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1 Introduction

Hoop algebras were presented by Bosbach in [4, 5]. Then Biichi and Owens investigated this alge-
braic structure in an unpublished paper. Pseudo-hoop algebras were presented as non-commutative
generalizations of hoop algebras by Georgescu, Leugtean and Preoteasa in [13], following after the
notions of pseudo-MV algebras in [12] and pseudo-BL algebras ([10]). Pseudo-hoop algebras are
weaker structures. Pseudo-MV algebras and pseudo-BL algebras are particular cases of pseudo-
hoop algebras. In recent years, the study of hoop algebras and pseudo-hoop algebras has made
great progress. And the main focus has been on filters in [2, 6, 9, [15].

Ideal theory plays a fundamental role in many algebraic structures, such as lattices, rings and
pseudo-MV algebras. Georgescu and Iorgulescu in [[12] introduced the notion of ideals in pseudo-MV
algebras, which was shown effective in studying structure properties of pseudo-MV algebras. In
addition, Dvurecenskij in [11] studied states on pseudo-MV algebras by exploiting ideals. In
recent years, the notion of ideals has been introduced as a dual notion of filters in some algebraic
structures using multiplication operations. Lele and Nganou in [[14] presented the notion of ideals
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in BL-algebras and defined quotient algebraic structures by ideals. Using ideals, they proved that
an ideal of a BL-algebra is prime if and only if the quotient algebraic structure is a linear MV-
algebra. Also, Rachinek and Salounové in [16] introduced ideals of general residuated lattices. It
was proved that a congruence can be defined by an ideal in some cases, and the corresponding
quotient structure is involutive. In [1], Kologani and Borzooei introduced the notions of ideals,
implicative (maximal, prime) ideals of hoop algebras and studied the relationships between these
ideals.

In (pseudo-) MV-algebras, filters and ideals are dual. However, in pseudo-hoop algebras, we
mainly study filters. As pseudo-hoop algebras may not have lattice structures, not all pseudo-
hoop algebras are general residuated lattices. Since pseudo-MV algebras are particular cases of
general residuated lattices, the notion of ideals in pseudo-hoop algebras can not be similar to
that in pseudo-MV algebras. Therefore, we want to introduce the notion of ideals in pseudo-hoop
algebras, as a dual notion of filters in [2]. Another inspiration is the notion of ideals in hoop
algebras defined in [[]. Since pseudo-hoop algebras are non-commutative generalizations of hoop
algebras, we shall generalize the notion of ideals in hoop algebras to the case of pseudo-hoop
algebras. Also, by Theorem BB and Theorem B, it is noticeable that ideals and filters behave
differently in pseudo-hoop algebras. Therefore, it is meaningful to investigate ideals in pseudo-hoop
algebras.

The paper is constructed as follows. In Section 2, we recall some definitions and results on
pseudo-hoop algebras which are useful. In Section 3, we define the notions of left, right and
both-sided ideals of pseudo-hoop algebras. In Section 4, we analyse congruences induced by ideals
and construct the quotient pseudo-hoop algebras via ideals. In addition, we get an isomorphism
theorem. In Section 5, we introduce the notion of prime ideals in pseudo-hoop algebras and give
some equivalent conditions of prime ideals. In Section 6, we analyse the relationship between
ideals and filters. Also, we introduce the notion of ®-prime ideals in pseudo-hoop algebras. The
relationship between ®-prime ideals and maximal filters is discussed.

2 Preliminaries

In this section, we recall some definitions and results to be used in this paper.

Definition 2.1. [13] A pseudo-hoop algebra is an algebra (A, ®,—,~,1) of the type (2,2,2,0)
that for all u,v,w € A, it is satisfying in the following conditions:

(phl) u©l=10u=u;

(ph2) u—)u:uwu—l

(ph3) (u )—>w—u%(v—>w);

(phd) (U O V) ~ w=v ~ (U~ w);

(phb5) (u—=v)Qu=(v—=u)OV=u® (u~v)=v0O (v~ u).

We define u® = 1 and u" = "' ®u for any n € N. on A. The relation < defined by
u<veu—-v=1su~v=1I1is a partial order on A. If ® is commutative or equivalently
—=~>, A is called to be a hoop algebra. Also, A is called bounded if u > 0 for any u € A. In
this case, we define u= = u — 0 and v~ = u ~» 0 on A. If u=~ = u~" for all u € A, then
the bounded pseudo-hoop algebra is called good (see [§]). In a bounded pseudo-hoop algebra A, if
u=~ =u~" =wu for allu € A, then A is called satisfying the (pDN) condition (see [8]). A good
pseudo-hoop algebra A is called normal if it satisfies (u © V)™~ =u""~ @v~" for all u,v € A.

We summarize some properties of pseudo-hoop algebras that we will use later. For more details,
see [§] and [13].
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Proposition 2.2. [13] Let (A, ®,—,~>,1) be a pseudo-hoop algebra. Then for all u,v,w € A, the
following conditions hold:

Muov<wiffu<v—wiffv<u~ w;

(2) (A, ®,1) is a monoid;

B)ifu<v, thenuOw <vOw andwOu < wWEV;

D urhv=(u—v)0u=W—-u)O0v=u®(u~»v)=0v0 (v~ u);

(5) ifu<wv, thenv —w<u—w and v~ w < u~ w;

(6) ifu<v, thenw > u<w—v and w ~ u < W ~> v;

(7)) (v—=w)O(u—v)<u—w, (Uu»v)O (L~ w) <u~ w.

Proposition 2.3. [§] Let A be a bounded pseudo-hoop algebra. Then for all u,v,w € A the
following statements hold:
(HDue0=00u=0;

2)u Ou=0,ueu> =0;

B)uev=0ifu<v” iffv<u;

(4)u<u~,u§u ~;

(5) u uT, uN Y =y

(6) if A is good then (u —v) ™ =u""~ —=v "~ and (u~v)"~ =u"" ~ v ";
(7) if A is good, then u — v~ =u™"~ = v~ and u~» v~ =u""~ ~v"~.

