

Volume 1, Number 2, (2020), pp. 31-43

Fuzzy congruence relations on pseudo BE-algebras

A. Rezaei¹, A. Borumand Saeid² and Q. Zhan³

¹Department of Mathematics, Payame Noor University, P.o.box. 19395-3697, Tehran, Iran

²Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of

Kerman, Kerman, Iran

³Department of Mathematics, Beihang University (BUAA), BUA-Haidian School of Applied Technology, china

rezaei@pnu.ac.ir, arsham@uk.ac.ir, by1709120@buaa.edu.cn

Abstract

In this paper, we introduce the concept of *fuzzy con*gruence relations on a pseudo BE-algebra and some of properties are investigated. We show that the set of all fuzzy congruence relations is a *modular lattice* and the quotient structure induced by fuzzy congruence relations is studied.

Article Information

Corresponding Author: A. Borumand Saeid; Received: April 2020; Accepted: Invited paper. Paper type: Original.

Keywords:

(pseudo) BE-algebra, (fuzzy) congruence relation, (fuzzy) medial filter.

1 Introduction

The notion of a BE-algebra was introduced by H.S. Kim et al. [7]. A. Borumand Saeid et al. introduced some types of filters in BE-algebras [1]. Since developing algebraic models for noncommutative multiple-valued logics is a central topic in the study of fuzzy systems. R.A. Borzooei et al. generalized the notion of BE-algebras and introduced the notion of pseudo BE-algebras, pseudo subalgebras, pseudo filters and investigated some related properties [3]. A. Rezaei et al. introduced the notion of distributive pseudo BE-algebras and normal pseudo filters and proved some basic properties. They showed that in distributive pseudo BE-algebras normal pseudo filters and pseudo filters coincide [4]. L.C. Ciungu introduced the notion of commutative pseudo BEalgebras and proved that the class of commutative pseudo BE-algebras is term equivalent to the class of commutative pseudo BCK-algebras [5].

https://doi.org/10.29252/HATEF.JAHLA.1.2.4

L.A. Zadeh introduced the notion of fuzzy sets and fuzzy relations [18]. Then many authors have studied about it. K.J. Lee defined the notion of ideals in pseudo BCI-algebras [9]. Fuzzy ideals of pseudo BCK-algebras were investigated in [6]. Also, A. Walendziak et al. consider fuzzy ideals theory in pseudo BCH-algebras and provided conditions for a fuzzy set to be a fuzzy ideal [17]. Since then V. Murali have studied fuzzy congruence relations on algebras [10, 11]. Further, M. Kondo has defined a fuzzy congruence relation on a group and showed that there is a lattice isomorphism between the set of fuzzy normal subgroups of a group and the set of fuzzy congruences on this group [8]. R.A. Borzooei et al. introduced the concept of a fuzzy filter of a BL-algebra, with respect to a t-norm and proved that there is a correspondence bijection between the set of all T-fuzzy filters of a BL-algebra and the set of all T-fuzzy congruences relations in that BL-algebra [2]. Recently, A. Rezaei et al. discussed on (fuzzy) congruence relations in (pseudo) CI/BE-algebras and studied some of their properties [13, 14, 15].

In this paper, since congruence relations are one of the important concept in algebraic structure, motivated by it, we apply the notion of fuzzy congruence relations on pseudo BE-algebras and discuss on the quotient algebras via this congruence relations. We show that quotient of a pseudo BE-algebra via a fuzzy congruence relation is a pseudo BE-algebra. Moreover, we show that in a distributive pseudo BE-algebra X for every fuzzy medial filter $\overline{\mu}$ there is a fuzzy congruence relation $\overline{\theta}$ such that $\overline{\theta}_1 = \overline{\mu}$.

2 Preliminaries

In this section, we review the basic definitions and some elementary aspects that are necessary for this paper.

Definition 2.1. [3] An algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) is called a *pseudo BE-algebra* if for all $x, y, z \in X$, it satisfies the following axioms:

 $\begin{array}{l} (\mathrm{psBE}_1) \ x \to x = x \rightsquigarrow x = 1, \\ (\mathrm{psBE}_2) \ x \to 1 = x \rightsquigarrow 1 = 1, \\ (\mathrm{psBE}_3) \ 1 \to x = 1 \rightsquigarrow x = x, \\ (\mathrm{psBE}_4) \ x \to (y \rightsquigarrow z) = y \rightsquigarrow (x \to z), \\ (\mathrm{psBE}_5) \ x \to y = 1 \ \mathrm{if} \ \mathrm{and} \ \mathrm{only} \ \mathrm{if} \ x \rightsquigarrow y = 1. \end{array}$

In a pseudo BE-algebra $(X; \rightarrow, \rightsquigarrow, 1)$, for all $x, y \in X$, one can introduce a binary relation \leq on X by

 $x \leq y \iff x \rightarrow y = 1 \iff x \rightsquigarrow y = 1.$

Remark 2.2. If a pseudo BE-algebra X satisfies $x \to y = x \rightsquigarrow y$, for all $x, y \in X$, then X is called a BE-algebra.

Proposition 2.3. [3] In a pseudo BE-algebra X, the following statements hold:

- (i) $x \to (y \rightsquigarrow x) = 1, x \rightsquigarrow (y \to x) = 1,$ (ii) $x \rightsquigarrow (y \rightsquigarrow x) = 1, x \to (y \to x) = 1,$
- $(-) \cdots (3 \cdots) -, \cdots (3 \cdots) -,$
- (iii) $x \rightsquigarrow [(x \rightsquigarrow y) \rightarrow y] = 1, x \rightarrow [(x \rightarrow y) \rightsquigarrow y] = 1,$
- $(\mathrm{iv}) \ x \to [(x \leadsto y) \to y] = 1, \, x \leadsto [(x \to y) \leadsto y] = 1,$
- (v) if $x \leq y \rightarrow z$, then $y \leq x \rightsquigarrow z$,

- (vi) if $x \leq y \rightsquigarrow z$, then $y \leq x \rightarrow z$,
- (vii) $1 \le x$ implies x = 1,
- (viii) if $x \leq y$, then $x \leq z \rightarrow y$ and $x \leq z \rightsquigarrow y$, for all $x, y, z \in X$.

Definition 2.4. [4] A pseudo BE-algebra X is said to be *distributive*, if it satisfies *only one* of the following conditions:

(D₁) $x \to (y \rightsquigarrow z) = (x \to y) \rightsquigarrow (x \to z),$ (D₂) $x \rightsquigarrow (y \to z) = (x \rightsquigarrow y) \to (x \rightsquigarrow z),$ for all $x, y, z \in X.$

Note that if $(X; \rightarrow, \rightsquigarrow, 1)$ is a pseudo BE-algebra, then $(X; \rightsquigarrow, \rightarrow, 1)$ is a pseudo BE-algebra, too. By [4, Theorem 2], if X satisfies (D_1) and (D_2) , then $\rightarrow = \rightsquigarrow$.So, in this paper, every distributive pseudo BE-algebra satisfies (D_1) .

