ∈ I.

Proof. (1) ⇒ (2) Suppose I is an ideal of A. Let x, y ∈ A such that (x− → y−)∼ ∈ I and
x ∈ I. Then x− ⊙ y−∼ ≤ (x− ⊙ y−∼)−∼ = (x− → y−∼−)∼ = (x− → y−)∼ ∈ I. Using (I2), we
obtain x− ⊙ y−∼ ∈ I. Thus y−∼ ∈ I by Theorem 3.8. Since y ≤ y−∼, we obtain y ∈ I.

(2) ⇒ (1) Suppose that the condition (2) holds. Let x ∈ I. Then (x− → x−∼−)∼ = (x− →
x−)∼ = 0 ∈ I. It follows that x−∼ ∈ I by (2). Hence, we show that x ∈ I implies x−∼ ∈ I. Let
x− ⊙ y, x ∈ I. Then (x− ⊙ y)−∼ ∈ I, and so (x− → y−)∼ ∈ I. Thus, y ∈ I by (2). Therefore, I is
an ideal of A by Theorem 3.8.

This proves that (1) ⇔ (2). Similarly, we can prove that (1) ⇔ (3).

Proposition 3.11. Let H be a subset of a bounded pseudo-hoop algebra A.
(1) If H is empty, then ⟨H⟩ = {0}.
(2) If H is not empty and A is normal, then

⟨H⟩ = {h ∈ A : h ≤ x1 ⊘ x2 ⊘ x3 ⊘ . . .⊘ xn, for some x1, x2, . . . , xn ∈ H}
= {h ∈ A : h ≤ x1 � x2 � x3 � . . . � xn, for some x1, x2, . . . , xn ∈ H}.

Proof. (1) It is obvious.
(2) If A is normal, ⊘ and � are associative. Let

B = {h ∈ A : h ≤ x1 ⊘ x2 ⊘ x3 ⊘ . . .⊘ xn, for some x1, x2, . . . , xn ∈ H}.

Let a, b ∈ A such that a ∈ B and a− ⊙ b ∈ B. We obtain a ≤ x1 ⊘ x2 ⊘ x3 ⊘ . . . ⊘ xn and
a− ⊙ b ≤ y1 ⊘ y2 ⊘ y3 ⊘ . . .⊘ ym, for some x1, x2, . . . , xn, y1, y2, . . . , ym ∈ H. Since

b ≤ a− ⇝ (a− ⊙ b) = (a− ⊙ b)⊘ a ≤ y1 ⊘ y2 ⊘ y3 ⊘ . . .⊘ ym ⊘ x1 ⊘ x2 ⊘ x3 ⊘ . . .⊘ xn,

we have b ∈ B. By the notion of normal pseudo-hoop algebras, we know that A is good. Thus, B
is an ideal of A by Theorem 3.8.

Suppose D is an ideal of A containing H. For any b ∈ B, we have b ≤ x1 ⊘ x2 ⊘ x3 ⊘ . . .⊘ xn
for some x1, x2, . . . , xn ∈ H. Since H ⊆ D, we obtain x1 ⊘ x2 ⊘ x3 ⊘ . . . ⊘ xn ∈ D. Then b ∈ D.
Thus, B ⊆ D. Therefore, B = ⟨H⟩.

Similarly, ⟨H⟩ = {h ∈ A : h ≤ x1 � x2 � x3 � . . . � xn, for some x1, x2, . . . , xn ∈ H}.

4 Ideals and congruences
In this section, we define congruences on pseudo-hoop algebras induced by ideals. We construct
the quotient pseudo-hoop algebras via ideals and prove that there is a one-to-one correspondence
between the set of all normal ideals of a pseudo-hoop algebra A with condition (pDN) and the set
of all congruences relation on A. Also, we obtain an isomorphism theorem.

Definition 4.1. Let (A,⊙,→,⇝) be a pseudo-hoop algebra and ∼ an equivalence relation on A.
The equivalence relation ∼ is called a left congruence relation if x ∼ y implies (a⊙x) ∼ (a⊙y),

(a → x) ∼ (a → y) and (a⇝ x) ∼ (a⇝ y) for any x, y, a ∈ A.



Ideals in pseudo-hoop algebras 45

The equivalence relation ∼ is called a right congruence relation if x ∼ y implies (x⊙a) ∼ (y⊙a),
(x → a) ∼ (y → a) and (x⇝ a) ∼ (y ⇝ a) for any x, y, a ∈ A.

The equivalence relation ∼ is called a congruence relation if x1 ∼ y1 and x2 ∼ y2 imply
(x1 ⊙ x2) ∼ (y1 ⊙ y2), (x1 → x2) ∼ (y1 → y2) and (x1 ⇝ x2) ∼ (y1 ⇝ y2).