A pseudo-hoop algebra A is said to satisfy the pre-linear condition if we have (z — y) V (y —
z) = (x ~ y)V(y ~ x) =1 for any =,y € A. By [, Proposition 3.4], (A,®,—,~+,0,1) is a
bounded pseudo-hoop algebra with pre-linear condition if and only if (A, A,V,®, —,~>,0,1) is a
pseudo-BL algebra.

A filter F of a pseudo-hoop algebra A is a nonempty subset of A which satisfies (F1): u,v € F
implies u ® v € F and (F2): for any u,v € A, if w < v and u € F, then v € F (see [13]). In
a pseudo-hoop algebra A, filters are coincided with deductive systems. A filter F' of A satisfying
F # A is called proper. If F' is a proper filter of A and there is no proper filter containing F', F' is
called maximal. A filter F' of A is normal if u - v € F iff u ~» v € F for any u,v € A. Let X be a
subset of A. We use (X] to denote the filter of A generated by X.

Proposition 2.4. [13] Let A be a pseudo-hoop algebra, W a normal filter of A and w € A. Then

(WuU{u}] ={a€ Alwou" <a, for someneN, we W}
={ac Alu" ©w < a, for someneN, we W}

Let A; and Ay be pseudo-hoop algebras. In [9], a map f : A} — Ay is called a pseudo-hoop
homomorphism if f preserves the operations ©®, — and ~». The pseudo-hoop homomorphism
f Al — Ay is called a bounded pseudo-hoop homomorphism if A;, Ay are bounded and f(0) =

3 Ideals

In this section, we shall introduce two kinds of binary operations (left and right additions) and
the notion of ideals in pseudo-hoop algebras. We give some equivalent characterizations of ideals
of good pseudo-hoop algebras.

Definition 3.1. Let (A, ®,—,~>,1) be a bounded pseudo-hoop algebra. We define left addition @
and right addition  as follows: for any z,y € A,

rQy=y ~zx and zQy=z" —y.
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Example 3.2. [15] Let A ={0,a,b,c,d,1}. Define the operations —, ~ and ® on A as follows:

—=~~ 0 a b ¢ d 1 ® 0 a b ¢ d 1
0 1 1 1 1 1 1 0 o 0 0 0 0 0
a c 1 b ¢ b 1 a 0 a d 0 d a
b d a 1 b a |1 b 0 d ¢ ¢ 0 b
c a a 1 1 a 1 c 0 0 ¢ ¢ 0 c
d b 1 1 b 1 1 d 0 d 0 0 0 d
1 0 a b ¢ d 1 1 0 a b ¢ d 1

Then (A, ®, —,~, 1) is a bounded hoop algebra. It is easy to see thatboc=c~ ~»b=a~>b=10
andcQa=c~—>a=a—>a=1.

Proposition 3.3. Let A be a pseudo-hoop algebra. For all x,y,m,n € A, if vt <y and m < n,
thenxom <yonandzOm < yon.

Proof. If x <y and m < n, then y~ < 2™, n~ < m~. By Proposition ZZ2(5) and (6), we have
rom=m_ ~zx<n war<n ~y=yn. Similarly, we have t O m < y S n. O

Proposition 3.4. Let A be a pseudo-hoop algebra. If A is normal, then left addition @ and right
addition © are associative.

Proof. For all x,y,z € A, we obtain
rQ(yoz2)=2"— (¥~ —2) (ph3)
= ("~ oy~)— 2z (Proposition Z3(5))
=@ oy"")—> 2z (Ais normal)
=@~ oy") " =z (ph3)
¥ —=y~7)” =z (Ais good and Proposition Z3(5))

(
(
(
= (z =y )" =2z (Ais good and Proposition ZZ3(6))
(™ = y)~ " — z  (Proposition Z23(5))

(

(

Similarly, we can prove (x Qy) @z =20 (y @ z). O

Definition 3.5. Let I be a nonempty subset of a bounded pseudo-hoop algebra A. Then I is called
a left ideal of A if it satisfies:
(LI1) z,y € I impliesx @y € I;
(12) for any z,y € A, z <y andy € I imply x € I.
Similarly, I is called a right ideal of A if it satisfies:
(RI1) z,y € I impliesx Qy € I;
(12) for any z,y € A, z <y andy € I imply x € I.

If I is both a left ideal and a right ideal of A, we call I to be an ideal of A.

For any ideal I of A, we have 0 € I. For all x € A, we have x € I iff x> € I iff 2~ € I. An
ideal I of A is called proper if I # A. An ideal I of A is called normal if x= @y el iffyox~ el
for all x,y € A. The intersection of any family of ideals of a bounded pseudo-hoop algebra A is
also an ideal of A. For any subset H C A, the smallest ideal of A containing H is said to be the
ideal generated by H, and it is denoted by (H).
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Example 3.6. Let A be a pseudo-hoop algebra as in Example B2. Then I = {0}, Io = {0, ¢},
Is ={0,a,d} and Iy = A are all ideals of A.

Example 3.7. [13] Let u be an element of an arbitrary (-group G = (G,+,—,0,V,A) and u > 0.
Define the operations —, ~» and © on Glu] = [0,u] as follows:

rOy=(r—u+y)V0, z—>y=(y—x+u)Au, andx~y=(u—x+7y)Au.

By [13, Example 5.1], Glu] is a bounded pseudo-hoop algebra. Let W be a normal convex (-
subgroup of G and F = {z € Gu| : w—x € W}. We define Iy = {z € Glu] : 2~ € F} and
I, ={x € Glu] : 2~ € F}. Then Iy and I, are ideals of G[u].

