Two dimensional event set and its application in algebraic structures

Y.B. Jun ${ }^{1}$
${ }^{1}$ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
skywine@gmail.com

Abstract

Two dimensional event set is introduced, and it is applied to algebraic structures. Two dimensional BCK/BCI-eventful algebra, paired B -algebra and paired $\mathrm{BCK} / \mathrm{BCI}$-algebra are defined, and several properties are investigated. Conditions for two dimensional eventful algebra to be a B-algebra and a BCK/BCI-algebra are provided. The process of inducing a paired B-algebra using a group is discussed. Using two dimensional BCI-eventful algebra, a commutative group is established.

Article Information

Corresponding Author:
Y.B. Jun;

Received: March 2020 ;
Accepted: Invited paper.
Paper type: Original.

Keywords:

Two dimensional event (set),
two dimensional BCK/BCIeventful algebra, paired Balgebra, paired BCK/BCIalgebra.

1 Introduction and Priliminaries

The notion of neutrosophic set is developed by Smarandache (9 , [10), and is a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Smarandache [11] considered an entry (i.e., a number, an idea, an object etc.) which is represented by a known part (a) and an unknown part ($b T, c I, d F$) where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, and then he introduced the concept of neutrosophic quadruple numbers. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in . [1] and [2. Neutrosophic quadruple BCK/BCI-algebra is studied in [5] and 77. Using neutrosophic quadruple structures, Jun et al. [4 introduced the notion of events by considering two facts, and applied it to BCK/BCI-algebras. There are many things in our daily lives that we have to choose between two facts. For example, should I read a book or not, go to the movies or not, etc. To consider these two factors, we introduce two-dimensional event sets and try to apply them to algebraic structures. We introduce the notions of two dimensional BCK/BCI-eventful algebra, paired B-algebra and paired BCK/BCI-algebra, and investigate several properties. We provided conditions for two dimensional eventful algebra to be a

[^0]B-algebra and a BCK/BCI-algebra. We discuss the process of inducing a paired B-algebra using a group, and establish a commutative group using two dimensional BCI-eventful algebra.

We describe the basic contents that will be needed in this paper. Let $(X, *, 0)$ be an algebra, i.e., let X be a set with a special element " 0 " and a binary operation " $*$ ", and consider the following conditions.

$$
\begin{align*}
& (\forall u \in X)(u * u=0) \tag{1}\\
& (\forall u \in X)(u * 0=u) \tag{2}\\
& (\forall u \in X)(0 * u=0) \tag{3}\\
& (\forall u, v, w \in X)((u * v) * w=u *(w *(0 * v))) \tag{4}\\
& (\forall u, v \in X)(u * v=0, v * u=0 \Rightarrow u=v) \tag{5}\\
& (\forall u, v \in X)((u *(u * v)) * v=0) \tag{6}\\
& (\forall u, v, w \in X)(((u * v) *(u * w)) *(w * v)=0) \tag{7}
\end{align*}
$$

We say that $X:=(X, *, 0)$ is

- a B-algebra (see [8) if it satisfies (1), (2) and (4),
- a BCI-algebra (see [6]) if it satisfies (1), (5), (6) and (7),
- a BCK-algebra (see [3) if it is a BCI-algebra satisfying (3).

A BCI-algebra $X:=(X, *, 0)$ is said to be p-semisimple (see [3]) if it satisfies:

$$
\begin{equation*}
(\forall u \in X)(0 *(0 * u)=u) \tag{8}
\end{equation*}
$$

2 Two dimensional event sets

Definition 2.1. Let $\ell: X \rightarrow Q$ be a mapping from a set X to a set Q. For any $a, x \in X$, the ordered pair $\left(x, \ell_{a}\right)$ is called a two dimensional event on X where ℓ_{a} is the image of a under ℓ.

The set of all two dimensional events on X is denoted by $\left(X, \ell_{X}\right)$, that is,

$$
\begin{equation*}
\left(X, \ell_{X}\right)=\left\{\left(x, \ell_{a}\right) \mid x, a \in X\right\} \tag{9}
\end{equation*}
$$

and it is called a two dimensional X-event set. By a two dimensional X-eventful algebra we mean a two dimensional X-event set with a binary operation $\&$, and it is denoted by $\left\langle\left(X, \ell_{X}\right), \&\right\rangle$.

Let $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \oplus\right\rangle,\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \ominus\right\rangle$ and $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \odot\right\rangle$ be two dimensional \mathbb{R}-eventful algebras in which " \oplus ", " \ominus " and " \odot " are defined as follows:

$$
\begin{aligned}
& \left(x, \ell_{a}\right) \oplus\left(y, \ell_{b}\right)=\left(x+y, \ell_{a+b}\right), \\
& \left(x, \ell_{a}\right) \ominus\left(y, \ell_{b}\right)=\left(x-y, \ell_{a-b}\right), \\
& \left(x, \ell_{a}\right) \odot\left(y, \ell_{b}\right)=\left(x \cdot y, \ell_{a \cdot b}\right),
\end{aligned}
$$

respectively, for any two dimensional events $\left(x, \ell_{a}\right)$ and $\left(y, \ell_{b}\right)$ on \mathbb{R}. For any $t \in \mathbb{R}$ and a two dimensional event $\left(x, \ell_{a}\right)$ on \mathbb{R}, we define

$$
\begin{equation*}
t\left(x, \ell_{a}\right)=\left(t x, \ell_{t a}\right) \tag{10}
\end{equation*}
$$