Example 4.2. Let A be a hoop algebra of Example 3.2. It is easy to check that

ρ = {(0, 0), (0, a), (0, d), (a, 0), (a, a), (a, d), (d, 0), (d, a), (d, d),

(b, b), (b, c), (b, 1), (c, b), (c, c), (c, 1), (1, b), (1, c), (1, 1)},

is a congruence relation on A.

Proposition 4.3. A relation on a pseudo-hoop algebra (A,⊙,→,⇝) is a congruence relation if
and only if it is both a left and a right congruence relation.

Proof. The proof is obvious.

If I is an ideal of a bounded pseudo-hoop algebra A, then define ∼I on A as follows:

∀ x, y ∈ A, x ∼I y iff x− ⊙ y ∈ I, y− ⊙ x ∈ I, x⊙ y∼ ∈ I, y ⊙ x∼ ∈ I.

Proposition 4.4. Let A be a bounded pseudo-hoop algebra and I an ideal of A. Then ∼I is an
equivalence relation on A.

Proof. It is clear that ∼I is symmetric. And we know that ∼I is reflexive by Proposition 2.3(2). We
only need to show that ∼I is transitive. If x ∼I y and y ∼I z, then

(z− ⊙ y)− ⊙ (z− ⊙ x) = ((z− → y−)⊙ z−)⊙ x ≤ y− ⊙ x ∈ I.

So (z− ⊙ y)− ⊙ (z− ⊙ x) ∈ I. Since z− ⊙ y ∈ I, we get z− ⊙ x ∈ I by Theorem 3.8 and Remark
3.9. Similarly, x− ⊙ z ∈ I.

Since (x⊙ z∼)⊙ (y⊙ z∼)∼ = x⊙ (z∼⊙ (z∼ ⇝ y∼)) ≤ x⊙ y∼ ∈ I, we get x⊙ z∼ ∈ I. Similarly,
z ⊙ x∼ ∈ I. Therefore, x ∼I z.

Theorem 4.5. Let A be a good pseudo-hoop algebra and I a normal ideal of A. Then ∼I is a
congruence relation on A.

Proof. Let x, y ∈ A. By Propositions 4.3 and 4.4, we only need to show that x ∼I y implies
(x⊙a) ∼I (y⊙a), (a⊙x) ∼I (a⊙y), (x → a) ∼I (y → a), (a → x) ∼I (a → y), (x⇝ a) ∼I (y ⇝ a)
and (a⇝ x) ∼I (a⇝ y) for any a ∈ A.

Suppose x ∼I y. Then x− ⊙ y ∈ I, y− ⊙ x ∈ I, x⊙ y∼ ∈ I and y ⊙ x∼ ∈ I. Since

(x⊙ a)⊙ (y ⊙ a)∼ = x⊙ (a⊙ (a⇝ y∼)) ≤ x⊙ y∼ ∈ I,

we obtain (x⊙ a)⊙ (y ⊙ a)∼ ∈ I. Since I is normal, we have (y ⊙ a)− ⊙ (x⊙ a) ∈ I. Similarly, we
have (y ⊙ a)⊙ (x⊙ a)∼ ∈ I and (x⊙ a)− ⊙ (y ⊙ a) ∈ I. So (x⊙ a) ∼I (y ⊙ a).

Similarly, x ∼I y implies (a⊙ x) ∼I (a⊙ y) for any a ∈ A. Moreover, by

(x− ⊙ y)− ⊙ (x− ⊙ y−∼) = ((x− → y−)⊙ x−)⊙ y−∼ ≤ y− ⊙ y−∼ = 0 ∈ I,

we obtain (x− ⊙ y)− ⊙ (x− ⊙ y−∼) ∈ I. Thus, x− ⊙ y−∼ ∈ I by Theorem 3.8. Similarly, we have
y− ⊙ x−∼ ∈ I. Since I is normal, we obtain y−− ⊙ x− ∈ I and x−− ⊙ y− ∈ I. Hence, x− ∼I y−.
Similarly, x ∼I y implies x∼ ∼I y∼.
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If x ∼I y, for any a ∈ A, then (x ⊙ a∼)− ∼I (y ⊙ a∼)−, and so (x → a∼−) ∼I (y → a∼−).
Since A is good, we obtain (x → a−∼) ∼I (y → a−∼). For any b ∈ A, we have b∼− ⊙ b∼ = 0 ∈ I
and b ⊙ b∼−∼ = b ⊙ b∼ = 0 ∈ I. Since I is normal, we have b ∼I b∼−. Also, from A is good, we
obtain b−∼ = b∼− ∼I b. Thus, x−∼ ∼I x ∼I y ∼I y−∼. Then (x−∼ → a−∼) ∼I (y−∼ → a−∼) for
any a ∈ A. By Proposition 2.3(6), we have (x → a)−∼ ∼I (y → a)−∼. Hence, (x → a) ∼I (y →
a). Similarly, we can show (x⇝ a) ∼I (y ⇝ a) for any a ∈ A.