We shall show that Iy is an ideal of Gu]. Let x,y € Gu]. Thenx — 0 = (0—x+u)A\u = —z+u,
r~0=u—-z+0) \u=u—uz,

zQy=2"—2y=Y—(u—x)+u)Au=y+z—u+u)Au=(y+z)Au,

andzy=y" ~r=u—(—y+u) +z) \u=(y+z)Au. Also, we have xQy=2xQy.

By [13, Proposition 5.2], F is a normal filter of Glu|. Suppose x,y € G[u] such that x <y and
y€ly. Theny™ <z~ andy~ € F. Using (F2), we obtain v~ € F, i.e. x € Iy. Suppose x,y € Iy,
i.e. x7,y” € F. We have x~ @y~ € F, by (F1). Since

Oy =@ —ut+y )VO=[(-z+u)—u+(—y+u)]VO=(—x—y+u) V0,
and
(z0y) =(y+2)ANu)” =—((y+2)ANuw)+u=(—x—y+u)V(~u+u)=(—z—y+u) VO,

we obtain (r@y)” = (xQy)” =z~ ©y~ € F. Hence, t @ y,zQy € Iy. Thus, Iy is an ideal of
Glu].

Similarly, we can show that 1)) is an ideal of Glu].

Theorem 3.8. Let I be a nonempty subset of a good pseudo-hoop algebra A containing 0. The
following conditions are equivalent:

(1) I is an ideal of A;

(2) forany x,y € A, x~ @y el and x € I implyy € I;

(3) forany x,y € A, y©x~ €l and xz € I imply y € 1.

Proof. (1) = (2) Suppose I is an ideal of A. If x,y € A such that x,z~ ®y € I, then (z~ Qy)0x €
I.Since z~ Oy <z~ Oy, weobtainy <z~ ~ (27 Oy) = (z~ ©y) @x by Proposition Z3(1). Using
(I2), we have y € I.

(2) = (1) Let x,y € A such that y € I and z <y. Then y~ < z7. Thus,y~" @z <z~ @z =0.
Soy~ @z =0 € I. By (2), we obtain & € I. Therefore, condition (12) holds. Let x,y € I. Since
y 0oy =y Oy ~x) <z el wehave y~ © (x @ y) € I. Therefore, x ©y € I. In
addition, we have x € I and z~ @ 2™~ = 0 € I. It follows that =~ € [. Since ™~ = =", we
have y~ @ (z O y) =y~ © (z~ = y) < 2~ € I by Proposition ZZ2(7). Using (I2), we obtain
Yy~ ©(xQy) € I. Thus, x © y € I. Therefore, I is an ideal of A.

This proves that (1) < (2). Similarly, we can prove that (1) < (3). O

Remark 3.9. Let I be a nonempty subset of a bounded pseudo-hoop algebra A containing 0, where
A does not have to be good. By the previous proof, if I is an ideal of A, then conditions (2) and
(3) hold. Also, I is a left (right) ideal of A if and only if condition (2) ((3)) holds.
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Theorem 3.10. Let I be a nonempty subset of a good pseudo-hoop algebra A containing 0. The
following conditions are equivalent:

(1) I is an ideal of A;

(2) forz,zye A, (z— —wy )Y€l andxz €l implyy € I;

(3) forz,ye A, (™ ~y~)" €l andx € I implyy € I.

Proof. (1) = (2) Suppose I is an ideal of A. Let z,y € A such that (x= — y~)~ € I and
x€l. Thenz” Oy~ <(z” Oy ™)~ =@ —y ~ )= (@ —y )~ el Using (12), we
obtain x~ ®y~~ € I. Thus y~~ € I by Theorem BR. Since y < y~"~, we obtain y € I.

(2) = (1) Suppose that the condition (2) holds. Let € I. Then (z= — 27~7)~ = (z7 —
™)~ =0 € I. It follows that =~ € I by (2). Hence, we show that z € I implies z=~ € I. Let
2~ Oy, x €I Then (z~ ©@y) "~ €I, and so (z~ — y~ )~ € I. Thus, y € I by (2). Therefore, I is
an ideal of A by Theorem B=R.

This proves that (1) < (2). Similarly, we can prove that (1) < (3). O

Proposition 3.11. Let H be a subset of a bounded pseudo-hoop algebra A.
(1) If H is empty, then (H) = {0}.
(2) If H is not empty and A is normal, then

(Hy={h€e A:h<210220230...0 Ty, for some x1,a,...,x, € H}
={h€eA:h<z10220x30 ...z, for some x1,x2,...,T, € H}.

Proof. (1) It is obvious.
(2) If A is normal, © and © are associative. Let

B={hecA:h<z1Q020Q023Q0...0 xy, for some x1,z2,...,2, € H}.

Let a,b € A such that a € Band a- ®©b € B. Weobtain a < 21 Q22 Q0232 ... @ x, and
a” Ob<y1 QY2 QY3 @ ... Y, for some x1,T9,...,Tn,Y1,Y2,...,Ym € H. Since

b<a ~(a Ob)=(a 0b)0a<y10YPOY3D...0Yn QT QT2 DT3QD ... D T,

we have b € B. By the notion of normal pseudo-hoop algebras, we know that A is good. Thus, B
is an ideal of A by Theorem B=.

Suppose D is an ideal of A containing H. For any b € B, we have b< 11 Q22 Q230 ... D x,
for some z1,xs,...,x, € H. Since H C D, we obtain £1 Q2o Q230 ... 0z, € D. Then b € D.
Thus, B C D. Therefore, B = (H).

Similarly, (H) ={h€ A:h<z1 0220230 ...0 xz,, for some z1,z2,...,2, € H}. O

4 Ideals and congruences

In this section, we define congruences on pseudo-hoop algebras induced by ideals. We construct
the quotient pseudo-hoop algebras via ideals and prove that there is a one-to-one correspondence
between the set of all normal ideals of a pseudo-hoop algebra A with condition (pDN) and the set
of all congruences relation on A. Also, we obtain an isomorphism theorem.

