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Abstract

In this paper, we reformulate several results in commu-
tative algebra in terms of commutative hyperrings. We
introduce n-hyperideals in commutative hyperrings and
give its some basic properties. Based on new definitions
and theorems, we obtain some results in the hyperring
theory. Also, the paper is stated a characterization for
fundamental n-hyperideals.
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A Title

1 Introduction

The theory of hyperstructures was introduced by Marty [10] at the 8th congress of Scandinavian
Mathematicians in 1934. Some review of the hyperstructure theory can be found in [3, 4, 5, 6, 15].
Mittas [11] introduced the notion of canonical hypergroups. Hyperrings and hyperfields were intro-
duced by Krasner [9] in connection with his work on valued fields. Davvaz and Leoreanu studied
hyperrings in more details in [6]. Several kinds of hyperrings are introduced and analyzed. Ameri
and Norouzi [1] studied homomorphisms of hyperring and extension (contraction) of hyperideals in
commutative hyperrings. In 2015, Jun [8] studied algebraic and geometric aspects of hyperrings.
He introduced the notion of an integral hyperring scheme (X,OX) and proved that Γ(X,OX) ' R
for any integral affine hyperring scheme X = Spec(R). In [12], some results concerning ordered
hyperstructures are proved. Some results on a derivation in hyperrings can be found in [2]. Re-
cently, Tekir et al. [13] introduced the concept of n-ideals on commutative rings.

Let R be a commutative Krasner hyperring with nonzero identity. In this paper, we generalize
some concepts of the ring theory such as n-ideals and r-ideals on hyperrings. Also, we investigate
some properties of n-hyperideals analogous with prime hyperideals in commutative hyperrings.
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2 Preliminaries

Let H be a non-empty set and P∗(H) denotes the family of all non-empty subsets of H. A
mapping ◦ : H ×H → P∗(H) is called a binary hyperoperation on H. The couple (H, ◦) is called
a hypergroupoid. In the above definition, if A and B are two non-empty subsets of H and x ∈ H,
then we define:

A ◦B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hypergroupoid (H, ◦) is said to be a semihypergroup if for all x, y, z ∈ H, (x ◦ y) ◦ z = x ◦ (y ◦ z),
which means that ⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v.

A non-empty subset K of a semihypergroup (H, ◦) is called a subsemihypergroup of H if K◦K ⊆ K.
A semihypergroup (H, ◦) satisfying x ◦H = H ◦ x = H for any x ∈ H is called a hypergroup. A
non-empty subset K of H is a subhypergroup of H if a ◦K = K ◦ a = K, for all a ∈ K.

Now, we introduce the notions of canonical hypergroups and Krasner hyperrings and we apply
them in the next section.

Definition 2.1. [11] A non-empty set R along with the hyperoperation + is called a canonical
hypergroup if the following axioms hold:

(1) x+ (y + z) = (x+ y) + z, for any x, y, z ∈ R;

(2) x+ y = y + x, for any x, y ∈ R;

(3) there exists 0 ∈ R such that x+ 0 = {x}, for any x ∈ R;

(4) for any x ∈ R, there exists a unique element x′ ∈ R, such that 0 ∈ x+ x′ (we shall write −x
for x′ and we call it the opposite of x);

(5) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z − y, that is (R,+) is reversible.

Definition 2.2. [9] A Krasner hyperring is an algebraic hypersructure (R,+, ·) which satisfies the
following axioms:

(1) (R,+) is a canonical hypergroup;

(2) (R, ·) is a semigroup having 0 as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0, for
all x ∈ R;

(3) (y + z) · x = (y · x) + (z · x) and x · (y + z) = (x · y) + (x · z), for all x, y, z ∈ R.

A Krasner hyperring R is called with identity if there exists an element, say 1 ∈ R, such that
1 · x = x · 1 = x. An element x of a Krasner hyperring R is called a unit if there exists y ∈ R
such that x · y = y · x = 1. A Krasner hyperring R is called commutative (with unit element) if
(R, ·) is a commutative semigroup (with unit element). A Krasner hyperring R is called a Krasner
hyperfield, if (R \ {0}, ·) is a group. A Krasner hyperring R is called a hyperdomain, if R is a
commutative hyperring with unit element and a · b = 0 implies that a = 0 or b = 0, for all
a, b ∈ R. A subhyperring of a Krasner hyperring (R,+, ·) is a non-empty subset A of R which
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forms a Krasner hyperring containing 0 under the hyperoperation + and the operation · on R,
that is, A is a canonical subhypergroup of (R,+) and A · A ⊆ A. Then a non-empty subset A of
R is a subhyperring of (R,+, ·) if and only if, for all x, y ∈ A, x + y ⊆ A, −x ∈ A and x · y ∈ A.
A non-empty subset I of (R,+, ·) is called a left (resp. right) hyperideal of (R,+, ·) if (I,+) is a
canonical subhypergroup of (R,+) and for any a ∈ I and r ∈ R, r · a ∈ I (resp. a · r ∈ I). A
hyperideal I of (R,+, ·) is one which is a left as well as a right hyperideal of R, that is, x+ y ⊆ I
and −x ∈ I, for all x, y ∈ I and x · y, y · x ∈ I, for all x ∈ I and y ∈ R. Throughout this paper,
unless otherwise stated, R is always a commutative Krasner hyperring with nonzero identity.