Also, note that if $x \to (z \rightsquigarrow y) = x \rightsquigarrow (z \to y)$, for all $x, y, z \in X$, then $\to = \rightsquigarrow$, since if z := 1 and using (psBE₃), we get

$$x \to y = x \to (1 \rightsquigarrow y) = x \rightsquigarrow (1 \to y) = x \rightsquigarrow y.$$

Definition 2.5. [16] A fuzzy set $\overline{\mu}$ of X is called a *fuzzy filter*, if for all $x, y \in X$, it satisfies the following conditions:

 $(\mathrm{FF}_1) \ \overline{\mu}(1) \ge \overline{\mu}(x),$

(FF₂) $\overline{\mu}(y) \ge \min[\overline{\mu}(x), \overline{\mu}(x \to y)].$

Definition 2.6. [12] A fuzzy set $\overline{\mu}$ of X is called a *fuzzy medial filter* if for all $x, y, z \in X$, it satisfies (FF₁) together with the following conditions:

(FMF₁) $\overline{\mu}(x \to y) \ge \min[\overline{\mu}(x \to z), \overline{\mu}(z \to y)],$

 $(\mathrm{FMF}_2) \ \overline{\mu}(x \rightsquigarrow y) \ge \min[\overline{\mu}(x \rightsquigarrow z), \overline{\mu}(z \rightsquigarrow y)].$

Note. From now on, X denote a pseudo BE-algebra, unless otherwise is stated.

3 Fuzzy congruence relations in pseudo BE-algebras

In this section, we discussed the basic properties of fuzzy congruence relations on pseudo BE-algebras. Let X be a pseudo BE-algebra. A fuzzy relation $\overline{\theta}$ on X is a map $\overline{\theta}: X \times X \to [0, 1]$.

Definition 3.1. A fuzzy relation $\overline{\theta}$ is called a *fuzzy congruence relation* on X if it satisfies the following conditions: for all $x, y, z, u \in X$,

$$\begin{array}{l} (\mathrm{FC}_{1}) \ \overline{\theta}(x,x) = \overline{\theta}(1,1), \\ (\mathrm{FC}_{2}) \ \overline{\theta}(x,y) = \overline{\theta}(y,x), \\ (\mathrm{FC}_{3}) \ \overline{\theta}(x,z) \geq \sup_{y \in X} \min[\overline{\theta}(x,y), \overline{\theta}(y,z)], \\ (\mathrm{FC}_{4}) \ \overline{\theta}(x \rightarrow u, y \rightarrow u) \geq \overline{\theta}(x,y) \ \mathrm{and} \ \overline{\theta}(x \rightsquigarrow u, y \rightsquigarrow u) \geq \overline{\theta}(x,y) \ \mathrm{(right compatible)}, \end{array}$$

(FC₅) $\overline{\theta}(u \to x, u \to y) \ge \overline{\theta}(x, y)$ and $\overline{\theta}(u \rightsquigarrow x, u \rightsquigarrow y) \ge \overline{\theta}(x, y)$ (left compatible).

Let FCon(X) denote the set of all fuzzy congruence relations on X.

Example 3.2. Let $X = \{1, a, b, c\}$ and the binary operations \rightarrow and \rightarrow defined as follows:

\rightarrow	1	a	b	c	\rightsquigarrow	1	a	b	c
1	1	a	b	c	1				
a	1	1	a	1	a	1	1	c	1
b	1	1	1	1	b				
c	1	a	a	1	c	1	a	b	1

Then $(X; \to, \rightsquigarrow, 1)$ is a pseudo BE-algebra. Define $\overline{\theta} : X \times X \to [0, 1]$ as follows:

		a		c
1	0.87	0.32	0.32	0.32
a	0.32	0.87	0.32	0.32
b	0.32	0.32	0.87	0.32
c	0.32	$\begin{array}{c} 0.32 \\ 0.87 \\ 0.32 \\ 0.32 \end{array}$	0.32	0.87

Then $\overline{\theta}$ is a fuzzy congruence relation on X.

Lemma 3.3. If $\overline{\theta}$ satisfies (FC₂), (FC₃) and (FC₄), then (FC₁) is equivalent to

 $\overline{\theta}(1,1) \geq \overline{\theta}(x,y)$, for all $x, y \in X$.

Proof. Assume that $\overline{\theta}(1,1) = \overline{\theta}(x,x)$. Since $\overline{\theta}$ satisfies (FC₂) and (FC₃), we have

$$\overline{\theta}(1,1) = \overline{\theta}(x,x) \ge \sup_{y \in X} \min[\overline{\theta}(x,y),\overline{\theta}(y,x)] = \sup_{y \in X} \overline{\theta}(x,y) \ge \overline{\theta}(x,y).$$

Conversely, using (FC₄) we get $\overline{\theta}(x, x) = \overline{\theta}(1 \to x, 1 \to x) \ge \overline{\theta}(1, 1)$. On the other hand, since $\overline{\theta}(x, x) \le \overline{\theta}(1, 1)$, we get $\overline{\theta}(x, x) = \overline{\theta}(1, 1)$.

Proposition 3.4. If $\overline{\theta} \in FCon(X)$, then for all $x, y \in X$

$$\overline{\theta}(x,y) \leq \overline{\theta}(x \to y,1) = \overline{\theta}(x \rightsquigarrow y,1).$$

Proof. Let $x, y \in X$. Using (FC₄) and (psBE₁), we have

$$\overline{\theta}(x,y) \le \overline{\theta}(x \to y, y \to y) = \overline{\theta}(x \to y, 1).$$

Applying (FC_4) , (FC_5) , $(psBE_4)$, $(psBE_1)$ and $(psBE_2)$ we get

$$\overline{\theta}(x \to y, 1) \leq \overline{\theta}((x \to y) \to y, 1 \to y) \leq \overline{\theta}(x \rightsquigarrow ((x \to y) \to y), x \rightsquigarrow (1 \to y))$$
$$= \overline{\theta}((x \to y) \rightsquigarrow (x \to y), 1 \to (x \rightsquigarrow y)) = \overline{\theta}(1, x \rightsquigarrow y)$$

Thus, $\overline{\theta}(x \to y, 1) \leq \overline{\theta}(1, x \rightsquigarrow y) = \overline{\theta}(x \rightsquigarrow y, 1)$. By a similar argument $\overline{\theta}(x \rightsquigarrow y, 1) \leq \overline{\theta}(1, x \to y) = \overline{\theta}(x \to y, 1)$. Therefore, $\overline{\theta}(x \to y, 1) = \overline{\theta}(x \rightsquigarrow y, 1)$.