In particular, if $t=-1$, then $-1\left(x, \ell_{a}\right)=\left(-x, \ell_{-a}\right)$ and $-1\left(x, \ell_{a}\right)$ is simply denoted by $-\left(x, \ell_{a}\right)$.
Proposition 2.2. Let $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \oplus\right\rangle$, $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \ominus\right\rangle$ and $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \odot\right\rangle$ be two dimensional \mathbb{R}-eventful algebras. Then
(i) $\left(\left(x, \ell_{a}\right) \oplus\left(y, \ell_{b}\right)\right) \oplus\left(z, \ell_{c}\right)=\left(x, \ell_{a}\right) \oplus\left(\left(y, \ell_{b}\right) \oplus\left(z, \ell_{c}\right)\right)$,
(ii) $\left(x, \ell_{a}\right) \oplus\left(y, \ell_{b}\right)=\left(y, \ell_{b}\right) \oplus\left(x, \ell_{a}\right)$,
(iii) $\left(x, \ell_{a}\right) \odot\left(y, \ell_{b}\right)=\left(y, \ell_{b}\right) \odot\left(x, \ell_{a}\right)$,
(iv) $\left(\left(x, \ell_{a}\right) \odot\left(y, \ell_{b}\right)\right) \odot\left(z, \ell_{c}\right)=\left(x, \ell_{a}\right) \odot\left(\left(y, \ell_{b}\right) \odot\left(z, \ell_{c}\right)\right)$,
(v) $t\left(\left(x, \ell_{a}\right) \oplus\left(y, \ell_{b}\right)\right)=t\left(x, \ell_{a}\right) \oplus t\left(y, \ell_{b}\right)$ for all $t \in \mathbb{R}$,
(vi) $(t+s)\left(x, \ell_{a}\right)=t\left(x, \ell_{a}\right) \oplus s\left(x, \ell_{a}\right)$ for all $t, s \in \mathbb{R}$,
$(\operatorname{vii})\left(x, \ell_{a}\right) \oplus\left(-\left(x, \ell_{a}\right)\right)=\left(0, \ell_{0}\right)$.
(viii) $\left(x, \ell_{a}\right) \odot\left(x, \ell_{a}\right)^{-1}=\left(1, \ell_{1}\right)$ where $\left(x, \ell_{a}\right)^{-1}=\left(x^{-1}, \ell_{a^{-1}}\right)$
for all two dimensional events $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right)$ and $\left(z, \ell_{c}\right)$ on \mathbb{R}.
Proof. Straightforward.
By Proposition 2.2, we have the following theorem.
Theorem 2.3. Two dimensional \mathbb{R}-eventful algebras $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \oplus\right\rangle$ and $\left\langle\left(\mathbb{R}, \ell_{\mathbb{R}}\right), \odot\right\rangle$ are commutative groups with identities $\left(0, \ell_{0}\right)$ and $\left(1, \ell_{1}\right)$, respectively.

3 Two dimensional eventful algebras

Let $(X, *, 0)$ be an algebra and $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ be a two dimensional X-eventful algebra in which " \circledast " is defined by

$$
\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(x * y, \ell_{a * b}\right)
$$

respectively, for all $x, y, a, b \in X$. In a two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$, the order "<<" is defined as follows:

$$
\left(x, \ell_{a}\right) \ll\left(y, \ell_{b}\right) \Leftrightarrow x \leq y \text { and } a \leq b
$$

for all $x, y, a, b \in X$ where $x \leq y$ means $x * y=0$ and $a \leq b$ means $a * b=0$.
Theorem 3.1. If $(X, *, 0)$ is a B-algebra, then the two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$.

Proof. For any $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$, we have

$$
\left(x, \ell_{a}\right) \circledast\left(x, \ell_{a}\right)=\left(x * x, \ell_{a * a}\right)=\left(0, \ell_{0}\right),\left(x, \ell_{a}\right) \circledast\left(0, \ell_{0}\right)=\left(x * 0, \ell_{a * 0}\right)=\left(x, \ell_{a}\right)
$$

and

$$
\begin{aligned}
& \left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right)=\left(x * y, \ell_{a * b}\right) \circledast\left(z, \ell_{c}\right) \\
& =\left((x * y) * z, \ell_{(a * b) * c}\right) \\
& =\left(x *(z *(0 * y)), \ell_{a *(c *(0 * b))}\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(z *(0 * y), \ell_{c *(0 * b)}\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(0 * y, \ell_{0 * b}\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right)
\end{aligned}
$$

by (1), (2) and (4), respectively. Therefore $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$.
We say that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a paired B-algebra.

Table 1: Cayley table for the binary operation "*"

$*$	0	a	b
0	0	b	a
a	a	0	b
b	b	a	0

Example 3.2. Let $X=\{0, a, b\}$ be a set with the binary operation "*" as in Table 1 .
For $Q=\left\{0, \frac{1}{2}, 1\right\}$, define a mapping ℓ as follows:

$$
\ell: X \rightarrow Q, x \mapsto \begin{cases}0 & \text { if } x=0 \\ \frac{1}{2} & \text { if } x=a \\ 1 & \text { if } x=b\end{cases}
$$

Then

$$
\begin{aligned}
\left(X, \ell_{X}\right) & =\left\{\left(0, \ell_{0}\right),\left(0, \ell_{a}\right),\left(0, \ell_{b}\right),\left(a, \ell_{0}\right),\left(a, \ell_{a}\right),\left(a, \ell_{b}\right),\left(b, \ell_{0}\right),\left(b, \ell_{a}\right),\left(b, \ell_{b}\right)\right\} \\
& =\left\{(0,0),\left(0, \frac{1}{2}\right),(0,1),(a, 0),\left(a, \frac{1}{2}\right),(a, 1),(b, 0),\left(b, \frac{1}{2}\right),(b, 1)\right\}
\end{aligned}
$$

and the operation \circledast is given by Table 2. It is routine to verify that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a paired B-algebra.