Lemma 2.3. [6] A non-empty subset A of a Krasner hyperring R is a left (resp. right) hyperideal
if and only if

(1) a, b ∈ A implies a− b ⊆ A.

(2) a ∈ A and r ∈ R imply r · a ∈ A (resp. a · r ∈ A).

Definition 2.4. A homomorphism from a Krasner hyperring (R,+, ·) into a Krasner hyperring
(S,⊕,�) is a mapping ϕ : R→ S such that we have:

(1) ϕ(a+ b) ⊆ ϕ(a)⊕ ϕ(b);

(2) ϕ(a · b) = ϕ(a)� ϕ(b).

Also, ϕ is called a good homomorphism if in the previous condition (1), the equality is valid.

3 n-Hyperideals of commutative hyperrings

Recall that a proper hyperideal p of a commutative hyperring (R,+, ·) is called prime if a · b ∈ p
implies that either a ∈ p or b ∈ p. Let R be a commutative hyperring with identity. By Spec(R)
we mean the set of all the prime hyperideals of R. For hyperideal I of R we define V (I) as follows:

V (I) := {p ∈ Spec(R) | I ⊆ p}.

For a ∈ R, we set V (a) := {p ∈ Spec(R) | a ∈ p}. Then, V (I) =
⋂
a∈I

V (a).

Lemma 3.1. [8] Let I be a hyperideal of a hyperring R. Then
√
I := {r ∈ R | ∃n ∈ N such that rn ∈ I}.

is a hyperideal.

Lemma 3.2. [8] Let I be a hyperideal of a hyperring R. Then
√
I =

⋂
p∈V (I)

p.

Definition 3.3. A hyperideal I of a Krasner hyperring (R,+, ·), such that I 6= R, is called an
n-hyperideal if for a, b of R, a · b ∈ I and a /∈

√
0 implies that b ∈ I.

Example 3.4. Let R = {0, a, b} be a set with the hyperaddition + and the multiplication · defined
as follows:

+ 0 a b

0 0 a b
a a R a
b b a {0, b}

· a b c

0 0 0 0
a 0 a b
b 0 b 0

Then, (R,+, ·) is a Krasner hyperring. It is easy to see that {0} and {0, b} are n-hyperideals of R.
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Lemma 3.5. Let (R,+, ·) be a hyperring. Then,

(1) If {Ik | k ∈ Ω} is a family of n-hyperideals of R such that Ii ⊆ Ij or Ij ⊆ Ii for all i, j ∈ Ω,
then

⋃
k∈Ω

Ik is an n-hyperideal of R.

(2) If {Ik | k ∈ Ω} is a family of n-hyperideals of R, then
⋂
k∈Ω

Ik is an n-hyperideal of R.

Proof. (1): Since 0 ∈
⋃
k∈Ω

Ik, it follows that
⋃
k∈Ω

Ik 6= ∅. Let x, y ∈
⋃
k∈Ω

Ik. Then x, y ∈ Ik for some

k ∈ Ω. Since Ik is a hyperideal of R, we obtain x− y ⊆ Ik for some k ∈ Ω. Thus x− y ⊆
⋃
k∈Ω

Ik.

Also, (
⋃
k∈Ω

Ik) ·R =
⋃
k∈Ω

Ik ·R ⊆
⋃
k∈Ω

Ik and R · (
⋃
k∈Ω

Ik) =
⋃
k∈Ω

R ·Ik ⊆
⋃
k∈Ω

Ik. So, for each x ∈
⋃
k∈Ω

Ik

and s ∈ R, x · s ∈
⋃
k∈Ω

Ik. Similarly, s · x ∈
⋃
k∈Ω

Ik. Now, let a · b ∈
⋃
k∈Ω

Ik and a /∈
√

0 for a, b ∈ R.