Note that, in the Proposition 3.4, if $\overline{\theta}(x,y) = \overline{\theta}(x \to y,1)$, for all $x, y \in X$, then $\overline{\theta}(x,y) = \overline{\theta}(1,1)$. Using (psBE₃), we have $\overline{\theta}(x,1) = \overline{\theta}(x \to 1,1) = \overline{\theta}(1,1)$, and so, for all $x \in X$, we have $\overline{\theta}(x,1) = \overline{\theta}(1,1)$. Since $x \to y \in X$, we obtain $\overline{\theta}(x \to y,1) = \overline{\theta}(1,1)$. Thus, $\overline{\theta}(x,y) = \overline{\theta}(1,1)$.

Proposition 3.5. Let $\overline{\theta}, \overline{\eta} \in FCon(X)$. Then $\overline{\theta} \cap \overline{\eta} \in FCon(X)$, where

$$(\theta \cap \overline{\eta})(x, y) = \min[\theta(x, y), \overline{\eta}(x, y)].$$

Remark 3.6. However, the following example shows that union of two fuzzy congruence relation $\overline{\theta}$ and $\overline{\eta}$ is not necessarily a fuzzy congruence relation.

Example 3.7. Let $X = \{1, a, b\}$. Define the binary operation \rightarrow on X as follows:

\rightarrow	1	a	b
1	1	a	b
a	1	1	b
b	1	1	1

Then $(X; \to, 0)$ is a BE-algebra. If put $\to := \to$, then $(X; \to, \to, 0)$ is a pseudo BE-algebra. Define the fuzzy relations $\overline{\theta}$ and $\overline{\eta}$ as follows:

	1				$\overline{\eta}$	1	a	b
1	0.52	0.42	0.42	and	1	0.52	0.3	0.3
a	$0.52 \\ 0.42$	0.52	0.42	and	a	$\begin{array}{c} 0.52 \\ 0.3 \\ 0.3 \end{array}$	0.52	0.3
b	0.42	0.42	0.52		b	0.3	0.3	0.52

Then $(\overline{\theta} \cup \overline{\eta})(x, y) = \max[\overline{\theta}(x, y), \overline{\eta}(x, y)]$ is not a fuzzy congruence relation on X.

Definition 3.8. Let $\overline{\theta}, \overline{\eta} \in FCon(X)$. Define the composition $\overline{\theta} \circ \overline{\eta}$ by:

$$(\overline{\theta} \circ \overline{\eta})(x,y) = \sup_{z \in X} \min[\overline{\theta}(x,z), \overline{\eta}(z,y)].$$

Example 3.9. Consider the pseudo BE-algebra given in Example 3.2. Define fuzzy congruence relations $\overline{\theta}$ and $\overline{\eta}$ as follows:

$\overline{ heta}$	1	a	b	c		$\overline{\eta}$	1	a	b	c
	0.75							0.24		
a	0.44	0.75	0.44	0.44	and			0.65		
b	0.44	0.44	0.75	0.44				0.24		
c	0.44	0.44	0.44	0.75		c	0.24	0.24	0.24	0.65

Then $\overline{\theta} \circ \overline{\eta}$ is a fuzzy congruence relation on X by the following table.

	1		b	c
1	0.65	0.44	0.44	0.44
a	0.44	0.65	0.44	0.44
b	0.44	0.44	0.65	0.44
c	0.44	$\begin{array}{c} 0.44 \\ 0.65 \\ 0.44 \\ 0.44 \end{array}$	0.44	0.65

By induction, we have:

Theorem 3.10. Let
$$\overline{\theta} \in FCon(X)$$
. Then $\bigcup_{n=1}^{\infty} \overline{\theta}^n$ is so, where, $\overline{\theta}^n = \overline{\theta} \circ \overline{\theta} \circ \ldots \circ \overline{\theta}$.

Theorem 3.11. (FCon(X), \subseteq) is a complete lattice, where \subseteq is defined by:

 $\overline{\theta} \subseteq \overline{\eta}$ if and only if $\overline{\theta}(x, y) \leq \overline{\eta}(x, y)$, for all $x, y \in X$.

Proof. Clearly \subseteq is a partial order relation. It is easy to check that the relation $\overline{\sigma}$ defined by $\overline{\sigma}(x,y) = 1$, for all $x, y \in X$ is in FCon(X) and the relation $\overline{\lambda}$ defined by $\overline{\lambda}(x,x) = \overline{\lambda}(1,1)$, for all $x \in X$ and $\overline{\lambda}(x,y) = 0$ for $x \neq y$ is in FCon(X). Also, $\overline{\sigma}$ is the greatest element and $\overline{\lambda}$ is the least element of FCon(X) w.r.t. \subseteq . Let $\{\overline{\theta}_i\}_{i\in I}$ be a non-empty collection of fuzzy congruence relations in FCon(X). Let $\overline{\theta}(x,y) = \inf_{i\in X} \overline{\theta}_i(x,y)$, for all $x, y \in X$. It is easy to see that (FC₁), (FC₂), (FC₃), (FC₄) and (FC₅). Also, we have

$$\begin{split} \overline{\theta} \circ \overline{\theta}(x,y) &= \sup_{z \in X} \min\{\overline{\theta}(x,z), \overline{\theta}(z,y)\} \\ &= \sup_{z \in X} \min\{\inf_{i \in I} \overline{\theta}_i(x,z), \inf_{i \in I} \overline{\theta}_i(z,y)\} \\ &= \sup_{z \in X} \inf\{\min[\overline{\theta}_i(x,z), \overline{\theta}_i(z,y)]\} \\ &\leq \inf_{i \in I} \sup_{z \in X} \{\min[\overline{\theta}_i(x,z), \overline{\theta}_i(z,y)]\} \\ &= \inf(\overline{\theta}_i \circ \overline{\theta}_i)(x,y) \\ &\leq \inf_{i \in I} \overline{\theta}_i(x,y) \\ &= \overline{\theta}(x,y). \end{split}$$

That is, $\overline{\theta} \in FCon(X)$. Since $\overline{\theta}$ is the greatest lower bound of $\{\overline{\theta}_i\}_{i \in I}$, hence $(FCon(X), \subseteq)$ is a complete lattice.

Theorem 3.12. (FCon(X), \subseteq) is a modular lattice.