Definition 4.1. Let (A, ®,—,~>) be a pseudo-hoop algebra and ~ an equivalence relation on A.
The equivalence relation ~ is called a left congruence relation if x ~ y implies (a@x) ~ (a®y),
(a — )~ (a—y) and (a ~ x) ~ (a ~ y) for any z,y,a € A.
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The equivalence relation ~ is called a right congruence relation if x ~ y implies (x®a) ~ (y©a),
(x = a) ~(y —a) and (x ~ a) ~ (y ~ a) for any z,y,a € A.

The equivalence relation ~ is called a congruence relation if x1 ~ y1 and xo ~ yo imply
(1 ©w2) ~ (y1 O y2), (X1 = 22) ~ (Y1 = Y2) and (z1 ~ x2) ~ (y1 ~ Y2).

Example 4.2. Let A be a hoop algebra of Example BA. It is easy to check that

p:{(()’())’ (070’)7 <07d)7 (a70)7 (a”a)’ (a7d)7 <d70)7 (d7a)7 (d7d)7
(b’b>7 (b7c)7 (b7 1)7 (C7b)7 (C7C>7 (C7 1)7 (17b)7 (176)7 (171)}7

s a congruence relation on A.

Proposition 4.3. A relation on a pseudo-hoop algebra (A, ®,—,~>) is a congruence relation if
and only if it is both a left and a right congruence relation.

Proof. The proof is obvious. O
If I is an ideal of a bounded pseudo-hoop algebra A, then define ~; on A as follows:
Vae,ye A, x~jyiffa"yel,y " 0xel,x0y~el,yoz™ el.

Proposition 4.4. Let A be a bounded pseudo-hoop algebra and I an ideal of A. Then ~y is an
equivalence relation on A.

Proof. Tt is clear that ~ is symmetric. And we know that ~ is reflexive by Proposition 223(2). We
only need to show that ~j is transitive. If x ~; y and y ~7 z, then

7oy 0k ox)=(((: 2y )oz )oz<y Gzel.

So (27 @y)” ©@(z~ @xz) €l Since 2~ @y € I, we get 2~ ©® x € I by Theorem B8 and Remark
B. Similarly, 2~ ® z € I.

Since (z©@27) O (Y0 2z~7)" =20 (270 (2~ ~y™)) <zOy~ € I, we get  © 2™~ € I. Similarly,
z®x~ € I. Therefore, x ~ z. O

Theorem 4.5. Let A be a good pseudo-hoop algebra and I a normal ideal of A. Then ~y is a
congruence relation on A.

Proof. Let x,y € A. By Propositions B3 and B4, we only need to show that x ~j y implies
(x®a) ~1 (y®a), (a®x) ~1 (a®y), (x — a) ~1 (y — a), (a = ) ~1 (a = y), (x ~ a) ~1 (y ~ a)
and (a ~» ) ~y (a ~ y) for any a € A.

Suppose z ~ry. Then 2~ Oy eI,y ©x e l, vy~ €I and y ©® 2™ € I. Since

(z0a)o(yoa) =20 (a®(a~wy™)<zoy~ el,

we obtain (x ®a) ® (y ®a)™ € I. Since [ is normal, we have (y ® a)” ® (x ® a) € I. Similarly, we
have (y®a)® (x@a)” €l and (x©@a)” ©(y©a) €. So (x ®a) ~; (y© a).
Similarly, z ~; y implies (a ® z) ~1 (a ® y) for any a € A. Moreover, by

(z70y) 0@ 0y ) =(@" 2y )0z )0y "<y Oy ~=0€el,

we obtain (z~ @ y)” ©® (x~ ©@y~ ™) € I. Thus, 2~ @y~~~ € I by Theorem B=R. Similarly, we have
y~ @z~ "~ € I. Since [ is normal, we obtain y=~ ©@x~ € [ and 7~ ©®y~ € I. Hence, = ~y y~.
Similarly, x ~j y implies ™~ ~ y™.
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If ¢ ~7y, for any a € A, then (x ®a™)” ~; (y©®a™)", and so (x = a™~7) ~; (y = a~7).
Since A is good, we obtain (z — a™) ~; (y = a~"~). Forany b € A, we have b™~ 0 b~ =0¢€ ]
and bO O™ =b® b~ =0 € I. Since I is normal, we have b ~; b~~. Also, from A is good, we
obtain b=~ = b~" ~y b. Thus, x™~ ~yx ~ry ~ry ~. Then (z7™~ = a ™) ~; (y=~ — a™ ") for
any a € A. By Proposition 23(6), we have (z — a)™™ ~r (y — a)~~. Hence, (x — a) ~1 (y —
a). Similarly, we can show (z ~~ a) ~; (y ~~ a) for any a € A.

If & ~yy, for any a € A, then (a®z™~)” ~7 (a®y~) ", and so (a = 2~ ) ~; (a — y™~~). Since
a ~y a™~", we obtain (a — x~7) ~; (¢~ — 2~ ) and (a = ¥y~ ) ~; (¢~ — y~~) by the above
proof. Thus, (a~~ — 2™~7) ~; (a™~ — y~7) by transitivity. Hence (a — z)™™ ~; (a — y)~~ by
Proposition Z3(6). Therefore, (a — =) ~; (a — y). Analogously, we have (a ~» z) ~; (a ~ y). O

Let A be a good pseudo-hoop algebra and I a normal ideal of A. We define A/I = {[a] : a € A}
where [a] = {z € A:z ~y a}. For any z,y € A, we define the operations ®, — and ~» on A/I by:

[Flo ] =lroyl, 2] = [yl = [r = y] and [2] ~ [y] = [z~ y].
It is easy to know that (A/I,®, —, ~-, [1]) is a bounded pseudo-hoop algebra with condition (pDN).

Proposition 4.6. Let A be a good pseudo-hoop algebra.