If x ∼I y, for any a ∈ A, then (a⊙x∼)− ∼I (a⊙y∼)−, and so (a → x∼−) ∼I (a → y∼−). Since
a ∼I a∼−, we obtain (a → x∼−) ∼I (a∼− → x∼−) and (a → y∼−) ∼I (a∼− → y∼−) by the above
proof. Thus, (a∼− → x∼−) ∼I (a∼− → y∼−) by transitivity. Hence (a → x)−∼ ∼I (a → y)−∼ by
Proposition 2.3(6). Therefore, (a → x) ∼I (a → y). Analogously, we have (a⇝ x) ∼I (a⇝ y).

Let A be a good pseudo-hoop algebra and I a normal ideal of A. We define A/I = {[a] : a ∈ A}
where [a] = {x ∈ A : x ∼I a}. For any x, y ∈ A, we define the operations ⊙, → and ⇝ on A/I by:

[x]⊙ [y] = [x⊙ y], [x] → [y] = [x → y] and [x]⇝ [y] = [x⇝ y].

It is easy to know that (A/I,⊙,→,⇝, [1]) is a bounded pseudo-hoop algebra with condition (pDN).

Proposition 4.6. Let A be a good pseudo-hoop algebra.
(1) If ∼ is a congruence relation on A, then B = {x ∈ A : x ∼ 0} is a normal ideal of A. Also,
∼B is a congruence relation on A. If A satisfies the condition (pDN), then ∼B coincides with ∼.
(2) If I is a normal ideal of A, then ∼I is a congruence relation on A. Also, [0] = {x ∈ A : x ∼I 0}
is a normal ideal of A and coincides with I.
(3) If A satisfies the condition (pDN), then there is a one-to-one correspondence between the set
of congruence relations on A and the set of normal ideals of A.

Proof. (1) By reflexivity, we have 0 ∈ B. So B ̸= ∅. Let x, y ∈ B. Then (y− ⇝ x) ∼ (0− ⇝ x),
i.e. (x ⊘ y) ∼ x. Since x ∼ 0, we obtain x ⊘ y ∈ B. Similarly, x � y ∈ B. Suppose x, y ∈ A such
that x ≤ y and y ∈ B. Then (x⊙ y∼) ∼ (x⊙ 0∼) = x. Since x ≤ y ≤ y∼−, we have x⊙ y∼ = 0 by
Proposition 2.3(3). Thus, x ∼ 0. Hence, B is an ideal of A.

Suppose x, y ∈ A such that x− ⊙ y ∈ B. Then y ⇝ x−∼ = (x− ⊙ y)∼ ∼ 1. Thus (y ⊙ (y ⇝
x−∼)) ∼ (y ⊙ 1), and so (y ∧ x−∼) ∼ y. Therefore, (y ⊙ x∼) ∼ ((y ∧ x−∼)⊙ x∼). Since A is good,
we obtain

(y ∧ x−∼)⊙ x∼ = (x−∼ → y)⊙ x−∼ ⊙ x∼ = (x−∼ → y)⊙ (x∼− ⊙ x∼) = 0.

Then y ⊙ x∼ ∈ B. Similarly, y ⊙ x∼ ∈ B implies x− ⊙ y ∈ B. Therefore, B is normal.
By Theorem 4.5, ∼B is a congruence on A. Suppose A satisfies condition (pDN). If x ∼ y, we

have (x− ⊙ y) ∼ (y− ⊙ y) = 0, (y− ⊙ x) ∼ (x− ⊙ x) = 0, (y ⊙ x∼) ∼ (y ⊙ y∼) = 0 and (x⊙ y∼) ∼
(x⊙x∼) = 0. So x ∼B y. Conversely, if x ∼B y, then (y⊙x∼) ∼ 0. Thus ((y⊙x∼)−⊙y) ∼ (0−⊙y),
and so (y ∧ x∼−) ∼ y. Using condition (pDN), we have (y ∧ x) ∼ y. Similarly, (y ∧ x) ∼ x. Hence,
x ∼ y. Therefore ∼B coincides with ∼.

(2) By Theorem 4.5, ∼I is a congruence relation on A. Then [0] is a normal ideal of A by
(1). So we only need to show that [0] coincides with I. For any x ∈ I, we have x− ⊙ 0 = 0 ∈ I,
0− ⊙ x = x ∈ I, x ⊙ 0∼ = x ∈ I and 0 ⊙ x∼ = 0 ∈ I. So x ∼I 0, i.e. x ∈ [0]. Therefore,
I ⊆ [0]. Conversely, if x ∈ [0], then x⊙ 0∼ ∈ I. Thus x = x⊙ 0∼ ∈ I. Hence, I = [0].