Table 2: Cayley table for the binary operation "*"

\circledast	$\left(0, \ell_{0}\right)$	$\left(0, \ell_{a}\right)$	$\left(0, \ell_{b}\right)$	$\left(a, \ell_{0}\right)$	$\left(a, \ell_{a}\right)$	$\left(a, \ell_{b}\right)$	$\left(b, \ell_{0}\right)$	$\left(b, \ell_{a}\right)$	$\left(b, \ell_{b}\right)$
$\left(0, \ell_{0}\right)$	$(0,0)$	$(0,1)$	$\left(0, \frac{1}{2}\right)$	$(b, 0)$	$(b, 1)$	$\left(b, \frac{1}{2}\right)$	$(a, 0)$	$(a, 1)$	$\left(a, \frac{1}{2}\right)$
$\left(0, \ell_{a}\right)$	$\left(0, \frac{1}{2}\right)$	$(0,0)$	$(0,1)$	$\left(b, \frac{1}{2}\right)$	$(b, 0)$	$(b, 1)$	$\left(a, \frac{1}{2}\right)$	$(a, 0)$	$(a, 1)$
$\left(0, \ell_{b}\right)$	$(0,1)$	$\left(0, \frac{1}{2}\right)$	$(0,0)$	$(b, 1)$	$\left(b, \frac{1}{2}\right)$	$(b, 0)$	$(a, 1)$	$\left(a, \frac{1}{2}\right)$	$(a, 0)$
$\left(a, \ell_{0}\right)$	$(a, 0)$	$(a, 1)$	$\left(a, \frac{1}{2}\right)$	$(0,0)$	$(0,1)$	$\left(0, \frac{1}{2}\right)$	$(b, 0)$	$(b, 1)$	$\left(b, \frac{1}{2}\right)$
$\left(a, \ell_{a}\right)$	$\left(a, \frac{1}{2}\right)$	$(a, 0)$	$(a, 1)$	$\left(0, \frac{1}{2}\right)$	$(0,0)$	$(0,1)$	$\left(b, \frac{1}{2}\right)$	$(b, 0)$	$(b, 1)$
$\left(a, \ell_{b}\right)$	$(a, 1)$	$\left(a, \frac{1}{2}\right)$	$(a, 0)$	$(0,1)$	$\left(0, \frac{1}{2}\right)$	$(0,0)$	$(b, 1)$	$\left(b, \frac{1}{2}\right)$	$(b, 0)$
$\left(b, \ell_{0}\right)$	$(b, 0)$	$(b, 1)$	$\left(b, \frac{1}{2}\right)$	$(a, 0)$	$(a, 1)$	$\left(a, \frac{1}{2}\right)$	$(0,0)$	$(0,1)$	$\left(0, \frac{1}{2}\right)$
$\left(b, \ell_{a}\right)$	$\left(b, \frac{1}{2}\right)$	$(b, 0)$	$(b, 1)$	$\left(a, \frac{1}{2}\right)$	$(a, 0)$	$(a, 1)$	$\left(0, \frac{1}{2}\right)$	$(0,0)$	$(0,1)$
$\left(b, \ell_{b}\right)$	$(b, 1)$	$\left(b, \frac{1}{2}\right)$	$(b, 0)$	$(a, 1)$	$\left(a, \frac{1}{2}\right)$	$(a, 0)$	$(0,1)$	$\left(0, \frac{1}{2}\right)$	$(0,0)$

Proposition 3.3. If $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a paired B-algebra, then
(i) $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right)$,
(ii) $\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)=\left(x, \ell_{a}\right)$,
(iii) $\left(x, \ell_{a}\right) \circledast\left(z, \ell_{c}\right)=\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)$ implies $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$,
(iv) $\left(x, \ell_{a}\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)\right)=\left(\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right)\right) \circledast\left(y, \ell_{b}\right)$,
(v) $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right)$ implies $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$,
$(\mathrm{vi})\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)$ implies $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$,
$(\mathrm{vii})\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)=\left(x, \ell_{a}\right)$
for all $x, y, z, a, b, c \in X$.

Proof. Let $x, y, z, a, b, c \in X$. Then

$$
\begin{aligned}
\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right) & =\left(x * y, \ell_{a * b}\right)=\left((x * y) * 0, \ell_{(a * b) * 0}\right) \\
& =\left(x *(0 *(0 * y)), \ell_{a *(0 *(0 * b))}\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(0 *(0 * y), \ell_{0 *(0 * b)}\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right)
\end{aligned}
$$

which proves (i).
(ii) We have

$$
\begin{aligned}
& \left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)=\left(x * y, \ell_{a * b}\right) \circledast\left(0 * y, \ell_{0 * b}\right) \\
& =\left((x * y) *(0 * y), \ell_{(a * b) *(0 * b)}\right) \\
& =\left(x *((0 * y) *(0 * y)), \ell_{a *((0 * b) *(0 * b))}\right) \\
& =\left(x * 0, \ell_{a * 0}\right)=\left(x, \ell_{a}\right)
\end{aligned}
$$

(iii) Assume that $\left(x, \ell_{a}\right) \circledast\left(z, \ell_{c}\right)=\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)$. It follows from (ii) that

$$
\begin{aligned}
\left(x, \ell_{a}\right) & =\left(\left(x, \ell_{a}\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right) \\
& =\left(\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right) \\
& =\left(y, \ell_{b}\right) .
\end{aligned}
$$