Then, a · b ∈ Ii for some i ∈ Ω. Since Ii is an n-hyperideal of R, it follows that b ∈ Ii ⊆
⋃
k∈Ω

Ik.

Therefore,
⋃
k∈Ω

Ik is an n-hyperideal of R.

(2): The proof is straightforward.

The set ann(x) = {a ∈ R | a · x = 0} is called the annihilator of x in R. A proper hyperideal
I of a hyperring (R,+, ·) is said to be an r-hyperideal of R if x · y ∈ I and ann(x) = 0 imply that
y ∈ I for any x, y ∈ R. Every n-hyperideal of a hyperring R is an r-hyperideal of R. The converse
is not true, in general, that is, an r-hyperideal may not be an n-hyperideal of R. The following
example denotes such a situation.

Example 3.6. Let R = {0, a, b, c} be a set with the hyperaddition + and the multiplication · defined
as follows:

+ 0 a b c

0 0 a b c
a a {0, b} {a, c} b
b b {a, c} {0, b} a
c c b a 0

· 0 a b c

0 0 0 0 0
a 0 a b c
b 0 b b 0
c 0 c 0 c

Then, (R,+, ·) is a Krasner hyperring [2]. Clearly, {0}, {0, b} and {0, c} are proper hyperideals of
R. It is easy to see that {0, b} is an r-hyperideal of R, but it is not an n-hyperideal of R. Indeed:

b · c = 0 ∈ {0, b} and b /∈
√

0R but c /∈ {0, b}.

Theorem 3.7. Let p be a prime hyperideal of a hyperring (R,+, ·). Then p is an n-hyperideal of
R if and only if p =

√
0.

Proof. By Lemma 3.2,
√

0 =
⋂

p∈Spec(R)

p ⊆ p. Let p *
√

0. Then there exists a ∈ p such that

a /∈
√

0. Since p is an n-hyperideal of R and a · 1 = a ∈ p, we get 1 ∈ p. Thus, I = R, a
contradiction. Hence, p ⊆

√
0 which implies that p =

√
0.

Conversely, let a · b ∈ p and a /∈
√

0 = p for a, b ∈ R. Since p is a prime hyperideal of R, we
have b ∈ p. Therefore, p is a prime hyperideal of R.

Example 3.8. In Example 3.6, {0, b} is a prime hyperideal of R, but it is not an n-hyperideal of
R.
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For a (multiplicative) submonoid S of a hyperring R, let us consider the following relation in
R× S:

(r, s) ∼ (r′, s′)⇔ ∃x ∈ S s.t. xrs′ = xr′s.

Clearly, ∼ is an equivalence relation on R × S. Let [(r, s)] be the equivalence relation of (r, s) ∈
R×S. S−1R is the set (R×S/ ∼). Now, we define the following hyperoperation ⊕ and operation
� on S−1R,

[(r, s)]⊕ [(r′, s′)] = {[(y, s · s′)] | y ∈ r · s′ + r′ · s}

and

[(r, s)]� [(r′, s′)] = {[(r · r′, s · s′)]}.

Clearly, (S−1R,⊕,�) is a commutative hyperring [7]. The mapping ϕ : R → S−1R given by
ϕ(r) = r/1 is a homomorphism. If I is a hyperideal of R, then

ϕ(I) = S−1I = {λ ∈ S−1R | λ = a/s, ∃a ∈ I, ∃s ∈ S}

is a hyperideal of S−1R. S−1I is called the extension of I in S−1R.

Theorem 3.9. If I is an n-hyperideal of a hyperring (R,+, ·), then S−1I is an n-hyperideal of
S−1R.

Proof. Let r/s � r′/s′ ∈ S−1I and r/s /∈
√

0S−1R for r, r′ ∈ R and s, s′ ∈ S. Then there exists
u ∈ S such that urr′ ∈ I. Next, we show that r /∈

√
0R. If r ∈

√
0R, then there exists n ∈ N such

that rn = 0R. This means that (r/1)n = rn/1 = 0R/1 = 0S−1R = 0R/s, and so r/1 ∈
√

0S−1R.
Since r/s = 1/s� r/1, we get (r/s)n = (1/s)n � 0S−1R = 0S−1R. Hence, r/s ∈

√
0S−1R, which is a

contradiction. This implies that r /∈
√

0R. Now, since I is an n-hyperideal of R, we have ur′ ∈ I
and so r′/s′ = ur′/us′ ∈ S−1I. Therefore, S−1I is an n-hyperideal of S−1R.