(3) It is obvious by (1) and (2).

Proposition 4.7. Let X, Y be two bounded pseudo-hoop algebras and f : X → Y a bounded
pseudo-hoop homomorphism. We have the following results:
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(1) If I is an (normal) ideal of Y , then f−1(I) is an (normal) ideal of X.
(2) If f : X → Y is a bounded pseudo-hoop isomorphism and J is an (normal) ideal of X, then
f(J) is an (normal) ideal of Y .

Proof. (1) Let I be an ideal of Y . Since 0 ∈ f−1(I), we have f−1(I) ̸= ∅. Let x, y ∈ X such that
x ≤ y and y ∈ f−1(I). Then f(y) ∈ I and f(x) → f(y) = f(x → y) = f(1) = 1, i.e. f(x) ≤ f(y).
Using (I2), we have f(x) ∈ I, i.e. x ∈ f−1(I). Suppose x, y ∈ f−1(I). Since f(x⊘y) = f(x)⊘f(y)
and f(x), f(y) ∈ I, we obtain f(x⊘ y) ∈ I, i.e. x⊘ y ∈ f−1(I). Similarly, x � y ∈ f−1(I). Hence,
f−1(I) is an ideal of X.

Let I be a normal ideal of Y . Then x− ⊙ y ∈ f−1(I) iff f(x)− ⊙ f(y) ∈ I iff f(y)⊙ f(x)∼ ∈ I
iff y ⊙ x∼ ∈ f−1(I) for any x, y ∈ X. Therefore, f−1(I) is a normal ideal of X.

(2) Let J be an ideal of X. Suppose x, y ∈ Y such that x ≤ y and y ∈ f(J). Then there
is v ∈ J such that f(v) = y. Since f is surjective, there is u ∈ X such that f(u) = x. Since
f(u → v) = x → y = f(1) and f is injective, we have u → v = 1, i.e. u ≤ v ∈ J . Thus, u ∈ J .
So x ∈ f(J). Let x, y ∈ f(J). Then there exist u, v ∈ J such that f(u) = x and f(v) = y. Since
u ⊘ v, u � v ∈ J , we have f(u) ⊘ f(v) = f(u ⊘ v) ∈ f(J) and f(u) � f(v) = f(u � v) ∈ f(J).
Therefore, f(J) is an ideal of Y .

Let J be a normal ideal of X. Then f(u)− ⊙ f(v) ∈ f(J) iff u− ⊙ v ∈ J iff v ⊙ u∼ ∈ J iff
f(v)⊙ f(u)∼ ∈ f(J) for any u, v ∈ X. Thus, f(J) is a normal ideal of Y .

Let f : X → Y be a bounded pseudo-hoop homomorphism. Denote {x ∈ X : f(x) = 0} =
f−1(0) by kerf . Then kerf is an ideal of X.

Proposition 4.8. Let X, Y be two bounded pseudo-hoop algebras and f : X → Y a bounded
pseudo-hoop homomorphism. If Y is good, then {0} is a normal ideal of Y and kerf is a normal
ideal of X.

Proof. It is clear that {0} is an ideal of Y . Since Y is good, we obtain x− ⊙ y = 0 iff y ≤ x−∼ iff
y ≤ x∼− iff y ⊙ x∼ = 0 for any x, y ∈ Y . Therefore, {0} is normal. Hence, kerf is a normal ideal
of X by Proposition 4.7(1).

Let W be a nonempty subset of a bounded pseudo-hoop algebra A. We define

W− = {x− : x ∈ W} and W∼ = {x∼ : x ∈ W}.

Let X, Y be two good pseudo-hoop algebras and f : X → Y a bounded pseudo-hoop homo-
morphism. Since X is good and kerf is a normal ideal of X, we know that X/kerf is a bounded
pseudo-hoop algebra. Then we have the following result.

Proposition 4.9. Let X, Y be two good pseudo-hoop algebras and f : X → Y a bounded pseudo-
hoop homomorphism. If X is normal, then X/kerf ∼= (Imf)− and X/kerf ∼= (Imf)∼.

Proof. Define φ : X/kerf → (Imf)− by φ([x]) = f(x)∼− = f(x)−∼ for all x ∈ X. Then φ([x]) ∈
(Imf)−. Since X is normal, for any x, y ∈ X we have

f(x)− ⊙ f(y)− = f(x−∼− ⊙ y−∼−) = f((x− ⊙ y−)∼−) ∈ (Imf)−.