(iv) Using (i), we have

$$
\begin{aligned}
& \left(\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right)\right) \circledast\left(y, \ell_{b}\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)\right)
\end{aligned}
$$

(v) Suppose that $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right)$. Then $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(y, \ell_{b}\right) \circledast\left(y, \ell_{b}\right)$, and so $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$ by (iii).
(vi) Assume that $\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)$. Then

$$
\begin{aligned}
\left(0, \ell_{0}\right) & =\left(x, \ell_{a}\right) \circledast\left(x, \ell_{a}\right)=\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)
\end{aligned}
$$

and so $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$ by (v).
(vii) We have

$$
\begin{aligned}
\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right) & =\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(0, \ell_{0}\right) \\
& =\left((0 * x) * 0, \ell_{(0 * a) * 0}\right) \\
& =\left(0 *(0 *(0 * x)), \ell_{0 *(0 *(0 * a))}\right) \\
& =\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)\right)
\end{aligned}
$$

and so $\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)=\left(x, \ell_{a}\right)$ by (vi).
We provide conditions for two dimensional X-eventful algebra to be a B-algebra.
Theorem 3.4. For an algebra $(X, *, 0)$, the two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$ if and only if it satisfies Proposition 3.3 (vii) and

$$
\begin{align*}
& \left(x, \ell_{a}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right), \tag{11}\\
& \left(\left(x, \ell_{a}\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)\right)=\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right) \tag{12}
\end{align*}
$$

for all $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$.

Proof. Assume that the two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$. The condition Proposition 3.3 (vii) is by Proposition 3.3. It is clear that 11 is true by the definition of B-algebra. Also, we have

$$
\begin{aligned}
& \left(\left(x, \ell_{a}\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)\right)=\left(x, \ell_{a}\right) \circledast\left(\left(\left(y, \ell_{b}\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(y, \ell_{b}\right) \circledast\left(0, \ell_{0}\right)\right)=\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)
\end{aligned}
$$

for all $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$.
Conversely, suppose that $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ satisfies three conditions (11), 12) and Proposition 3.3(vii). Then

$$
\begin{aligned}
\left(x, \ell_{a}\right) & =\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \\
& =\left(\left(x, \ell_{a}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(0, \ell_{0}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)=\left(x, \ell_{a}\right) . \tag{13}
\end{equation*}
$$

Combining 12 with 13 induces

$$
\begin{aligned}
& \left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right) \\
& =\left(\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) *\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right) \\
& =\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right)
\end{aligned}
$$

for all $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$. Therefore $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$.

Theorem 3.5. For an algebra $(X, *, 0)$, the two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$ if and only if it satisfies 11) and

$$
\begin{equation*}
\left(x, \ell_{a}\right) \circledast\left(\left(\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(z, \ell_{c}\right)\right)\right)=\left(y, \ell_{b}\right) \tag{14}
\end{equation*}
$$

for all $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$.
Proof. Assume that the two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$. Then 11) is valid in Theorem 3.4. Using (12), we get

$$
\begin{align*}
& \left(\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(z, \ell_{c}\right)\right) \tag{15}\\
& =\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) .
\end{align*}
$$

It follows that

$$
\begin{aligned}
& \left(x, \ell_{a}\right) \circledast\left(\left(\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(z, \ell_{c}\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)\right) \\
& =\left(\left(x, \ell_{a}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \\
& =\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right) \\
& =\left(y, \ell_{b}\right)
\end{aligned}
$$

which proves 14 .
Conversely, suppose that $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ satisfies 11) and 14). If we substitute $\left(y, \ell_{b}\right)$ for $\left(x, \ell_{a}\right)$ in 14) and use (11), then

$$
\begin{align*}
\left(x, \ell_{a}\right) & =\left(x, \ell_{a}\right) \circledast\left(\left(\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(z, \ell_{c}\right)\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(z, \ell_{c}\right)\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(0, \ell_{0}\right) \tag{16}
\end{align*}
$$

If we put $\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right)=\left(z, \ell_{c}\right)$ and $\left(y, \ell_{a}\right)=\left(x, \ell_{a}\right)$ in 14$)$, then

$$
\begin{align*}
\left(x, \ell_{a}\right) & =\left(0, \ell_{0}\right) \circledast\left(\left(\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \circledast\left(0, \ell_{0}\right)\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(0, \ell_{0}\right)\right) \circledast\left(0, \ell_{0}\right)\right)\right) \\
& =\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \tag{17}
\end{align*}
$$

by (16). Assume that $\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)$. Then

$$
\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)=\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)=\left(y, \ell_{b}\right)
$$

by (17) which proves

$$
\begin{equation*}
\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right) \Rightarrow\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right) \tag{18}
\end{equation*}
$$

Putting $\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right),\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)$ and $\left(z, \ell_{c}\right)=\left(z^{\prime}, \ell_{c^{\prime}}\right)$ in 14 induces

$$
\begin{aligned}
\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right) & =\left(0, \ell_{0}\right) \circledast\left(\left(\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right) \circledast\right.\right. \\
& \left.\left(\left(\left(0, \ell_{0}\right) \circledast\left(0, \ell_{0}\right)\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right)\right) \\
& =\left(0, \ell_{0}\right) \circledast\left(\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right)\right) .
\end{aligned}
$$

It follows from (18) that

$$
\begin{equation*}
\left(y^{\prime}, \ell_{b^{\prime}}\right)=\left(\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right)\right) \tag{19}
\end{equation*}
$$