(1) If ~ is a congruence relation on A, then B = {z € A : x ~ 0} is a normal ideal of A. Also,
~p s a congruence relation on A. If A satisfies the condition (pDN), then ~p coincides with ~.
(2) If I is a normal ideal of A, then ~g is a congruence relation on A. Also, [0 ={z € A:z ~; 0}
s a normal ideal of A and coincides with I.

(3) If A satisfies the condition (pDN), then there is a one-to-one correspondence between the set
of congruence relations on A and the set of normal ideals of A.

Proof. (1) By reflexivity, we have 0 € B. So B # (). Let x,y € B. Then (y~ ~ z) ~ (07 ~ x),
ie. (x@y) ~ z. Since x ~ 0, we obtain x @ y € B. Similarly, x © y € B. Suppose z,y € A such
that x <y and y € B. Then (z®y™~) ~ (x ®07~) = z. Since z < y < y~~, we have x © y~ = 0 by
Proposition 23(3). Thus, = ~ 0. Hence, B is an ideal of A.

Suppose z,y € A such that 2= ©y € B. Then y ~ 2=~ = (z~ @ y)~ ~ 1. Thus (y © (y ~
7))~ (y©®1),and so (y Ax~") ~ y. Therefore, (y © ™) ~ (y Ax™~) ® ™). Since A is good,
we obtain

~

YAz 7)oz~ =@ " sy or T oz =2 " 2y 0@ 0z™)=0.

Then y ® ™~ € B. Similarly, y ©® 2~ € B implies 2~ ® y € B. Therefore, B is normal.

By Theorem B3, ~p is a congruence on A. Suppose A satisfies condition (pDN). If z ~ y, we
have (z~ ©Oy) ~ (y~ ©y) =0, (y" ©2) ~ (27 ©z)=0,(yo0z7) ~ (y©y~) =0and (z©y~) ~
(x®x™) =0. So x ~p y. Conversely, if z ~p y, then (y©®z™~) ~ 0. Thus ((yoz™~)~ Oy) ~ (0~ Oy),
and so (y A x~7) ~ y. Using condition (pDN), we have (y A x) ~ y. Similarly, (y A ) ~ x. Hence,
x ~ y. Therefore ~p coincides with ~.

(2) By Theorem EH, ~; is a congruence relation on A. Then [0] is a normal ideal of A by
(1). So we only need to show that [0] coincides with I. For any = € I, we have x~ @0 =0 € I,
0OCezx=zecel,z00 =xzclTand 002~ =0 ¢€ [. Soz ~7 0, i.e. = € [0]. Therefore,
I C [0]. Conversely, if z € [0], then z ® 0~ € I. Thus z =« ® 0~ € I. Hence, I = [0].

(3) It is obvious by (1) and (2). O

Proposition 4.7. Let X, Y be two bounded pseudo-hoop algebras and f : X — Y a bounded
pseudo-hoop homomorphism. We have the following results:
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(1) If I is an (normal) ideal of Y, then f~1(I) is an (normal) ideal of X.
(2) If f: X =Y is a bounded pseudo-hoop isomorphism and J is an (normal) ideal of X, then
f(J) is an (normal) ideal of Y.

Proof. (1) Let I be an ideal of Y. Since 0 € f~1(I), we have f~1(I) # 0. Let 2,y € X such that
v <yandye f(I). Then f(y) € I and f(z) = f(y) = f(z = y) = f(1) = 1, ie. f(z) < F(y).
Using (12), we have f(z) € I, i.e. x € f~1(I). Suppose z,y € f~1(I). Since f(z0y) = f(z) 2 f(y)
and f(z), f(y) € I, we obtain f(z@y) € I, ie. @y € f~1(I). Similarly, r © y € f~(I). Hence,
f7Y(I) is an ideal of X.

Let I be a normal ideal of Y. Then 2~ 0y € f~1(I) iff f(z)~ © f(y) € [ iff f(y)© f(x)~ €1
iff y ©® 2~ € f~Y(I) for any x,y € X. Therefore, f~1(I) is a normal ideal of X.

(2) Let J be an ideal of X. Suppose x,y € Y such that + < y and y € f(J). Then there
is v € J such that f(v) = y. Since f is surjective, there is v € X such that f(u) = z. Since
flu—=v) =2 —y= f(1) and f is injective, we have u — v = 1, i.e. w < v € J. Thus, u € J.
So xz € f(J). Let z,y € f(J). Then there exist u,v € J such that f(u) =z and f(v) = y. Since
u@v,uQuv € J, we have f(u) @ f(v) = flu@v) € f(J) and f(u)© f(v) = f(uSv) € f(J).
Therefore, f(J) is an ideal of Y.

Let J be a normal ideal of X. Then f(u)” ® f(v) € f(J) if v~ ©v e Jif voOu™ € Jiff
f(v) ® f(u)~ € f(J) for any u,v € X. Thus, f(J) is a normal ideal of Y. O

Let f: X — Y be a bounded pseudo-hoop homomorphism. Denote {x € X : f(z) = 0} =
f~(0) by kerf. Then kerf is an ideal of X.

Proposition 4.8. Let X, Y be two bounded pseudo-hoop algebras and f : X — Y a bounded
pseudo-hoop homomorphism. If Y is good, then {0} is a normal ideal of Y and kerf is a normal
ideal of X.

Proof. Tt is clear that {0} is an ideal of Y. Since Y is good, we obtain 2~ ©@ y =0 iff y < 2~ iff
y <z~ iff y©a~ =0 for any z,y € Y. Therefore, {0} is normal. Hence, kerf is a normal ideal
of X by Proposition B=4(1). O

Let W be a nonempty subset of a bounded pseudo-hoop algebra A. We define
W~ ={2" e eW}and W~ ={z" :2 € W}.