By Proposition 2.3(6), for any x, y ∈ X we obtain

f(x)− → f(y)− = f(x−∼− → y−∼−) = f((x− → y−)∼−) ∈ (Imf)−.
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Similarly, f(x)− ⇝ f(y)− ∈ (Imf)−. Thus, the operations ⊙, → and ⇝ are closed on (Imf)−.
Also, 1 = f(0)− ∈ (Imf)− and 0 = f(1)− ∈ (Imf)−. Therefore, (Imf)− is a bounded pseudo-
hoop algebra. It is clear that φ([0]) = 0. Since X is good, for any x, y ∈ X we have

φ([x] → [y]) = φ([x → y]) = f((x → y)−∼) = f(x−∼ → y−∼) = φ([x]) → φ([y]).

Similarly, we have φ([x]⇝ [y]) = φ([x])⇝ φ([y]). Since X is normal, we obtain

φ([x]⊙ [y]) = φ([x⊙ y]) = f((x⊙ y)−∼) = f(x−∼ ⊙ y−∼) = f(x)−∼ ⊙ f(y)−∼ = φ([x])⊙ φ([y]).

Therefore, φ is a bounded pseudo-hoop homomorphism.
Since kerf is normal, we get [x] = [y] iff x ∼kerf y iff f(x− ⊙ y) = f(y− ⊙ x) = 0 iff

f(x)− ⊙ f(y) = f(y)− ⊙ f(x) = 0 iff f(x)− ≤ f(y)− and f(y)− ≤ f(x)− iff f(x)− = f(y)− iff
φ([x]) = φ([y]) for any x, y ∈ X. Thus, φ is injective. Since f(a)− = f(a−∼−) = φ([a−]) for any
a ∈ X, we have φ is surjective. Hence, φ is isomorphic. Therefore, X/kerf ∼= (Imf)−. Similarly,
X/kerf ∼= (Imf)∼.

5 Prime ideals
In this section, we introduce the concept of prime ideals in pseudo-hoop algebras and obtain several
equivalent conditions of prime ideals.

Definition 5.1. Let (A,⊙,→,⇝, 1) be a bounded pseudo-hoop algebra and P an ideal of A. Then
P is called a prime ideal if P ̸= A and x ∧ y ∈ P implies x ∈ P or y ∈ P for any x, y ∈ A.

Example 5.2. Let (A,⊙,→,⇝, 1) be a bounded hoop algebra as in Example 3.2. Then I2 = {0, c}
and I3 = {0, a, d} are all prime ideals of A. Since a∧ c = 0 and a, c ̸∈ {0}, I1 = {0} is not prime.

Proposition 5.3. Let X, Y be two bounded pseudo-hoop algebras and f : X → Y be a bounded
pseudo-hoop homomorphism. Then the following statements hold:
(1) If I is a prime ideal of Y and f−1(I) ̸= X, then f−1(I) is a prime ideal of X.
(2) If f : X → Y is a bounded pseudo-hoop isomorphism and J is a prime ideal of X, then f(J)
is a prime ideal of Y .

Proof. (1) It is obvious that f−1(I) is a proper ideal of X. For any x, y ∈ X, if x∧y ∈ f−1(I), then
f(x)∧ f(y) = f(x∧ y) ∈ I. Since I is prime, we obtain f(x) ∈ I or f(y) ∈ I. Thus, x ∈ f−1(I) or
y ∈ f−1(I). Hence, f−1(I) is prime.

(2) By Proposition 4.7(2), f(J) is an ideal of Y . Since J ̸= X and f is bijective, we have
f(J) ̸= Y . Let x, y ∈ Y such that x ∧ y ∈ f(J). Since f is surjective, there exist u, v ∈ X such
that f(u) = x and f(v) = y. Then f(u ∧ v) = f(u) ∧ f(v) = x ∧ y ∈ f(J). Thus, u ∧ v ∈ J . Since
J is prime, we have u ∈ J or v ∈ J . Hence, x ∈ f(J) or y ∈ f(J). Therefore, f(J) is prime.

Theorem 5.4. Let A be a bounded pseudo-hoop algebra with the pre-linear condition and P be an
ideal of A. Then the following conditions are equivalent:
(1) P is prime;
(2) If x ∧ y = 0, then x ∈ P or y ∈ P ;
(3) For any x, y ∈ A, (x → y)∼ ∈ P or (y → x)∼ ∈ P ;
(4) For any x, y ∈ A, (x⇝ y)− ∈ P or (y ⇝ x)− ∈ P .
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Proof. (1) ⇒ (2) It is obvious by (1).
(2) ⇒ (3) Since A is a lattice, for any x, y ∈ A we have

(x → y)∼ ∧ (y → x)∼ = ((x → y) ∨ (y → x))∼ = 1∼ = 0.