Theorem 3.10. Let I be an n-hyperideal of the hyperring (R,+, ·) and ϕ : R→ S a good epimor-
phism such that Kerϕ ⊆ I. Then ϕ(I) is an n-hyperideal of the hyperring (S,⊕,�).

Proof. Clearly, ϕ(I) is a hyperideal of S. Let s1 � s2 ∈ ϕ(I) and s1 /∈
√

0S for s1, s2 ∈ S. Then,
there exist r1, r2 ∈ R such that s1 = ϕ(r1) and s2 = ϕ(r2) (since ϕ is onto) which

s1 � s2 = ϕ(r1)� ϕ(r2) = ϕ(r1 · r2) = ϕ(x) ∈ ϕ(I)

for some x ∈ I. So, we have

0 ∈ ϕ(r1 · r2)	 ϕ(x) = ϕ(r1 · r2 − x).

Hence, there exists t ∈ r1 · r2 − x such that ϕ(t) = 0. By hypothesis, we have

r1 · r2 ∈ t+ x ⊆ Kerϕ+ I ⊆ I + I ⊆ I.

So, r1 · r2 ∈ I. Next, we show that r1 /∈
√

0R. If r1 ∈
√

0R, then there exists n ∈ N such that
r1
n = 0R. This means that ϕ(rn1 ) = ϕ(0) = 0S , and so (ϕ(r1))n = 0S . Hence, s1 = ϕ(r1) ∈

√
0S ,

which is a contradiction. This implies that r1 /∈
√

0R. Now, since I is an n-hyperideal of R, we
get r2 ∈ I and so s2 = ϕ(r2) ∈ ϕ(I). This completes the proof.

Let ϕ : R → S be a homomorrphism of hyperrings and I a hyperideal of R. The hyperideal
〈ϕ(I)〉 of S generated by the set ϕ(I) is called the extension of I, and is denoted by Ie. We have
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〈ϕ(I)〉 = {x ∈ S | x ∈
∑n

i=1 si · ϕ(ai), si ∈ S, ai ∈ I, n ∈ N}.

The mapping ϕ : R → S−1R given by ϕ(r) = r/1 is a homomorphism. Consider λ ∈ S−1I. Then
λ = i/s, where i ∈ I and s ∈ S. Hence, i/1 ∈ ϕ(I). This implies that i/1 ∈ Ie . Since Ie is a
hyperideal of S−1R, we get i/s = 1/s � i/1 ∈ Ie. So, λ = i/s ∈ Ie. Thus, S−1I ⊆ Ie. Now,
suppose that λ ∈ ϕ(I). Then there exists a ∈ I such that λ = a/1. Hence, λ ∈ S−1I which implies
that ϕ(I) ⊆ S−1I. Thus, Ie = 〈ϕ(I)〉 ⊆ S−1I. Hence, S−1I = Ie.

Theorem 3.11. Let I be an n-hyperideal of the hyperring (R,+, ·) and ϕ : R→ S a good epimor-
phism such that Kerϕ ⊆ I. Then Ie is an n-hyperideal of the hyperring (S,⊕,�).

Proof. The proof is similar to the proof of Theorem 3.10.

Theorem 3.12. Let J be an n-hyperideal of the hyperring (S,⊕,�) and ϕ : R → S a good
monomorphism. Then ϕ−1(J) = {a ∈ R | ϕ(a) ∈ J} is an n-hyperideal of the hyperring (R,+, ·).
ϕ−1(J) is called the contraction of J , and is denoted by Jc.

Proof. Since 0 ∈ ϕ−1(J), it follows that ϕ−1(J) 6= ∅. Let x ∈ R. Since ϕ is a homomorphism and
0 ∈ x − x, we have 0 = ϕ(0) ∈ ϕ(x − x) ⊆ ϕ(x) ⊕ ϕ(−x). So 0 ∈ ϕ(x) ⊕ ϕ(−x). Thus, ϕ(−x) is
the inverse of ϕ(x) in the canonical hypergroup (S,⊕). Since 0 ∈ ϕ(x) ⊕ ϕ(−x), it follows that
ϕ(−x) = −ϕ(x). Now, let a1, a2 ∈ ϕ−1(J). Then ϕ(a1), ϕ(a2) ∈ J . Since J is a hyperideal of T ,
we have ϕ(a1 − a2) ⊆ ϕ(a1) 	 ϕ(a2) ⊆ J . Hence a1 − a2 ⊆ ϕ−1(J). Let x ∈ R and a ∈ ϕ−1(J).
Then ϕ(a) ∈ J . Since ϕ is a homomorphism, it follows that ϕ(x · a) = ϕ(x) � ϕ(a) ∈ J . Thus
x · a ∈ ϕ−1(J). Hence, ϕ−1(J) is a hyperideal of R. Now, let a · b ∈ ϕ−1(J) and a /∈