If we substitute $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right)$ and $\left(z, \ell_{c}\right)$ for $\left(x^{\prime}, \ell_{a^{\prime}}\right),\left(0, \ell_{0}\right) \circledast\left(\left(z^{\prime}, \ell_{c^{\prime}}\right) \circledast\left(x^{\prime}, \ell_{a^{\prime}}\right)\right)$ and $\left(0, \ell_{0}\right)$, respectively, in (14), then

$$
\begin{align*}
& \left(0, \ell_{0}\right) \circledast\left(\left(z^{\prime}, \ell_{c^{\prime}}\right) \circledast\left(x^{\prime}, \ell_{a^{\prime}}\right)\right) \\
& =\left(x^{\prime}, \ell_{a^{\prime}}\right) \circledast\left(\left(\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(z^{\prime}, \ell_{c^{\prime}}\right) \circledast\left(x^{\prime}, \ell_{a^{\prime}}\right)\right)\right)\right) \circledast\left(0, \ell_{0}\right)\right)\right. \\
& \left.\circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(x^{\prime}, \ell_{a^{\prime}}\right)\right) \circledast\left(0, \ell_{0}\right)\right)\right) \tag{20}\\
& =\left(x^{\prime}, \ell_{a^{\prime}}\right) \circledast\left(\left(\left(z^{\prime}, \ell_{c^{\prime}}\right) \circledast\left(x^{\prime}, \ell_{a^{\prime}}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x^{\prime}, \ell_{a^{\prime}}\right)\right)\right) \\
& =\left(\left(x^{\prime}, \ell_{a^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right)
\end{align*}
$$

In (14), taking $\left(x, \ell_{a}\right)=\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(w, \ell_{d}\right),\left(y, \ell_{b}\right)=\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)$ and $\left(z, \ell_{c}\right)=\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)$ imply that

$$
\begin{align*}
\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right) & =\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(w, \ell_{d}\right)\right) \circledast\left[\left(\left(\left(0, \ell_{0}\right) \circledast\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right)\right)\right.\right. \\
& \left.\circledast\left(\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right)\right) \circledast\left(\left(\left(0, \ell_{0}\right) \circledast\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(w, \ell_{d}\right)\right)\right)\right. \tag{21}\\
& \left.\left.\circledast\left(\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right)\right)\right]
\end{align*}
$$

Using (19) and 20, we get

$$
\begin{align*}
& \left(\left(0, \ell_{0}\right) \circledast\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right) \\
& =\left(\left(z^{\prime}, \ell_{c^{\prime}}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right)=\left(z^{\prime}, \ell_{c^{\prime}}\right) \tag{22}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\left(\left(0, \ell_{0}\right) \circledast\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(w, \ell_{d}\right)\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y^{\prime}, \ell_{b^{\prime}}\right)\right)=\left(w, \ell_{d}\right) \tag{23}
\end{equation*}
$$

Combining (21), (22) and (23) induces

$$
\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(z^{\prime}, \ell_{c^{\prime}}\right)=\left(\left(y^{\prime}, \ell_{b^{\prime}}\right) \circledast\left(w, \ell_{d}\right)\right) \circledast\left(\left(z^{\prime}, \ell_{c^{\prime}}\right) \circledast\left(w, \ell_{d}\right)\right)
$$

Therefore $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ is a B-algebra with the special element $\left(0, \ell_{0}\right)$ by Theorem 3.4.
The following theorem shows the process of inducing a paired B-algebra using a group.

Theorem 3.6. If $(X, \circ, 0)$ is a group, then the two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a paired B-algebra where

$$
\circledast:\left(X, \ell_{X}\right) \times\left(X, \ell_{X}\right) \rightarrow\left(X, \ell_{X}\right),\left(\left(x, \ell_{a}\right),\left(y, \ell_{b}\right)\right) \mapsto\left(x \circ y^{-1}, \ell_{a \circ b^{-1}}\right)=\left(x * y, \ell_{a * b}\right)
$$

Proof. Let $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$. Then $\left(x, \ell_{a}\right) \circledast\left(x, \ell_{a}\right)=\left(x \circ x^{-1}, \ell_{a \circ a^{-1}}\right)=\left(0, \ell_{0}\right)$ and $\left(x, \ell_{a}\right) \circledast$ $\left(0, \ell_{0}\right)=\left(x \circ 0^{-1}, \ell_{a \circ 0^{-1}}\right)=\left(x \circ 0, \ell_{a \circ 0}\right)=\left(x, \ell_{a}\right)$. Also

$$
\begin{aligned}
\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right) & =\left(x \circ y^{-1}, \ell_{a \circ b^{-1}}\right) \circledast\left(z, \ell_{c}\right) \\
& =\left(\left(x \circ y^{-1}\right) \circ z^{-1}, \ell_{\left(a \circ b^{-1}\right) \circ c^{-1}}\right) \\
& =\left(x \circ(z \circ y)^{-1}, \ell_{a \circ(c \circ b)^{-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right)=\left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(0 \circ y^{-1}, \ell_{0 \circ b^{-1}}\right)\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(y^{-1}, \ell_{b^{-1}}\right)\right)=\left(x, \ell_{a}\right) \circledast\left(z \circ\left(y^{-1}\right)^{-1}, \ell_{c \circ\left(b^{-1}\right)^{-1}}\right) \\
& =\left(x, \ell_{a}\right) \circledast\left(z \circ y, \ell_{c \circ b}\right)=\left(x \circ(z \circ y)^{-1}, \ell_{a \circ(c \circ b)^{-1}}\right) .
\end{aligned}
$$

Hence $\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(z, \ell_{c}\right)=\left(x, \ell_{a}\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)\right)$. Therefore $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a paired B-algebra.