Proof. Assume that $\overline{\theta}, \overline{\eta}, \overline{\zeta} \in \operatorname{FCon}(X)$ and $\overline{\theta} \subseteq \overline{\zeta}$. It is sufficient to prove that $(\overline{\theta} \circ \overline{\eta}) \cap \overline{\zeta} \subseteq \overline{\theta} \circ (\overline{\eta} \cap \overline{\zeta})$. For every $(x, y) \in X \times X$ and $z \in X$, since $\min\{\overline{\theta}(x, z), \overline{\zeta}(x, z)\} = \overline{\theta}(x, z)$, applying (FC₃) for $\overline{\zeta}$, we get

$$\begin{split} [(\theta \circ \overline{\eta}) \cap \zeta](x,y) &= \min[(\theta \circ \overline{\eta})(x,y), \zeta(x,y)] \\ &= \min[\sup_{z \in X} \min[\overline{\theta}(x,z), \overline{\theta}(z,y)], \overline{\zeta}(x,y)] \\ &= \sup_{z \in X} \{\min[\overline{\theta}(x,z), \overline{\theta}(z,y)], \overline{\zeta}(x,z), \overline{\zeta}(x,y)\} \\ &= \sup_{z \in X} \{\min[\overline{\theta}(x,z), \overline{\theta}(z,y)], \overline{\zeta}(x,z), \overline{\zeta}(x,y)\} \\ &\leq \sup_{z \in X} \{\min[\overline{\theta}(x,z), \overline{\theta}(z,y)], \overline{\zeta}(z,y)\} \\ &= \sup_{z \in X} \{\overline{\theta}(x,z), \min[\overline{\theta}(z,y), \overline{\zeta}(z,y)]\} \\ &= \sup_{z \in X} \{\overline{\theta}(x,z), [\overline{\theta} \cap \overline{\zeta}](z,y)\} \\ &= [\overline{\theta} \circ (\overline{\theta} \cap \overline{\zeta})](x,y). \end{split}$$

Proposition 3.13. Let $\overline{\theta}$, $\overline{\eta}$, $\overline{\zeta} \in FCon(X)$. Then $\overline{\theta} \circ (\overline{\eta} \cap \overline{\zeta}) \subseteq (\overline{\theta} \circ \overline{\eta}) \cap (\overline{\theta} \circ \overline{\zeta})$.

Proof. Assume that $\overline{\theta}, \overline{\eta}, \overline{\zeta} \in \operatorname{FCon}(X)$. Let $(x, y) \in X \times X$. Then

$$\begin{split} [\overline{\theta} \circ (\overline{\eta} \cap \overline{\zeta})](x,y) &= \sup_{z \in X} \{\min[\overline{\theta}(x,z), (\overline{\eta} \cap \overline{\zeta})(z,y)\} \\ &= \sup_{z \in X} \{\min[\overline{\theta}(x,z), \min\{\overline{\eta}(z,y), \overline{\zeta}(z,y)\}]\} \\ &\leq \min\{\sup_{z \in X} \{\min[\overline{\theta}(x,z), \overline{\eta}(z,y)]\}, \sup_{z \in X} \{\min[\overline{\theta}(x,z), \overline{\zeta}(z,y)]\}\} \\ &= \min\{(\overline{\theta} \circ \overline{\eta})(x,y), (\overline{\theta} \circ \overline{\zeta})(x,y)\} \\ &= [(\overline{\theta} \circ \overline{\eta}) \cap (\overline{\theta} \circ \overline{\zeta})](x,y). \end{split}$$

Definition 3.14. Let $\overline{\theta} \in \text{FCon}(X)$ and $\alpha \in [0, 1]$. Then the *level congruence relation* $\overline{\theta}^{\alpha}$ of $\overline{\theta}$ and strong level congruence $\overline{\theta}^{\alpha}_{>}$ of X are defined as the following:

$$\overline{\theta}^{\alpha} := \{(x,y) \in X \times X : \overline{\theta}(x,y) \ge \alpha\} \text{ and } \overline{\theta}^{\alpha}_{>} := \{(x,y) \in X \times X : \overline{\theta}(x,y) > \alpha\}.$$

Example 3.15. Consider the pseudo BE-algebra given in Example 3.2. Then

- (i) if $\alpha \in (0, 0.4]$, then $\overline{\theta}^{\alpha} = X \times X$,
- (ii) if $\alpha \in (0.4, 0.7]$, then $\overline{\theta}^{\alpha} = \Delta$, where $\Delta = \{(x, x) : x \in X\}$,
- (iii) if $\alpha \in (0.7, 1]$, then $\overline{\theta}^{\alpha} = \emptyset$,
- (iv) if $\alpha \in (0, 0.4)$, then $\overline{\theta}_{>}^{\alpha} = \{(1, a), (1, b), (1, c), (a, b), (b, a), (a, c), (c, a), (c, b), (b, c)\},\$
- (v) if $\alpha \in [0.4, 0.7)$, then $\overline{\theta}_{>}^{\alpha} = \Delta$,
- (vi) if $\alpha \in [0.7, 1]$, then $\overline{\theta}_{>}^{\alpha} = \emptyset$.

Proposition 3.16. Let $\overline{\theta} \in FCon(X)$ and $\alpha \in [0, 1]$. Then

- (i) if $\overline{\theta}^{\alpha} \neq \emptyset$, then $\overline{\theta}(1,1) \ge \alpha$,
- (ii) if $\overline{\theta}^{\alpha} := \{(x,y) : \overline{\theta}(x,y) = \overline{\theta}(y,x) \ge \alpha\}$, then $\overline{\theta}^{\alpha} \ne \emptyset$ and $\overline{\theta}^{\alpha}$ is a congruence relation on X.

Proof. We only prove (i). Since $\overline{\theta}^{\alpha} \neq \emptyset$, there exists $(x, y) \in \overline{\theta}^{\alpha}$. Applying Lemma 3.3, we get $\overline{\theta}(1, 1) \geq \overline{\theta}(x, y) \geq \alpha$.

Lemma 3.17. Let $\overline{\theta} \in FCon(X)$ and $\alpha \in (0,1)$. Then

$$\overline{\theta}^{\alpha} = \bigcap_{0 \leq t < \alpha} \overline{\theta}^t_{>} \quad \text{and} \quad \overline{\theta}^{\alpha}_{>} = \bigcup_{\alpha < t \leq 1} \overline{\theta}^t.$$

Proposition 3.18. Let $\overline{\theta}$ be a fuzzy relation on X and $\alpha \in (0, 1)$. Then

- (i) $\overline{\theta}$ is a fuzzy left (right) compatible relation if and only if $\overline{\theta}^{\alpha}$ ($\overline{\theta}^{\alpha}_{>}$) is a left (right) compatible relation on X,
- (ii) $\overline{\theta}$ is a fuzzy congruence relation if and only if $\overline{\theta}^{\alpha}$ ($\overline{\theta}^{\alpha}_{>}$) is a congruence relation on X.

Proposition 3.19. Let $\overline{\theta}, \overline{\eta} \in FCon(X)$ and $\alpha \in [0, 1)$. Then

- (i) $\overline{\theta} = \overline{\eta}$ if and only if $\overline{\theta}_{>}^{\alpha} = \overline{\eta}_{>}^{\alpha}$,
- (*ii*) $(\overline{\theta} \circ \overline{\eta})^{\alpha}_{>} = \overline{\theta}^{\alpha}_{>} \circ \overline{\eta}^{\alpha}_{>},$

 $(iii) \ \overline{\theta} \circ \overline{\eta} = \overline{\eta} \circ \overline{\theta} \ if \ and \ only \ if \ \overline{\theta}_{>}^{\alpha} \circ \overline{\eta}_{>}^{\alpha} = \overline{\eta}_{>}^{\alpha} \circ \overline{\theta}_{>}^{\alpha}, \ for \ all \ \alpha \in [0,1), \ where, \ \overline{\theta}_{>}^{\alpha} \neq \emptyset \ and \ \overline{\eta}_{>}^{\alpha} \neq \emptyset.$

Proof. We only prove (i). Assume that $(x, y) \in \overline{\theta}^{\alpha}_{>}$. Then $\overline{\eta}_{>}(x, y) = \overline{\theta}_{>}(x, y) > \alpha$ and so $(x, y) \in \overline{\eta}^{\alpha}_{>}$. Hence $\overline{\theta}^{\alpha}_{>} \subseteq \overline{\eta}^{\alpha}_{>}$. Similarly, $\overline{\eta}^{\alpha}_{>} \subseteq \overline{\theta}^{\alpha}_{>}$.

