Hyperoperations defined on sets of S -helix matrices

Document Type : Original Article


Aristotle University of Thessaloniki


A hyperproduct on non-square ordinary matrices can be defined by using the helix-hyperoperation. Therefore, the helix-hyperoperation (abbreviated hope ) is based on a classical operation and was introduced in order to overcome the non-existing cases. We study the helixhyperstructures on the special type of matrices, the Shelix matrices, used on the small dimension representations. In this paper, we introduce and focus our study on the class of S-helix matrices called k-overlap helix matrices. The reason is that their hyper-vector spaces can represent n-dimensional spaces which have independent both, single valued dimensions and multivalued dimensions.


[1] P. Corsini, V. Leoreanu, Applications of hypergroup theory, Kluwer Academic Publishion,
[2] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic
Press, USA, 2007.
[3] B. Davvaz, T. Vougiouklis, A walk through weak hyperstructures, Hv-Structures, World Sci-
enti c, 2018.
[4] B. Davvaz, S. Vougioukli, T. Vougiouklis, On the multiplicative Hv-rings derived from helix
hyperoperations, Util. Math. 84 (2011), 53-63.
[5] R.M. Santilli, T. Vougiouklis, Isotopies, genotopies, hyperstructures and their Applications,
Proc. New Frontiers Hyperstructures Related Alg., Hadronic, (1996), 1-48.
[6] S. Vougiouklis, Hv-vector spaces from helix hyperoperations, International Journal of Mathe-
matics and Analysis, (New Series), 1(2) (2009), 109-120.
[7] S. Vougioukli, T. Vougiouklis, Helix-hopes on  nite Hv- elds, Algebras Groups and Geome-
tries (AGG), 33(4) (2016), 491-506.
[8] S. Vougioukli, T. Vougiouklis, Helix-hopes on S-helix matrices, Ratio Mathematica, 33 (2017),
[9] T. Vougiouklis, Groups in hypergroups, Annals Discrete Mathematics, 37 (1988), 459-468.
[10] T. Vougiouklis, The fundamental relation in hyperrings. The general hyper eld, Proc. 4th AHA
1990, World Scienti c, (1991), 203-211.
[11] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Mathematics,
Hadronic Press, 1994.
[12] T. Vougiouklis, Some remarks on hyperstructures, Contemporary Mathematics-American
Mathematical Society, 184 (1995), 427-431.
[13] T. Vougiouklis, On Hv-rings and Hv-representations, Discrete Mathematics-Journal-Elsevier,
208/209 (1999), 615-620.
[14] T. Vougiouklis, S. Vougiouklis, The helix hyperoperations, Italian Journal of Pure and Applied
Mathematics, 18 (2005), 197-206.
[15] T. Vougiouklis, S. Vougiouklis, Hyper-representations by non square matrices, Helix-hopes,
American Journal of Modern Physics, 4 (2015), 52-58.
[16] T. Vougiouklis, S. Vougiouklis, Helix-hopes on  nite hyper elds, Ratio Mathematica, 31
(2016), 65-78.
[17] T. Vougiouklis, S. Vougioukli, Hyper Lie-santilli admissibility, Algebras Groups and Geome-
tries (AGG), 33(4) (2016), 427-442.