It follows that (x → y)∼ ∈ P or (y → x)∼ ∈ P by (2).
(3) ⇒ (1) Suppose x ∧ y ∈ P and (x → y)∼ ∈ P . We obtain (x ∧ y) � (x → y)∼ ∈ P by

(RI1). Since (x ∧ y)∼ = ((x → y)⊙ x)∼ = x⇝ (x → y)∼, we get

x ≤ (x ∧ y)∼ → (x → y)∼ = (x ∧ y) � (x → y)∼ ∈ P.

So x ∈ P . Similarly, if x ∧ y ∈ P and (y → x)∼ ∈ P , then y ∈ P .
(2) ⇒ (4) The proof is similar to (2) ⇒ (3).
(4) ⇒ (1) The proof is similar to (3) ⇒ (1).

Corollary 5.5. Let A be a bounded pseudo-hoop algebra with the pre-linear condition. If P is a
prime ideal of A, then every proper ideal of A containing P is also prime.

Proof. By Theorem 5.4(3) or (4).

Corollary 5.6. Let A be a bounded pseudo-hoop algebra with the pre-linear condition. Then every
proper ideal of A is prime if and only if the ideal {0} of A is prime.

Proposition 5.7. Let A be a good pseudo-hoop algebra and P be a normal ideal of A. If A satisfies
the pre-linear condition, then P is prime if and only if A/P is a pseudo-hoop chain.

Proof. It is enough to prove [x] ≤ [y] ⇔ (x → y)∼ ∈ P for x, y ∈ A. Suppose [x] ≤ [y], then
[x → y] = [1], i.e. (x → y) ∼P 1. Therefore, 1 ⊙ (x → y)∼ = (x → y)∼ ∈ P . Conversely, suppose
(x → y)∼ ∈ P . We have 1 ⊙ (x → y)∼ = (x → y)∼ ∈ P and (x → y) ⊙ 1∼ = 0 ∈ P . Since P is
normal, we obtain (x → y) ∼P 1. Thus, [x → y] = [1], i.e. [x] ≤ [y]. So P is prime if and only
if (x → y)∼ ∈ P or (y → x)∼ ∈ P for any x, y ∈ A if and only if [x] ≤ [y] or [y] ≤ [x] for any
[x], [y] ∈ A/P if and only if A/P is a pseudo-hoop chain.

6 Ideals and filters
In this section, we shall investigate the relationship between ideals and filters in pseudo-hoop
algebras. First, some results are obtained by using the set of complement elements of pseudo-
hoop algebras. In addition, the notion of ⊙-prime ideals in pseudo-hoop algebras is given and the
relationship between ⊙-prime ideals and maximal filters is discussed.

Definition 6.1. Let (A,⊙,→,⇝, 0, 1) be a bounded pseudo-hoop algebra and X be a subset of
A. The sets of complement elements are denoted by M(X) and N(X), where M(X) = {x ∈ A |
x− ∈ X} and N(X) = {x ∈ A | x∼ ∈ X}.
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Example 6.2. [1] Let A = {0, a, b, c, d, e, f, 1}. Define →, ⇝ and ⊙ as follows:

→=⇝ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 1 1 d 1 1 1
b d f 1 1 d f 1 1
c d e f 1 d e f 1
d c c c c 1 1 1 1
e 0 c c c d 1 1 1
f 0 b c c d f 1 1
1 0 a b c d e f 1

⊙ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a a a 0 a a a
b 0 a a b 0 a a b
c 0 a b c 0 a b c
d 0 0 0 0 d d d d
e 0 a a a d e e e
f 0 a a b d e e f
1 0 a b c d e f 1

Then (A,⊙,→,⇝, 1) is a bounded hoop algebra. Let F1 = {d, e, f, 1} and F2 = {c, 1}. Then
M(F1) = N(F1) = {0, a, b, c} and M(F2) = N(F2) = {0, d}.

It is easy to check that F1 and F2 are filters of A. Also, J1 = {0, a, b, c} is an ideal of A. Since
b ≤ c ∈ F−

1 and b ̸∈ F−
1 , F−

1 = F∼
1 = {c, 0} is not an ideal of A. Since e ≥ d ∈ J−

1 and e ̸∈ J−
1 ,

J−
1 = J∼

1 = {1, d} is not a filter of A.

The above example shows that ideals and filters are not dual under complement. Then we have
the following results.

Theorem 6.3. Let F be a filter of a good pseudo-hoop algebra A. Then M(F ) is an ideal generated
by F∼ and N(F ) is an ideal generated by F−.

Proof. Suppose x, y ∈ A such that x−⊙y ∈ M(F ) and x ∈ M(F ). Then (x−⊙y)− = x− → y− ∈ F
and x− ∈ F . Since F is a filter of A, we have y− ∈ F , and so y ∈ M(F ). Thus, M(F ) is an ideal
of A by Theorem 3.8. For any x ∈ F∼, there exists y ∈ F such that x = y∼. Since y ≤ y∼− = x−,
we have x− ∈ F , i.e. x ∈ M(F ). Hence, F∼ ⊆ M(F ). Suppose I is an ideal of A containing F∼. If
x ∈ M(F ), i.e. x− ∈ F , then x−∼ ∈ F∼ ⊆ I. Since x ≤ x−∼, we have x ∈ I. Thus, M(F ) ⊆ I.
Therefore, M(F ) is an ideal generated by F∼. Similarly, N(F ) is an ideal generated by F−.