Conversely, let $\overline{\theta}_{>}^{\alpha} = \overline{\eta}_{>}^{\alpha}$, but there exists $(x, y) \in X \times X$ such that $\overline{\theta}(x, y) \neq \overline{\eta}(x, y)$. Let $\overline{\theta}(x, y) = t_1$ and $\overline{\eta}(x, y) = t_2$. Then $t_1 > t_2$ or $t_2 > t_1$. If $t_1 > t_2$, then $\overline{\theta}(x, y) = t_1 > t_2$, and so $(x, y) \in \overline{\theta}_{>}^{t_1} = \overline{\eta}_{>}^{t_1}$. Hence $\overline{\eta}(x, y) > t_1$, and so $t_2 > t_1$, which is a contradiction. If $t_2 > t_1$, by a similar argument we have a contradiction.

Theorem 3.20. If $\overline{\theta}$ and $\overline{\eta}$ are fuzzy left (right) compatible (congruence) relation on X. Then $\overline{\theta} \times \overline{\eta}$ is a left (right) compatible (congruence) relation on $X \times X$.

In this section, we investigate fuzzy congruence relations induced by fuzzy medial filters in a pseudo BE-algebra.

Theorem 3.21. Let f be an endomorphism of X. If $\theta \in FCon(X)$, then $\overline{\theta}$ is defined by $\overline{\theta}(x, y) := \theta(f(x), f(y))$ is so.

Proof. It is obvious that $\overline{\theta}$ well-defined. Let $x, y, z, u \in X$.

$$(\mathrm{FC}_1) \ \overline{\theta}(x,x) = \theta(f(x), f(x)) = \theta(1,1) = \overline{\theta}(1,1).$$

 $(\mathrm{FC}_2) \ \overline{\theta}(x,y) = \theta(f(x),f(y)) = \theta(f(y),f(x)) = \overline{\theta}(y,x).$

(FC₃) $\overline{\theta}(x,y) = \theta(f(x), f(y)) \ge \min[\theta(f(x), f(z)), \theta(f(z), f(y))]$ = $\min[\overline{\theta}(x, z), \overline{\theta}(z, y)].$

$$(FC_4) \ \overline{\theta}(x \to u, y \to u) = \theta(f(x \to u), f(y \to u)) \\ = \theta(f(x) \to f(u), f(y) \to f(u)) \\ \ge \theta(f(x), f(y)) = \overline{\theta}(x, y).$$

Similarly, $\overline{\theta}(v \to x, v \to y) \ge \overline{\theta}(x, y)$.

$$(FC_5) \ \overline{\theta}(x \rightsquigarrow u, y \rightsquigarrow u) = \theta(f(x \rightsquigarrow u), f(y \rightsquigarrow u)) \\ = \theta(f(x) \rightsquigarrow f(u), f(y) \rightsquigarrow f(u)) \\ \ge \theta(f(x), f(y)) = \overline{\theta}(x, y).$$

Similarly, $\overline{\theta}(v \rightsquigarrow x, v \rightsquigarrow y) \ge \overline{\theta}(x, y).$

Remark 3.22. The fuzzy subset $\overline{\theta}_x : X \to [0,1]$, which is defined by $\overline{\theta}_x(y) = \overline{\theta}(x,y)$, is called the fuzzy congruence class containing x.

By a routine calculation we can see that:

Proposition 3.23. Let $\overline{\theta} \in FCon(X)$. Then for all $x, y, z, u \in X$

(i) $\overline{\theta}_x(x) = \overline{\theta}_1(1) = \overline{\theta}_1(x),$

(ii)
$$\overline{\theta}_x(y) = \overline{\theta}_y(x) = \overline{\theta}_{x \to y}(1) = \overline{\theta}_{x \to y}(1),$$

(iii) $\overline{\theta}_x(y) \ge \overline{\theta}_x(y \to z),$

- (iv) $\overline{\theta}_x(z) \ge \min[\overline{\theta}_x(y), \overline{\theta}_y(z)],$
- (v) $\overline{\theta}_x(z) \ge \min[\overline{\theta}_x(y), \overline{\theta}_x(y \to z)],$
- $(\text{vi}) \ \overline{\theta}_{x \to u}(y \to u) \geq \overline{\theta}_x(y) \text{ and } \overline{\theta}_{x \leadsto u}(y \leadsto u) \geq \overline{\theta}_x(y),$
- (vii) $\overline{\theta}_{u \to x}(u \to y) \ge \overline{\theta}_x(y)$ and $\overline{\theta}_{u \rightsquigarrow x}(u \rightsquigarrow y) \ge \overline{\theta}_x(y)$,
- (viii) if $x \leq y$, then $\overline{\theta}_x(y) = \overline{\theta}_y(x) = \overline{\theta}_1(1)$,
- (ix) $\overline{\theta}_x = \overline{\theta}_y$ if and only if $\overline{\theta}_{x \to z}(1) = \overline{\theta}_{y \to z}(1)$,
- (x) $\overline{\theta}_x = \overline{\theta}_y$ if and only if $\overline{\theta}_{x \rightsquigarrow z}(1) = \overline{\theta}_{y \rightsquigarrow z}(1)$.

Proposition 3.24. Let $\overline{\theta} \in FCon(X)$ and $x \in X$. Then $\overline{\theta}_x$ is a fuzzy filter of X.

The following example shows that the converse of Proposition 3.24, is not valid in general.

Example 3.25. (i) ([16]) Let $X = \{a, b, c, d, 1\}$. Define the operations \rightarrow and \rightsquigarrow on X as follows:

\rightarrow	1	a	b	c	d	\rightsquigarrow	1	a	b	c	d
1	1	a	b	c	d	1	1	a	b	С	d
a	1	1	c	c	1	a	1	1	b	c	1
b	1	d	1	1	d	b	1	d	1	1	d
c	1	d	1	1	d	c	1	d	1	1	d
d	1	1	c	c	1	d	1	1	b	c	1

Then $(X; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BE algebra. Define $\overline{\theta} : X \times X \longrightarrow [0, 1]$ as follows:

$\overline{ heta}$	1	a	b	c	d
1	0.7	0.5	0.6	0.6	0.5
a	0.5	0.7	0.2	0.3	0.1
b	0.6	0.2	0.7	0.1	0.2
c	0.6	0.3	0.1	0.7	0.4
d	0.5	0.1	$b \\ 0.6 \\ 0.2 \\ 0.7 \\ 0.1 \\ 0.2$	0.4	0.7

Then $\overline{\theta}$ is not a fuzzy congruence relation. Since

$$\overline{\theta}(a,d) = 0.1 \geq \min[\overline{\theta}(a,c), \overline{\theta}(c,d)] = \min\{0.3, 0.4\} = 0.3.$$

Routine calculations show that $\overline{\theta}_1(1) = 0.7$, $\overline{\theta}_1(a) = \overline{\theta}_1(d) = 0.5$ and $\overline{\theta}_1(b) = \overline{\theta}_1(c) = 0.6$. It is easily seen that $\overline{\theta}_1 : X \longrightarrow [0, 1]$ is a fuzzy filter of X.