Let X, Y be two good pseudo-hoop algebras and f : X — Y a bounded pseudo-hoop homo-
morphism. Since X is good and kerf is a normal ideal of X, we know that X /kerf is a bounded
pseudo-hoop algebra. Then we have the following result.

Proposition 4.9. Let X, Y be two good pseudo-hoop algebras and f: X — Y a bounded pseudo-
hoop homomorphism. If X is normal, then X/kerf = (Imf)~ and X/kerf = (Imf)~.

Proof. Define ¢ : X/kerf — (Imf)~ by ¢(jz]) = f(x)~ = f(z)~" for all x € X. Then ¢([z]) €
(Imf)~. Since X is normal, for any z,y € X we have

f@)” o fly)” =f@™" oy ) =fz" 0y)~) e (Imf)".

By Proposition PZ3(6), for any z,y € X we obtain

f@)” = fly)” =™ =y ™) = f((e” =y )7 ) eImf)”,



48 F. Xie, H. Liu

Similarly, f(z)™ ~ f(y)~ € (Imf)~. Thus, the operations ®, — and ~- are closed on (Imf)~.
Also, 1 = f(0)~ € (Imf)” and 0 = f(1)~ € (Imf)~. Therefore, (Imf)~ is a bounded pseudo-
hoop algebra. It is clear that ¢([0]) = 0. Since X is good, for any z,y € X we have

o([z] = W) = e(lz = y)) = f((e = 9) ") = fl@™™ =y ) = e(lz]) = @ (ly])-

Similarly, we have ¢([z] ~ [y]) = ¢([z]) ~ ¢([y]). Since X is normal, we obtain

p(zlo W) =e(zoy)) = f((x0y) ™) =fla™™ 0y™™) = f2)"" 0 fy)~~ = »(z]) © e (y)-

Therefore, ¢ is a bounded pseudo-hoop homomorphism.

Since kerf is normal, we get [x] = [y] iff @ ~pep y iff f(a7 O y) = fly~ ©x) = 0 iff
() © ) = fl)~ © flz) = 0 ff f(x)- < fu)~ and f(y)~ < fx)~ iff f(x)" = fy) iff
o([z]) = ¢(ly]) for any x,y € X. Thus, ¢ is injective. Since f(a)” = f(a™~") = ¢(Ja”]) for any
a € X, we have ¢ is surjective. Hence, ¢ is isomorphic. Therefore, X/kerf = (Imf)~. Similarly,
X/kerf = (Imf)~. O

5 Prime ideals

In this section, we introduce the concept of prime ideals in pseudo-hoop algebras and obtain several
equivalent conditions of prime ideals.

Definition 5.1. Let (A, ®,—,~,1) be a bounded pseudo-hoop algebra and P an ideal of A. Then
P is called a prime ideal if P # A and x ANy € P implies x € P ory € P for any x,y € A.

Example 5.2. Let (A, ®,—,~>,1) be a bounded hoop algebra as in Example B2. Then Iy = {0, c}
and Is = {0,a,d} are all prime ideals of A. Since aAc =0 and a,c ¢ {0}, I = {0} is not prime.

Proposition 5.3. Let X, Y be two bounded pseudo-hoop algebras and f : X — Y be a bounded
pseudo-hoop homomorphism. Then the following statements hold:

(1) If I is a prime ideal of Y and f=(I) # X, then f~Y(I) is a prime ideal of X.

(2) If f : X — Y is a bounded pseudo-hoop isomorphism and J is a prime ideal of X, then f(J)
is a prime ideal of Y.

Proof. (1) It is obvious that f~1(I) is a proper ideal of X. For any =,y € X, if s Ay € f~1(I), then
f(x)A f(y) = f(x Ay) € I. Since I is prime, we obtain f(z) € I or f(y) € I. Thus, z € f~(I) or
y € f~1(I). Hence, f~1(I) is prime.

(2) By Proposition B74(2), f(J) is an ideal of Y. Since J # X and f is bijective, we have
f(J)#Y. Let x,y € Y such that z Ay € f(J). Since f is surjective, there exist u,v € X such
that f(u) =« and f(v) =y. Then f(uAv)= f(u) A f(v) =x Ay € f(J). Thus, u Av € J. Since
J is prime, we have u € J or v € J. Hence, x € f(J) or y € f(J). Therefore, f(J) is prime. [

Theorem 5.4. Let A be a bounded pseudo-hoop algebra with the pre-linear condition and P be an
ideal of A. Then the following conditions are equivalent:

(1) P is prime;

(2) Ift Ay=0, thenx € P ory € P;

(3) For any x,y € A, (x »y)~ € P or (y —»x)~ € P;

(4) For any x,y € A, (x ~>y)~ € P or (y~x)” € P.
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Proof. (1) = (2) It is obvious by (1).
(2) = (3) Since A is a lattice, for any z,y € A we have

(z=y) " Aly—=2)" =2y Vy—2) =1"=0.

It follows that (x — y)~ € P or (y — x)~ € P by (2).
(3) = (1) Suppose z Ay € P and (z — y)~ € P. We obtain (z Ay) © (x — y)~ € P by
(RI1). Since (zx Ay)~ = ((x = y) ©@x)” =2 ~ (x = y)~, we get

r<(zAy)~ = (z—=y) " =@Ay)S(x—y)~ P

So x € P. Similarly, if xt Ay € P and (y — =)~ € P, then y € P.
(2) = (4) The proof is similar to (2) = (3).
(4) = (1) The proof is similar to (3) = (1). O

Corollary 5.5. Let A be a bounded pseudo-hoop algebra with the pre-linear condition. If P is a
prime ideal of A, then every proper ideal of A containing P is also prime.

Proof. By Theorem B4(3) or (4). O

Corollary 5.6. Let A be a bounded pseudo-hoop algebra with the pre-linear condition. Then every
proper ideal of A is prime if and only if the ideal {0} of A is prime.