Theorem 6.4. Let A be a bounded pseudo-hoop algebra and I an ideal of A. If A is good, then
M(I) and N(I) are filters of A such that I∼ ⊆ M(I) and I− ⊆ N(I).

Proof. If x ≤ y and x ∈ M(I), then y− ≤ x− and x− ∈ I. Using (I2), we obtain y− ∈ I, i.e.
y ∈ M(I). For any x, y ∈ M(I), we have x−, y− ∈ I, and so by Proposition 2.3(7),

(x⊙ y)− = x → y− = x−∼ → y− = x− � y− ∈ I.

That is x⊙ y ∈ M(I). Hence, M(I) is a filter of A. Suppose x ∈ I∼. There exists y ∈ I such that
x = y∼. Since y ∈ I ⇔ y∼− ∈ I, we have x− = y∼− ∈ I, i.e. x ∈ M(I). Hence, I∼ ⊆ M(I).

Similarly, we can show that N(I) is a filter of A and I− ⊆ N(I).

Theorem 6.5. If I is an ideal of a bounded pseudo-hoop algebra A, then I = M(N(I)) = N(M(I)).

Proof. For any x ∈ A, we obtain x ∈ I iff x−∼ ∈ I iff x− ∈ N(I) iff x ∈ M(N(I)). So I = M(N(I)).
Analogously, we can show I = N(M(I)).

Theorem 6.6. If F is a filter of a bounded pseudo-hoop algebra A, then F ⊆ M(N(F )) and
F ⊆ N(M(F )).
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Proof. Let x ∈ F . Since x ≤ x−∼ and F is a filter of A, we have x−∼ ∈ F . So x− ∈ N(F ). Then
x ∈ M(N(F )). Thus, F ⊆ M(N(F )). Similarly, F ⊆ N(M(F )).

Remark 6.7. In Theorem 6.6, we do not necessarily have F = M(N(F )) and F = N(M(F )).
For instance, we have M(N(F1)) = {d, e, f, 1} = F1 and M(N(F2)) = {a, b, c, e, f, 1} ⊇ F2 in
Example 6.2. Also, the converse of Theorem 6.6 is not true in general. Let D = {c}. Then
N(M(D)) = M(N(D)) = {a, b, c} ⊇ D. But D is not a filter of A.

In order to further discuss the relationship between ideals and filters of a pseudo-hoop algebra,
we introduce the notion of ⊙-prime ideals in pseudo-hoop algebras.

Definition 6.8. Let (A,⊙,→,⇝, 1) be a bounded pseudo-hoop algebra and P an ideal of A. Then
P is called a ⊙-prime ideal of A if P ̸= A and x⊙ y ∈ P implies x ∈ P or y ∈ P for any x, y ∈ A.

Example 6.9. Let A be the pseudo hoop algebra as in Example 3.2. Then it is easy to show that
I3 = {0, a, d} is a ⊙-prime ideal of A.

Proposition 6.10. Let A be a bounded pseudo-hoop algebra. Then every ⊙-prime ideal of A is a
prime ideal of A. The converse may not hold.

Proof. Let P be a ⊙-prime ideal of A. If P is not prime, there exist x, y ∈ A such that x∧ y ∈ P ,
but x, y ̸∈ P . We obtain x⊙y ∈ P by x⊙y ≤ x∧y. Then x ∈ P or y ∈ P , which is a contradiction.
Therefore, P is a prime ideal of A.

In Example 3.2, I2 = {0, c} is a prime ideal of A. Since b⊙ d = 0 ∈ I2 and b, d ̸∈ I2, we get I2
is not a ⊙-prime ideal of A. Therefore, the converse may not hold.

Proposition 6.11. Let A be a bounded pseudo-hoop algebra and P an ideal of A. Then P is a
⊙-prime ideal of A if and only if P is a prime ideal of A and x⊙ y ∈ P implies x∧ y ∈ P for any
x, y ∈ P .

Proof. Let P be a ⊙-prime ideal of A. Then P is a prime ideal of A by Proposition 6.10. Suppose
x ⊙ y ∈ P . We obtain x ∈ P or y ∈ P by Definition 6.8. Since x ∧ y ≤ x, y, we obtain x ∧ y ∈
P . Therefore, x⊙ y ∈ P implies x ∧ y ∈ P for any x, y ∈ P .