Let $X:=(X, *, 0)$ be an algebra. In a two dimensional X-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$, we consider the following assertions.

$$
\begin{align*}
& \left(\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right) \circledast\left(\left(x, \ell_{a}\right) \circledast\left(z, \ell_{c}\right)\right)\right) \circledast\left(\left(z, \ell_{c}\right) \circledast\left(y, \ell_{b}\right)\right)=\left(0, \ell_{0}\right) \tag{24}\\
& \left(\left(x, \ell_{a}\right) \circledast\left(\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)\right)\right) \circledast\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right) \tag{25}\\
& \left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \tag{26}\\
& \left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right),\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right) \Rightarrow\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right) \tag{27}
\end{align*}
$$

for all $x, y, z, a, b, c \in X$.
Definition 3.7. Given an algebra $X:=(X, *, 0)$, let $\left\langle\left(X, \ell_{X}\right), \circledast\right\rangle$ be a two dimensional X-eventful algebra with a special element $\left(0, \ell_{0}\right)$. If it satisfies (11), 24) and 25), we say that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCI-eventful algebra. If a two dimensional BCI-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ satisfies the condition (26), it is called a two dimensional BCK-eventful algebra.

Example 3.8. (1) Consider an algebra $X:=(X, *, 0)$ where $X=\{0, a\}$ and the binary operation "*" is given by Table 3. Given a set $Q=\{\alpha, \beta\}$, define a mapping ℓ as follows:

Table 3: Cayley table for the binary operation "*"

$*$	0	a
0	0	0
a	a	0

$$
\ell: X \rightarrow Q, x \mapsto \begin{cases}\alpha & \text { if } x=0 \\ \beta & \text { if } x=a\end{cases}
$$

Then $\left(X, \ell_{X}\right)=\left\{\left(0, \ell_{0}\right),\left(0, \ell_{a}\right),\left(a, \ell_{0}\right),\left(a, \ell_{a}\right)\right\}=\{(0, \alpha),(0, \beta),(a, \alpha),(a, \beta)\}$ and the operation \circledast is given by Table 4. It is routine to verify that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCK-eventful algebra.
(2) The paired B-algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ in Example 3.2 is two dimensional BCI-eventful algebra.

Table 4: Cayley table for the binary operation "*"

\circledast	$\left(0, \ell_{0}\right)$	$\left(0, \ell_{a}\right)$	$\left(a, \ell_{0}\right)$	$\left(a, \ell_{a}\right)$
$\left(0, \ell_{0}\right)$	$(0, \alpha)$	$(0, \alpha)$	$(0, \alpha)$	$(0, \alpha)$
$\left(0, \ell_{a}\right)$	$(0, \beta)$	$(0, \alpha)$	$(0, \beta)$	$(0, \alpha)$
$\left(a, \ell_{0}\right)$	(a, α)	(a, α)	$(0, \alpha)$	$(0, \alpha)$
$\left(a, \ell_{a}\right)$	(a, β)	(a, α)	$(0, \beta)$	$(0, \alpha)$

Table 5: Cayley table for the binary operation "*"

$*$	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

In general, two dimensional BCK/BCI-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ does not satisfy the condition (27) as seen in the following examples.

Example 3.9. Consider an algebra $X=(X, *, 0)$ where $X=\{0, a, b, c\}$ and the binary operation "*" is given by Table 5 .
Given a set $Q=\{0.2,0.5,0.7\}$, define a mapping ℓ as follows:

$$
\ell: X \rightarrow Q, x \mapsto \begin{cases}0.2 & \text { if } x \in\{0, a\} \\ 0.7 & \text { if } x \in\{b, c\}\end{cases}
$$

Then the two dimensional X-event set is given as follows:

$$
\left(X, \ell_{X}\right)=\{(0,0.2),(0,0.7),(a, 0.2),(a, 0.7),(b, 0.2),(b, 0.7),(c, 0.2),(c, 0.7)\}
$$

and it is routine to check that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCI-eventful algebra. But it is not a two dimensional BCK-eventful algebra since $\left(0, \ell_{0}\right) \circledast\left(b, \ell_{c}\right)=\left(c, \ell_{b}\right) \neq\left(0, \ell_{0}\right)$. Note that $\left(0, \ell_{0}\right) \circledast\left(0, \ell_{b}\right)=$ $\left(0, \ell_{c}\right)=(0,0.7)$ and $\left(0, \ell_{b}\right) \circledast\left(0, \ell_{0}\right)=\left(0, \ell_{b}\right)=(0,0.7)$, but $\left(0, \ell_{0}\right) \neq\left(0, \ell_{b}\right)$. Hence $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ does not satisfy the condition 27).

Lemma 3.10. If $X:=(X, *, 0)$ is a BCK/BCI-algebra, then $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional $B C K / B C I$-eventful algebra.

Proof. Straightforward.
By a paired $B C K / B C I$-algebra we mean a two dimensional BCK/BCI-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast\right.$, $\left.\left(0, \ell_{0}\right)\right\rangle$ which satisfies the condition (27).

Example 3.11. (1) Consider a BCK-algebra $X=(X, *, 0)$ where $X=\{0, a, b, c\}$ and the binary operation "*" is given by Table 6.
Given a nonempty set Q, define a mapping ℓ as follows:

$$
\ell: X \rightarrow Q, x \mapsto u
$$

Then $\left(X, \ell_{X}\right)=\{(0, u),(a, u),(b, u),(c, u)\}$, and it is clear that $\left\langle\left(X, \ell_{X}\right), \circledast,(0, u)\right\rangle$ is a two dimensional $B C K$-eventful algebra by Lemma 3.10. It is routine to verify that $\left\langle\left(X, \ell_{X}\right), \circledast,(0, u)\right\rangle$ satisfies the condition (27). Hence it is a paired BCK-algebra.