Proposition 5.7. Let A be a good pseudo-hoop algebra and P be a normal ideal of A. If A satisfies
the pre-linear condition, then P is prime if and only if A/P is a pseudo-hoop chain.

Proof. 1t is enough to prove [z] < [y] & (x — y)~ € P for z,y € A. Suppose [z] < [y], then
[ — y] = [1], i.e. (x = y) ~p 1. Therefore, 1 ® (z — y)~ = (x — y)~ € P. Conversely, suppose
(x > y)~ € P.Wehave 1 ® (x - y)~ = (z - y)~ € Pand (x - y) ®1~ =0 € P. Since P is

normal, we obtain (x — y) ~p 1. Thus, [z — y] = [1], i.e. [z] < [y]. So P is prime if and only
if (x+ = y)~ € Por(y— x)~ € P for any z,y € A if and only if [z] < [y] or [y] < [z] for any
[x],[y] € A/P if and only if A/P is a pseudo-hoop chain. O

6 Ideals and filters

In this section, we shall investigate the relationship between ideals and filters in pseudo-hoop
algebras. First, some results are obtained by using the set of complement elements of pseudo-
hoop algebras. In addition, the notion of ®-prime ideals in pseudo-hoop algebras is given and the
relationship between ®-prime ideals and maximal filters is discussed.

Definition 6.1. Let (A,®,—,~,0,1) be a bounded pseudo-hoop algebra and X be a subset of
A. The sets of complement elements are denoted by M(X) and N(X), where M(X) = {z € A |
z-e€Xtand N(X)={ze€ A|xz~ € X}
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Example 6.2. [l Let A ={0,a,b,¢,d,e, f,1}. Define —, ~ and © as follows:

— =~ 0 a b ¢ d e f 1 ® 0 a b ¢ d e f 1
0 1 1 1 1 1 1 1 1 0 o 0 0 0 0 0 0 0
a d 1 1 1 d 1 1 1 a 0 a a a 0 a a a
b d f 1 1 d f 1 1 b 0 a a b 0 a a b
c d e f 1 d e f 1 c 0 a b ¢ 0 a b ¢
d c ¢ ¢ ¢ 1 1 1 1 d 0 0 0 0 d d d d
e 0 ¢ ¢ ¢ d 1 1 1 e 0 a a a d e e e
f 0 b ¢ ¢ d f 1 1 f 0 a a b d e e f
1 0 a b ¢ d e f 1 1 0 a b ¢ d e f 1

Then (A, ®,—,~>,1) is a bounded hoop algebra. Let Fy = {d,e, f,1} and Fy = {c,1}. Then
M(Fy) = N(F1) ={0,a,b,c} and M(F,) = N(F3) ={0,d}.

It is easy to check that Fy and Fy are filters of A. Also, J; = {0,a,b,c} is an ideal of A. Since
b<ceF] andb ¢ F[, F| = F{" ={c,0} is not an ideal of A. Since e >d € J{ ande & J;,
J; =J7 ={1,d} is not a filter of A.

The above example shows that ideals and filters are not dual under complement. Then we have
the following results.

Theorem 6.3. Let F' be a filter of a good pseudo-hoop algebra A. Then M (F') is an ideal generated
by F~ and N(F) is an ideal generated by F~.

Proof. Suppose z,y € A such that x~©y € M(F)and z € M(F). Then (z~Qy)” =2~ -y~ € F
and x~ € F. Since F is a filter of A, we have y~ € F, and so y € M (F). Thus, M(F) is an ideal
of A by Theorem BR. For any z € F™, there exists y € F such that x = ™. Since y <y~ =z~,
we have = € F',i.e. x € M(F). Hence, F~ C M(F). Suppose [ is an ideal of A containing F~. If
x € M(F),ie. o= € F, then 27~ € F~ C . Since z < ", we have z € I. Thus, M(F) C I.
Therefore, M (F) is an ideal generated by F~. Similarly, N(F') is an ideal generated by F~. [

Theorem 6.4. Let A be a bounded pseudo-hoop algebra and I an ideal of A. If A is good, then
M(I) and N(I) are filters of A such that I~ C M(I) and I~ C N(I).

Proof. If x < y and z € M(I), then y~ < 2~ and 2~ € I. Using (I2), we obtain y~ € I, i.e.
y € M(I). For any x,y € M(I), we have 7,y € I, and so by Proposition EZ3(7),

(z0y) =z—y =2z~ >y =2 0y €l.

That is x ©y € M(I). Hence, M(I) is a filter of A. Suppose x € I™. There exists y € I such that
x=y~. Sinceye Il <y~ €I, wehavex™ =y~~ €[, ie. x € M(I). Hence, I~ C M(I).
Similarly, we can show that N(I) is a filter of A and I~ C N(I). O

Theorem 6.5. If I is an ideal of a bounded pseudo-hoop algebra A, then I = M(N(I)) = N(M(I)).

Proof. Forany xz € A, weobtainz € I'iffa=~ e I'iff s~ € N({) iff x € M(N(I)). Sol = M(N(I)).
Analogously, we can show I = N(M(I)). O

Theorem 6.6. If F is a filter of a bounded pseudo-hoop algebra A, then F C M(N(F)) and
FCNM(F)).
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Proof. Let x € F. Since < 2™~ and F is a filter of A, we have 27~ € F. So 2~ € N(F). Then
x € M(N(F)). Thus, F C M(N(F)). Similarly, ' C N(M(F)). O

Remark 6.7. In Theorem BB, we do not necessarily have F' = M(N(F)) and F = N(M(F)).
For instance, we have M(N(Fy)) = {d,e, f,1} = F1 and M(N(F3)) = {a,b,c,e, f,1} D F5 in
Ezample B2. Also, the converse of Theorem BB is not true in general. Let D = {c}. Then
N(M (D)) = M(N(D)) ={a,b,c} D D. But D is not a filter of A.