Conversely, if x ⊙ y ∈ P , then x ∧ y ∈ P . By the notion of prime ideals, we know that x ∈ P
or y ∈ P . Therefore, P is a ⊙-prime ideal of A.

Let X be a subset of a pseudo-hoop algebra A. We denote A−X by X. The following results
study the relationship between ideals and filters in pseudo-hoop algebras.

Theorem 6.12. Let A be a bounded pseudo-hoop algebra and P an ideal of A. If P is a ⊙-prime
ideal of A, then P is a maximal filter of A.

Proof. Suppose P is a ⊙-prime ideal of A. Since P ̸= A, we obtain P ̸= ∅. Since 0 ∈ P , i.e. 0 ̸∈ P ,
we have P ̸= A. Let x, y ∈ P . If x⊙ y ∈ P , then x ∈ P or y ∈ P , which is a contradiction. Thus,
x⊙ y ∈ P . Suppose x, y ∈ A such that x ≤ y and x ∈ P . It follows that y ∈ P , i.e. y ̸∈ P . If not,
since P is an ideal of A and x ≤ y, we have x ∈ P , which is a contradiction. Therefore, P is a filter
of A.

Let Q be a filter of A strictly containing P . Then there exists a ∈ A such that a ∈ Q and
a ̸∈ P . So a ∈ P ∩ Q. It follows that a−, a∼ ̸∈ P . If not, then a− ⊘ a = a− ⇝ a− = 1 ∈ P and
a � a∼ = a∼ → a∼ = 1 ∈ P , which is a contradiction. So a∼ ∈ P ⊆ Q. Using (F1), we have
0 = a⊙ a∼ ∈ Q. Then Q = A. Hence, P is a maximal filter of A.
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Remark 6.13. By the previous proof, if P is a proper ideal of A and a ∈ P , then a−, a∼ ̸∈ P .

Theorem 6.14. Let A be a bounded pseudo-hoop algebra and P be an ideal of A. If P is a normal
and maximal filter of A, then P is a ⊙-prime ideal of A.

Proof. Let P be a normal and maximal filter of A. Then P ̸= ∅. Since 1 ∈ P , i.e. 1 ̸∈ P , we have
P ̸= A. Suppose x, y ∈ A such that x ⊙ y ∈ P , i.e. x ⊙ y ̸∈ P . Therefore, P is strictly contained
in (P ∪ {x ⊙ y}]. So (P ∪ {x ⊙ y}] = A. By Proposition 2.4, there exists n ∈ N and h ∈ P such
that h⊙ (x⊙ y)n ≤ 0. That is h ≤ ((x⊙ y)n)−. So ((x⊙ y)n)− ∈ P . Suppose x, y ̸∈ P . Since P is
a filter of A, we obtain (x⊙ y)n ∈ P . It follows that 0 = ((x⊙ y)n)− ⊙ (x⊙ y)n ∈ P . Using (F2),
we have P = A, which is a contradiction. Therefore, x ⊙ y ∈ P implies x ∈ P or y ∈ P . Thus, P
is a ⊙-prime ideal of A.

7 Conclusions
We defined ideals in pseudo-hoop algebras using two kinds of addition operations. We gave some
equivalent characterizations of ideals of good pseudo-hoop algebras. Also, the congruence relation
on a pseudo-hoop algebra is induced by ideals are defined. Using ideals, we constructed the
quotient pseudo-hoop algebras and got an isomorphism theorem. We proved that if a pseudo-hoop
algebra A satisfies condition (pDN), then there is a one-to-one correspondence between the set of
all congruence relation on A and the set of all normal ideals of A. The notion of prime ideals
in pseudo-hoop algebras is introduced. We showed that the normal ideal of a good pseudo-hoop
algebra with the pre-linear condition is prime if and only if the corresponding quotient pseudo-
hoop algebra is a pseudo-hoop chain. In addition, we discussed the relationship between ideals and
filters in pseudo-hoop algebras. We found that ideals and filters behave differently in pseudo-hoop
algebras. Also, we discussed the relationship between ⊙-prime ideals and maximal filters.

For future works, we will study other types of ideals in pseudo-hoop algebras and discuss the
relationships between these ideals. The notion of implicative ideals of hoop algebras was studied
in [1]. We shall investigate the notion of implicative ideals in pseudo-hoop algebras. Similarly
to the notion of nodal filters in hoop algebras in [15], we shall define the notion of nodal ideals
in pseudo-hoop algebras. In this paper, we can observe that the operators M and N defined in
Definition 6.1 transform filters into ideals and vice versa. We shall further study other properties
of M and N . In addition, stabilizers in hoop algebras were introduced in [3]. We shall study
stabilizers in pseudo-hoop algebras. Furthermore, we shall discuss the relationship between ideals
and stabilizers in pseudo-hoop algebras.
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