(ii) ([4]) Let $X = \{a, b, c, d, 1\}$. Define the operations \rightarrow and $\sim \rightarrow$ on X as follows:

	\rightarrow	1	a	b	c	d		\rightsquigarrow	1	a	b	c	d
-			a				-	1	1	a	b	С	d
	a	1	1	b	c	d		a	1	1	b	c	d
	b	1	1	1	b	c		b	1	1	1	b	c
	c	1	a	1	1	b		c	1	a	1	1	b
	d	1	a	1	1	1		d	1	a	1	1	1

Then $(X; \rightarrow, \rightsquigarrow, 1)$ is a pseudo BE-algebra, but it is not distributive. Since

$$c \to (c \rightsquigarrow d) = c \to b = 1 \neq b = 1 \rightsquigarrow b = (c \to c) \rightsquigarrow (c \to d).$$

Define a fuzzy relation $\overline{\theta}:X\times X\longrightarrow [0,1]$ as follows:

$\overline{ heta}$	1	a	b	c	d
1	0.4	0.2	0.2	0.2	0.2
a	0.3	0.1	0.2	0.3	0.1
b	0.1	0.2	0.2	0.4	0.1
c	0.2	0.3	0.1	0.3	0.2
d	$\begin{array}{c} 0.4 \\ 0.3 \\ 0.1 \\ 0.2 \\ 0.4 \end{array}$	0.1	0.1	0.4	0.2

Then $\overline{\theta}$ is not a fuzzy congruence relation. Since

$$\theta(a,d) = 0.1 \ge \min[\theta(a,c), \theta(c,d)] = \min\{0.3, 0.2\} = 0.2.$$

Routine calculation shows that $\overline{\theta}_1(1) = 0.4$, $\overline{\theta}_1(a) = \overline{\theta}_1(b) = \overline{\theta}_1(c) = \overline{\theta}_1(d) = 0.2$. It is easy to see that $\overline{\theta}_1 : X \longrightarrow [0, 1]$ is a fuzzy filter of X.

In the following theorem we show that if $\overline{\mu}$ is a *fuzzy medial filter* and X is *distributive*, then the converse of Proposition 3.24, holds.

Theorem 3.26. Let $\overline{\mu}$ be a fuzzy medial filter in distributive pseudo BE-algebra X. Then there is a fuzzy congruence relation $\overline{\theta}$ in X such that $\overline{\theta}_1 = \overline{\mu}$.

Proof. Assume that $\overline{\mu}$ is a fuzzy medial filter. Define a fuzzy relation in X by:

 $\overline{\theta}(x,y) = \min[\overline{\mu}(x \to y), \overline{\mu}(y \to x)], \text{ for all } x, y \in X.$

Then, for all $x, y \in X$, we have

$$(FC_1) \ \theta(x,x) = \min[\overline{\mu}(x \to x), \overline{\mu}(x \to x)] = \min[\overline{\mu}(1), \overline{\mu}(1)] \\ = \min[\overline{\mu}(1 \to 1), \overline{\mu}(1 \to 1)] \\ = \overline{\theta}(1,1).$$

$$(FC_2) \ \overline{\theta}(x,y) = \min[\overline{\mu}(x \to y), \overline{\mu}(y \to x)] = \min[\overline{\mu}(y \to x), \overline{\mu}(x \to y)] \\ = \overline{\theta}(y,x).$$

(FC₃) Since $\overline{\mu}$ is a fuzzy medial filter, we have

$$\begin{split} \overline{\theta}(x,z) &= \min[\overline{\mu}(x \to z), \overline{\mu}(z \to x)] \\ &\geq \min[\min(\overline{\mu}(x \to y), \overline{\mu}(y \to z)), \min(\overline{\mu}(z \to y), \overline{\mu}(y \to x))] \\ &= \min[\min(\overline{\mu}(x \to y), \overline{\mu}(y \to x)), \min(\overline{\mu}(z \to y), \overline{\mu}(y \to z))] \\ &= \min[\overline{\theta}(x, y), \overline{\theta}(y, z)]. \end{split}$$

(FC₄) For the right compatible condition, let $u \in X$. Since

$$\begin{aligned} (y \to x) \to ((x \to u) \rightsquigarrow (y \to u)) &= (x \to u) \rightsquigarrow ((y \to x) \rightsquigarrow (y \to u)) \\ &= (x \to u) \rightsquigarrow (y \to (x \rightsquigarrow u)) = 1. \end{aligned}$$

Thus, $(y \to x) \to ((x \to u) \to (y \to u)) = 1$. Therefore, $\overline{\mu}((x \to u) \to (y \to u)) \ge \overline{\mu}(y \to x)$. Similarly, we get $\overline{\mu}((y \to u) \to (x \to u)) \ge \overline{\mu}(x \to y)$. Then

$$\begin{array}{lll} \overline{\theta}(x \to u, y \to u) &=& \min[\overline{\mu}((x \to u) \to (y \to u)), \overline{\mu}((y \to u) \to (x \to u))] \\ &\geq& \min[\overline{\mu}(y \to x), \overline{\mu}(x \to y)] \\ &=& \overline{\theta}(x, y). \end{array}$$

By a similar argument, $\overline{\theta}(x \rightsquigarrow u, y \rightsquigarrow u) \ge \overline{\theta}(x, y)$.

(FC₅) For the left compatible condition, let $u \in X$. Then

$$\overline{\theta}(u \to x, u \to y) = \min[\overline{\mu}((u \to x) \to (u \to y)), \overline{\mu}((u \to y) \to (u \to x))]$$

$$\geq \min[\overline{\mu}(x \to y), \overline{\mu}(y \to x)]$$

$$= \overline{\theta}(x, y).$$

Similarly, $\overline{\theta}(u \rightsquigarrow x, u \rightsquigarrow y) \ge \overline{\theta}(x, y)$. Also, for all $x \in X$,

$$\theta_1(x) = \theta(1, x) = \min[\overline{\mu}(1 \to x), \overline{\mu}(x \to 1)] = \min[\overline{\mu}(x), \overline{\mu}(1)] = \overline{\mu}(x)$$

Therefore, $\overline{\theta}_1 = \overline{\mu}$.