Table 6: Cayley table for the binary operation "*"

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

(2) Consider the algebra $X=(X, *, 0)$ in Example 3.9 and let ℓ be a mapping from X to a nonempty set Q given by $\ell(x)=v \in Q$ for all $x \in X$. Then $\left(X, \ell_{X}\right)=\{(0, v),(a, v),(b, v),(c, v)\}$, we recall that $X=(X, *, 0)$ is a BCI-algebra, and thus $\left\langle\left(X, \ell_{X}\right), \circledast,(0, v)\right\rangle$ is a two dimensional BCI-eventful algebra by Lemma 3.10. It is routine to verify that $\left\langle\left(X, \ell_{X}\right), \circledast,(0, u)\right\rangle$ satisfies the condition 27). Hence it is a paired BCI-algebra.

We consider a generalization of Example 3.11
Theorem 3.12. Let $X=(X, *, 0)$ be a BCK/BCI-algebra. Given a nonempty set Q, let $\ell: X \rightarrow Q$ be a constant mapping, say $\ell(x)=q$ for all $x \in X$. Then $\left\langle\left(X, \ell_{X}\right), \circledast,(0, q)\right\rangle$ is a paired BCK/BCI-algebra.

Proof. Using Lemma 3.10 , we know that $\left\langle\left(X, \ell_{X}\right), \circledast,(0, q)\right\rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $x, y, a, b \in X$ be such that $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=(0, q)$ and $\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=(0, q)$. Then $(0, q)=\left(x, \ell_{a}\right) \circledast$ $\left(y, \ell_{b}\right)=\left(x * y, \ell_{a * b}\right)=(x * y, q)$ and $(0, q)=\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=\left(y * x, \ell_{b * a}\right)=(y * x, q)$. It follows that $x * y=0$ and $y * x=0$. Hence $x=y$, and so $\left(x, \ell_{a}\right)=(x, q)=(y, q)=\left(y, \ell_{b}\right)$. This shows that $\left\langle\left(X, \ell_{X}\right)\right.$, $\circledast,(0, u)\rangle$ satisfies the condition (27). Therefore it is a paired BCK/BCI-algebra.

Theorem 3.12 shows that it can induce many other BCK/BCI-algebras from given a BCK/BCI-algebra. These induced BCK/BCI-algebras are isomorphic each other. Thus a BCK/BCI-algebra induce a unique paired BCK/BCI-algebra up to isomorphism.

Theorem 3.13. Let $X=(X, *, 0)$ be a BCK/BCI-algebra. Given a nonempty set Q, if a mapping $\ell: X \rightarrow$ Q is ono-to-one, then $\left.\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right)\right\rangle$ is a paired BCK/BCI-algebra.

Proof. Using Lemma 3.10, we know that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $x, y, a, b \in X$ be such that $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right)$ and $\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right)$. Then $\left(0, \ell_{0}\right)=\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(x * y, \ell_{a * b}\right)$ and $\left(0, \ell_{0}\right)=\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=\left(y * x, \ell_{b * a}\right)$. It follows that $x * y=0$, $y * x=0, \ell_{a * b}=\ell_{0}$ and $\ell_{b * a}=\ell_{0}$. Since ℓ is one-to-one, we have $a * b=0$ and $b * a=0$. It follows that $x=y$ and $a=b$. Hence $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$. This shows that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right\rangle\right.$ satisfies the condition 27). Therefore it is a paired BCK/BCI-algebra.

Theorem 3.14. Let $X=(X, *, 0)$ be a BCK/BCI-algebra. Given a nonempty set Q, if a mapping $\ell: X \rightarrow$ Q satisfies $\ell^{-1}\left(\ell_{0}\right)=\{0\}$, then $\left.\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right)\right\rangle$ is a paired BCK/BCI-algebra.

Proof. Using Lemma 3.10 , we know that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $x, y, a, b \in X$ be such that $\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(0, \ell_{0}\right)$ and $\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=\left(0, \ell_{0}\right)$. Then $\left(0, \ell_{0}\right)=\left(x, \ell_{a}\right) \circledast\left(y, \ell_{b}\right)=\left(x * y, \ell_{a * b}\right)$ and $\left(0, \ell_{0}\right)=\left(y, \ell_{b}\right) \circledast\left(x, \ell_{a}\right)=\left(y * x, \ell_{b * a}\right)$. It follows that $x * y=0$, $y * x=0, \ell_{a * b}=\ell_{0}$ and $\ell_{b * a}=\ell_{0}$. Hence $a * b \in \ell^{-1}\left(\ell_{0}\right)=\{0\}$ and $b * a \in \ell^{-1}\left(\ell_{0}\right)=\{0\}$ which shows that $a * b=0$ and $b * a=0$. It follows that $x=y$ and $a=b$. Hence $\left(x, \ell_{a}\right)=\left(y, \ell_{b}\right)$. This shows that $\left\langle\left(X, \ell_{X}\right)\right.$, $\circledast,\left(0, \ell_{0}\right\rangle$ satisfies the condition (27). Therefore it is a paired BCK/BCI-algebra.
Lemma 3.15 (3). Given a BCI-algebra $X=(X, *, 0)$, the following are equivalent,
(i) X is p-semisimple.
(ii) $x *(0 * y)=y *(0 * x)$ for all $x, y \in X$.