In order to further discuss the relationship between ideals and filters of a pseudo-hoop algebra,
we introduce the notion of ®-prime ideals in pseudo-hoop algebras.

Definition 6.8. Let (A,®,—,~>,1) be a bounded pseudo-hoop algebra and P an ideal of A. Then
P is called a ©-prime ideal of A if P# A and x®y € P impliesxz € P ory € P for any xz,y € A.

Example 6.9. Let A be the pseudo hoop algebra as in Example B2. Then it is easy to show that
Is ={0,a,d} is a ©-prime ideal of A.

Proposition 6.10. Let A be a bounded pseudo-hoop algebra. Then every ®-prime ideal of A is a
prime ideal of A. The converse may not hold.

Proof. Let P be a ®-prime ideal of A. If P is not prime, there exist x,y € A such that x Ay € P,
but x,y ¢ P. Weobtainx®y € Pby 2@y < xAy. Then x € P or y € P, which is a contradiction.
Therefore, P is a prime ideal of A.

In Example B3, Iy = {0, ¢} is a prime ideal of A. Since b®d =0 € I and b,d & I, we get I
is not a ®-prime ideal of A. Therefore, the converse may not hold. O

Proposition 6.11. Let A be a bounded pseudo-hoop algebra and P an ideal of A. Then P is a
O-prime ideal of A if and only if P is a prime ideal of A and x ®y € P implies x Ny € P for any
z,y € P.

Proof. Let P be a ®-prime ideal of A. Then P is a prime ideal of A by Proposition B10. Suppose
Oy € P. We obtain € P or y € P by Definition BR. Since z Ay < x,y, we obtain z Ay €
P. Therefore, x ©® y € P implies z Ay € P for any z,y € P.

Conversely, if x ©y € P, then x Ay € P. By the notion of prime ideals, we know that = € P
or y € P. Therefore, P is a ®-prime ideal of A. O

Let X be a subset of a pseudo-hoop algebra A. We denote A — X by X. The following results
study the relationship between ideals and filters in pseudo-hoop algebras.

Theorem 6.12. Let A be a bounded pseudo-hoop algebra and P an ideal of A. If P is a ®-prime
ideal of A, then P is a mazimal filter of A.

Proof. Suppose P is a ®-prime ideal of A. Since P # A, we obtain P # (). Since 0 € P, i.e. 0 & P,
we have P # A. Let z,y € P.If t ®y € P, then x € P or y € P, which is a contradiction. Thus,
x ®y € P. Suppose x,y € A such that x <y and = € P. It follows that y € P, i.e. y & P. If not,
since P is an ideal of A and = < y, we have & € P, which is a contradiction. Therefore, P is a filter
of A.

Let @ be a filter of A strictly containing P. Then there exists a € A such that a € Q and
a¢ P.Soac PNQ. It follows that a—,a™~ ¢ P. If not, then a” @a =a~ ~ a~ =1 € P and
a®a~ =a~ — a~ =1 € P, which is a contradiction. So a™~ € P C Q. Using (F1), we have
0=a®a~ € Q. Then Q = A. Hence, P is a maximal filter of A. ]
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Remark 6.13. By the previous proof, if P is a proper ideal of A and a € P, then a™,a™ & P.

Theorem 6.14. Let A be a bounded pseudo-hoop algebra and P be an ideal of A. If P is a normal
and mazximal filter of A, then P is a ®-prime ideal of A.

Proof. Let P be a normal and maximal filter of A. Then P # (). Since 1 € P, i.e. 1 € P, we have
P # A. Suppose z,y € A such that x @y € P, i.e. x ®y & P. Therefore, P is strictly contained
in (PU{z ®y}]. So (PU{z ®y}] = A. By Proposition 24, there exists n € N and h € P such
that h® (r ®y)" < 0. That is h < ((z ©y)™)~. So ((x ®y)")~ € P. Suppose x,y ¢ P. Since P is
a filter of A, we obtain (z ® y)" € P. It follows that 0 = ((z ©® y)")” ® (x ® y)" € P. Using (F2),
we have P = A, which is a contradiction. Therefore, x ® y € P implies x € P or y € P. Thus, P
is a ®-prime ideal of A. O

7 Conclusions

We defined ideals in pseudo-hoop algebras using two kinds of addition operations. We gave some
equivalent characterizations of ideals of good pseudo-hoop algebras. Also, the congruence relation
on a pseudo-hoop algebra is induced by ideals are defined. Using ideals, we constructed the
quotient pseudo-hoop algebras and got an isomorphism theorem. We proved that if a pseudo-hoop
algebra A satisfies condition (pDN), then there is a one-to-one correspondence between the set of
all congruence relation on A and the set of all normal ideals of A. The notion of prime ideals
in pseudo-hoop algebras is introduced. We showed that the normal ideal of a good pseudo-hoop
algebra with the pre-linear condition is prime if and only if the corresponding quotient pseudo-
hoop algebra is a pseudo-hoop chain. In addition, we discussed the relationship between ideals and
filters in pseudo-hoop algebras. We found that ideals and filters behave differently in pseudo-hoop
algebras. Also, we discussed the relationship between ®-prime ideals and maximal filters.

For future works, we will study other types of ideals in pseudo-hoop algebras and discuss the
relationships between these ideals. The notion of implicative ideals of hoop algebras was studied
in [[I]. We shall investigate the notion of implicative ideals in pseudo-hoop algebras. Similarly
to the notion of nodal filters in hoop algebras in [15], we shall define the notion of nodal ideals
in pseudo-hoop algebras. In this paper, we can observe that the operators M and N defined in
Definition B transform filters into ideals and vice versa. We shall further study other properties
of M and N. In addition, stabilizers in hoop algebras were introduced in [3]. We shall study
stabilizers in pseudo-hoop algebras. Furthermore, we shall discuss the relationship between ideals
and stabilizers in pseudo-hoop algebras.
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