Remark 3.27. Let $\overline{\theta} \in FCon(X)$. For every element $x \in X$, define:

$$\overline{\theta}_x = \{y \in X : \overline{\theta}_x(y) = \overline{\theta}_1(1)\}$$

of X and $X/\overline{\theta} = \{\overline{\theta}_x : x \in X\}$. It is obviously that $\overline{\theta}_x \neq \emptyset$, for all $x \in X$ (since $x \in \overline{\theta}_x$) and $X = \bigcup_{x \in X} \overline{\theta}_x$. Also, define the binary operations \rightarrow and \rightsquigarrow on $X/\overline{\theta}$ as follows:

$$\overline{\theta}_x \to \overline{\theta}_y = \overline{\theta}_{x \to y} \text{ and } \overline{\theta}_x \rightsquigarrow \overline{\theta}_y = \overline{\theta}_{x \rightsquigarrow y}$$

These operations are well-defined. Because, if $\overline{\theta}_x = \overline{\theta}_{x'}$ and $\overline{\theta}_y = \overline{\theta}_{y'}$, then we have $\overline{\theta}(x, x') = \overline{\theta}(y, y') = \overline{\theta}(1, 1)$. Since

$$\overline{\theta}(1,1) = \overline{\theta}(x,x') \le \overline{\theta}(x \to y, x' \to y) \text{ and } \overline{\theta}(1,1) = \overline{\theta}(y,y') \le \overline{\theta}(x' \to y, x' \to y'),$$

we have

$$\overline{\theta}(1,1) \le \min[\overline{\theta}(x \to y, x' \to y), \overline{\theta}(x' \to y, x' \to y')] \le \overline{\theta}(x \to y, x' \to y') \le \overline{\theta}(1,1).$$

This means that $\overline{\theta}(x \to y, x' \to y') = \overline{\theta}(1, 1)$ and $\overline{\theta}_{x \to y} = \overline{\theta}_{x' \to y'}$. By a similar argument, $\overline{\theta}_{x \to y} = \overline{\theta}_{x' \to y'}$. So, the binary operations \to and \rightsquigarrow are well-defined.

Theorem 3.28. If $\overline{\theta} \in FCon(X)$, then $(X/\overline{\theta}; \rightarrow, \rightsquigarrow, \overline{\theta}_1)$ is a pseudo BE-algebra.

Example 3.29. Consider the fuzzy congruence relation $\overline{\theta}$ given in Example 3.2, and $1_{\overline{\theta}} = \{1\}$, $a_{\overline{\theta}} = \{a\}$, $b_{\overline{\theta}} = \{b\}$ and $c_{\overline{\theta}} = \{c\}$. Then $X/\overline{\theta} = \{\{1\}, \{a\}, \{b\}, \{c\}\}$ with the following tables:

\rightarrow	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$b_{\overline{ heta}}$	$c_{\overline{\theta}}$	\rightsquigarrow	$1_{\overline{ heta}}$	$a_{\overline{\theta}}$	$b_{\overline{\theta}}$	$c_{\overline{\theta}}$
$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$b_{\overline{ heta}}$	$c_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$b_{\overline{\theta}}$	$c_{\overline{\theta}}$
$a_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$c_{\overline{\theta}}$	$1_{\overline{\theta}}$
$b_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$b_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$	$1_{\overline{\theta}}$
$c_{\overline{\theta}}$	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$a_{\overline{\theta}}$	$1_{\overline{\theta}}$	$c_{\overline{\theta}}$	$1_{\overline{\theta}}$	$a_{\overline{\theta}}$	$b_{\overline{\theta}}$	$1_{\overline{\theta}}$

Then $(X/\overline{\theta}; \to, \rightsquigarrow, 1_{\overline{\theta}})$ is a pseudo BE-algebra.

Let $\overline{\theta} \in FCon(X)$. The natural map of X onto $X/\overline{\theta}$ is $\pi: X \longrightarrow X/\overline{\theta}$ given by $\pi(x) = \overline{\theta}_x$.

Remark 3.30. Assume that $\overline{\theta}$, $\overline{\eta} \in FCon(X)$. Let $\pi_1 : X \longrightarrow X/\overline{\theta}$ and $\pi_2 : X \longrightarrow X/\overline{\eta}$ be the natural homomorphisms. Combining these, we obtain a homomorphism $\pi_1 \times \pi_2 : X \longrightarrow X/\overline{\theta} \times X/\overline{\eta}$. Then $X/(\overline{\theta} \cap \overline{\eta}) \cong X/\overline{\theta} \times X/\overline{\eta}$.

Definition 3.31. Let θ be an equivalence relation and $\overline{\theta}$ be a fuzzy relation on X. Then $\overline{\theta}$ is called θ -invariant if $\overline{\theta}_x = \overline{\theta}_a$ and $\overline{\theta}_y = \overline{\theta}_b$ imply $\theta(x, y) = \theta(a, b)$.

Definition 3.32. Let θ be a congruence relation and $\overline{\theta}$ be a θ -invariant fuzzy relation on X. Define a fuzzy relation $\overline{\overline{\theta}}$ on X/θ as follows:

$$\overline{\overline{\theta}}(\overline{\theta}_x,\overline{\theta}_y) = \overline{\theta}_x(y).$$

Proposition 3.33. Let $\overline{\theta}, \overline{\eta} \in FCon(X), \overline{\theta}$ be a θ -invariant, $\overline{\eta}$ be a η -invariant and $\overline{\theta} \subseteq \overline{\eta}$. Then $\overline{\overline{\theta}} \subseteq \overline{\overline{\eta}}$.

Proof. Assume that $x, y \in X$. Then

$$\overline{\overline{\theta}}(\overline{\theta}_x,\overline{\theta}_y) = \overline{\theta}_x(y) = \overline{\theta}(x,y) \le \overline{\eta}(x,y) = \overline{\eta}_x(y) = \overline{\overline{\eta}}(\overline{\eta}_x,\overline{\eta}_y).$$

Theorem 3.34. If $\overline{\theta}$ is a θ -invariant fuzzy left (right) compatible (congruence) relation on X, then $\overline{\overline{\theta}}$ is so on X/θ .