√
0R. Then

ϕ(a) � ϕ(b) = ϕ(a · b) ∈ J . Next, we show that ϕ(a) /∈
√

0S . If ϕ(a) ∈
√

0S , then there exists
n ∈ N such that (ϕ(a))n = 0S . This means that ϕ(an) = 0S = ϕ(0R), and so an = 0R. Hence,
a ∈
√

0R, which is a contradiction. This leads to ϕ(a) /∈
√

0S . Now, since J is an n-hyperideal of
S, we get ϕ(b) ∈ J and so b ∈ ϕ−1(J). Therefore, ϕ−1(J) is an n-hyperideal of R.

A relation σ∗ is the transitive closure of a binary relation σ if (1) σ∗ is transitive; (2) σ ⊆ σ∗

and (3) for any relation σ′, if σ ⊆ σ′ and σ′ is transitive, then σ∗ ⊆ σ′, that is, σ∗ is the smallest
relation that satisfies (1) and (2). Let (R,+, ·) be a hyperring. We define the relation γ as follows:

xγy ⇔ ∃n ∈ N, ∃ki ∈ N, ∃(xi1, · · · , xiki) ∈ R
ki , 1 ≤ i ≤ n,

such that

{x, y} ⊆
n∑
i=1

( ki∏
j=1

xij

)
.

Theorem 3.13. [14] Let R be a hyperring and γ∗ be the transitive closure of γ. Then, we have:

(1) γ∗ is a strongly regular relation both on (R,+) and (R, ·).

(2) The quotient R/γ∗ is a ring.

(3) The relation γ∗ is the smallest equivalence relation such that the quotient R/γ∗ is a ring.

Clearly, ϕ : R→ R/γ∗ defined by ϕ(x) = γ∗(x) for all x ∈ R, is a homomorphism. The kernel
of ϕ, kerϕ, is defined by kerϕ = {x ∈ R | γ∗(x) = γ∗(0)}. We denote by 0R/γ∗ the zero element of
R/γ∗. If R is a Krasner hyperring, then γ∗(0) = 0R/γ∗ and γ∗(−x) = −γ∗(x) for all x ∈ R.
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Theorem 3.14. Let (R,+, ·) be a Krasner hyperring and γ∗ a fundamental relation on R. If I
is an n-hyperideal of R such that Kerϕ ⊆ I, then γ∗(I) = {γ∗(a) | a ∈ I} is an n-hyperideal of
R/γ∗.

Proof. Clearly, γ∗(I) is a hyperideal of R/γ∗. Let γ∗(a) � γ∗(b) ∈ γ∗(I) and γ∗(a) /∈
√

0R/γ∗ for
γ∗(a), γ∗(b) ∈ R/γ∗. Then, there exists x ∈ I such that γ∗(a · b) = γ∗(a)� γ∗(b) = γ∗(x). So, we
have

γ∗(0) = γ∗(a · b)	 γ∗(x) = ϕ(a · b)	 ϕ(x) = ϕ(a · b− x) = γ∗(a · b− x).

Hence, a · b− x ⊆ Kerϕ ⊆ I. Since (R,+) is a canonical hypergroup, we have

a · b ∈ a · b+ 0 ⊆ a · b+ x− x ⊆ I + x ⊆ I.

So, a · b ∈ I. Next, we show that a /∈
√

0R. By hypothesis, we have

γ∗(a) /∈
√

0R/γ∗ =
√
γ∗(0).

If a ∈
√

0R, then there exists n ∈ N such that an = 0. This means that γ∗(an) = γ∗(0), and
so (γ∗(a))n = 0R/γ∗ . Hence, γ∗(a) ∈

√
0R/γ∗ , which is a contradiction. This leads to a /∈

√
0R.

Now, since I is an n-hyperideal of R, we get b ∈ I and so γ∗(b) ∈ γ∗(I). Therefore, γ∗(I) is an
n-hyperideal of R/γ∗.

4 Conclusions

In this paper, we introduced and studied some properties of n-hyperideals of commutative hyper-
rings. Also, we proved that some results on extension (contraction) of n-hyperideals in commutative
hyperrings. Moreover, we described the behavior of n-hyperideals under fundamental relations.
We hope that this paper would offer foundation for further study of the theory on commutative
hyperrings.
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