Proof. Since $\overline{\theta}$ is a θ -invariant fuzzy left relation on X, we get $\overline{\overline{\theta}}$ is well defined. Let $x, y, z, u \in X$. Then

- $(\mathrm{FC}_1) \ \overline{\overline{\theta}}(\overline{\theta}_x,\overline{\theta}_x) = \overline{\theta}_x(x) = \overline{\theta}_1(1), \text{ on the other hand, } \overline{\overline{\theta}}(\overline{\theta}_1,\overline{\theta}_1) = \overline{\theta}_1(1). \text{ So, } \overline{\overline{\theta}}(\theta_x,\theta_x) = \overline{\theta}(\overline{\theta}_1,\overline{\theta}_1).$
- $(\mathrm{FC}_2) \ \overline{\overline{\theta}}(\overline{\theta}_x,\overline{\theta}_y) = \overline{\theta}(x,y) = \overline{\theta}(y,x) = \overline{\overline{\theta}}(\overline{\theta}_y,\overline{\theta}_x).$
- $(\mathrm{FC}_3) \ \overline{\overline{\theta}}(\overline{\theta}_x,\overline{\theta}_y) = \overline{\theta}(x,y) \geq \min[\overline{\theta}(x,z),\overline{\theta}(z,y)] = \min[\overline{\overline{\theta}}(\overline{\theta}_x,\overline{\theta}_z),\overline{\overline{\theta}}(\overline{\theta}_z,\overline{\theta}_y)].$

$$(\mathrm{FC}_4) \ \overline{\theta}(\overline{\theta}_x \to \overline{\theta}_u, \overline{\theta}_y \to \overline{\theta}_u) = \overline{\theta}(\overline{\theta}_{x \to u}, \overline{\theta}_{y \to u}) = \overline{\theta}(x \to u, y \to u) \\ \geq \overline{\theta}(x, y) = \overline{\overline{\theta}}(\overline{\theta}_x, \overline{\theta}_y).$$

By a similar argument, $\overline{\overline{\theta}}(\overline{\theta}_u \to \overline{\theta}_x, \overline{\theta}_u \to \overline{\theta}_y) \geq \overline{\overline{\theta}}(\overline{\theta}_x, \overline{\theta}_y).$

$$(FC_5) \ \overline{\theta}(\overline{\theta}_x \rightsquigarrow \overline{\theta}_u, \overline{\theta}_y \rightsquigarrow \overline{\theta}_u) = \overline{\theta}(\overline{\theta}_{x \rightsquigarrow u}, \overline{\theta}_{y \rightsquigarrow u}) = \overline{\theta}(x \rightsquigarrow u, y \rightsquigarrow u) \\ \geq \overline{\theta}(x, y) \\ = \overline{\overline{\theta}}(\overline{\theta}_x, \overline{\theta}_y)$$

Similarly, $\overline{\overline{\theta}}(\overline{\theta}_u \rightsquigarrow \overline{\theta}_x, \overline{\theta}_u \rightsquigarrow \overline{\theta}_y) \geq \overline{\overline{\theta}}(\overline{\theta}_x, \overline{\theta}_y)$. Also, assume that $\overline{\overline{\theta}}_{\overline{\theta}_x} = \overline{\overline{\theta}}_{\overline{\theta}_a}$ and $\overline{\overline{\theta}}_{\overline{\theta}_y} = \overline{\overline{\theta}}_{\overline{\theta}_b}$, for some $a, b \in X$. Then $\overline{\overline{\theta}}_{\overline{\theta}_x}(\overline{\theta}_c) = \overline{\overline{\theta}}_{\overline{\theta}_a}(\overline{\theta}_c)$ and $\overline{\overline{\theta}}_{\overline{\theta}_y}(\overline{\theta}_c) = \overline{\overline{\theta}}_{\overline{\theta}_b}(\overline{\theta}_c)$, for all $c \in X$. Hence $\overline{\theta}_x(c) = \overline{\theta}(x, c) = \overline{\theta}(a, c) = \overline{\theta}_a(c)$ and $\overline{\theta}_y(c) = \overline{\theta}(y, c) = \overline{\theta}(b, c) = \overline{\theta}_b(c)$, and so $\overline{\theta}_x = \overline{\theta}_a$ and $\overline{\theta}_y = \overline{\theta}_b$. Since $\overline{\theta}$ is θ -invariant fuzzy relation, we have $\theta(x, y) = \theta(a, b)$. Therefore, $\overline{\overline{\theta}}$ is a θ -invariant fuzzy relation. \Box

4 Conclusions

A fuzzy congruence relation is a generalization of a congruence relation on an algebraic structure. In this paper, we introduced the notion of the fuzzy congruence relation on a pseudo BE-algebra and investigated some of their properties. Moreover, we have showed that $(FCon(X), \subseteq)$ is a modular lattice. Also, fuzzy congruence relation derived from a fuzzy medial filter is investigated.

As future work, the relation between fuzzy congruence relations and *fuzzy homomorphisms* will be study. Also, the *fuzzy homomorphism theorems* an extension of homomorphism theorems can be investigated.

References

- A. Borumand Saeid, A. Rezaei, R.A. Borzooei, Some types of filters in BE-algebras, Mathematics in Computer Science, 7(3) (2013), 341–352.
- [2] R.A. Borzooei, M. Bakhsi, T-fuzzy congruences and T-fuzzy filters of a BL-algebra, Iranian Journal of Fuzzy Systems, 6(4) (2009), 37–47.
- [3] R.A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar, R. Ameri, On pseudo BE-algebras, Discussiones Mathematica, General Algebra and Applications, 33 (2013), 95–108.
- [4] R.A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar, R. Ameri, On distributive pseudo BE-algebras, Fasciculi Mathematici, 54 (2015), 21–39.
- [5] L.C. Ciungu, Commutative pseudo BE-algebras, Iranian Journal of Fuzzy Systems, 13(1) (2016), 131–144.
- [6] G. Dymek, A. Walendziak, Fuzzy ideals of pseudo BCK algebras, Demonstratio Mathematica, XLV, 1 (2012), 1–15.
- [7] H.S. Kim, Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 66(1) (2007), 113– 117.
- [8] M. Kondo, Fuzzy congruences on groups, Quasigroups and Related Systems, 11 (2004), 59–70.
- K.J. Lee, Fuzzy ideals of pseudo BCI-algebras, Journal of Applied Mathematics and Informatics, 27 (2009), 795–807.
- [10] V. Murali, *Fuzzy congruence relations*, Fuzzy Sets and Systems, 30 (1989), 155–163.
- [11] V. Murali, *Fuzzy congruence relations*, Fuzzy Sets and Systems, 41 (1991), 359–369.
- [12] A. Rezaei, Fuzzy medial filters on pseudo BE-algebras, Submitted.
- [13] A. Rezaei, A. Borumand Saeid, On fuzzy subalgebras of BE-algebras, Afrika Matematika, 22(2) (2011), 115–127.
- [14] A. Rezaei, A. Borumand Saeid, Fuzzy congruence relations in CI-algebras, Neural Computing and Applications, 21(1) (2012), 319–328.
- [15] A. Rezaei, A. Borumand Saeid, A. Radfar, R.A. Borzooei, Congruence relations on pseudo BE-algebras, Annals of the University of Craivova, Mathematics and Computer Science Series, 41(2) (2014), 166–176.
- [16] A. Walendziak, A. Rezaei, Fuzzy filters of pseudo BE-algebras, Afrika Matematika, (on line), (2019), 1–12.
- [17] A. Walendziak, M. Wojciechowska-Rysiawa, Fuzzy ideals of pseudo BCH-algebras, Mathematica Aeterna, 5(5) (2015), 867–881.
- [18] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.