Theorem 3.16. The two dimensional BCI-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ induced by a p-semisimple $B C I$-algebra $X=(X, *, 0)$ is a commutative group under the operation \odot which is given by

$$
\odot:\left(X, \ell_{X}\right) \times\left(X, \ell_{X}\right) \rightarrow\left(X, \ell_{X}\right),\left(\left(x, \ell_{a}\right),\left(y, \ell_{b}\right)\right) \mapsto\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)
$$

Proof. By Lemma 3.10, we know that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCI-eventful algebra. Let $\left(x, \ell_{a}\right),\left(y, \ell_{b}\right),\left(z, \ell_{c}\right) \in\left(X, \ell_{X}\right)$. Then

$$
\begin{align*}
\left(x, \ell_{a}\right) \odot\left(y, \ell_{b}\right) & =\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(y, \ell_{b}\right)\right)=\left(x, \ell_{a}\right) \circledast\left(0 * y, \ell_{0 * b}\right) \\
& =\left(x *(0 * y), \ell_{a *(0 * b)}\right)=\left(y *(0 * x), \ell_{b *(0 * a)}\right) \tag{28}\\
& =\left(y, \ell_{b}\right) \circledast\left(0 * x, \ell_{0 * a}\right)=\left(y, \ell_{b}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \\
& =\left(y, \ell_{b}\right) \odot\left(x, \ell_{a}\right)
\end{align*}
$$

by Lemma 3.15, and

$$
\begin{align*}
& \left(\left(y, \ell_{b}\right) \odot\left(z, \ell_{c}\right)\right) \odot\left(x, \ell_{a}\right) \\
& =\left(\left(y, \ell_{b}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \\
& =\left((y *(0 * z)) *(0 * x), \ell_{(b *(0 * c)) *(0 * a)}\right) \\
& =\left((y *(0 * x)) *(0 * z), \ell_{(b *(0 * a)) *(0 * c)}\right) \tag{29}\\
& =\left(\left(y, \ell_{b}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(z, \ell_{c}\right)\right) \\
& =\left(\left(y, \ell_{b}\right) \odot\left(x, \ell_{a}\right)\right) \odot\left(z, \ell_{c}\right)
\end{align*}
$$

Using (28) and 29), we get
$\left(x, \ell_{a}\right) \odot\left(\left(y, \ell_{b}\right) \odot\left(z, \ell_{c}\right)\right)=\left(\left(y, \ell_{b}\right) \odot\left(z, \ell_{c}\right)\right) \odot\left(x, \ell_{a}\right)=\left(\left(y, \ell_{b}\right) \odot\left(x, \ell_{a}\right)\right) \odot\left(z, \ell_{c}\right)=\left(\left(x, \ell_{a}\right) \odot\left(y, \ell_{b}\right)\right) \odot\left(z, \ell_{c}\right)$.
Now,

$$
\begin{aligned}
\left(0, \ell_{0}\right) \odot\left(x, \ell_{a}\right) & =\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right) \\
& =\left(0, \ell_{0}\right) \circledast\left(0 * x, \ell_{0 * a}\right) \\
& =\left(0 *(0 * x), \ell_{0 *(0 * a)}\right)=\left(x, \ell_{a}\right)
\end{aligned}
$$

which shows that $\left(0, \ell_{0}\right)$ is the identity element of $\left(X, \ell_{X}\right)$. Finally, we show that $\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)$ is the inverse of any element $\left(x, \ell_{a}\right)$. In fact,

$$
\begin{aligned}
& \left(x, \ell_{a}\right) \odot\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)=\left(x, \ell_{a}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(\left(0, \ell_{0}\right) \circledast\left(x, \ell_{a}\right)\right)\right) \\
& =\left(x *(0 *(0 * x)), \ell_{a *(0 *(0 * a))}\right) \\
& =\left(x * x, \ell_{a * a}\right)=\left(0, \ell_{0}\right)
\end{aligned}
$$

Therefore $\left\langle\left(X, \ell_{X}\right), \odot,\left(0, \ell_{0}\right)\right\rangle$ is a commutative group.
Corollary 3.17. Let $X=(X, *, 0)$ be a BCI-algebra which satisfies any one of the following assertions.

$$
\begin{align*}
& (\forall x \in X)(0 * x=0 \Rightarrow x=0) \tag{30}\\
& (\forall a \in X)(X=\{a * x \mid x \in X\}) \tag{31}\\
& (\forall a, x \in X)(a *(a * x)=x) \tag{32}\\
& (\forall a, x, y, z \in X)((x * y) *(z * a)=(x * z) *(y * a)) \tag{33}\\
& (\forall x, y \in X)(0 *(y * x)=x * y) \tag{34}\\
& (\forall x, y, z \in X)((x * y) *(x * z)=z * y) \tag{35}
\end{align*}
$$

Then the two dimensional BCI-eventful algebra $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a commutative group under the operation \odot.

Theorem 3.18. Let $f: X \rightarrow Y$ be an onto homomorphism of BCK/BCI-algebras. If $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ satisfies the condition 27), then $\left\langle\left(Y, \zeta_{Y}\right), \circledast,\left(0, \zeta_{0}\right)\right\rangle$ is a paired $B C K / B C I$-algebra where ζ is a mapping from Y to Q.

Proof. By Lemma 3.10, we know that $\left\langle\left(X, \ell_{X}\right), \circledast,\left(0, \ell_{0}\right)\right\rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $\left(x^{\prime}, \zeta_{a^{\prime}}\right),\left(y^{\prime}, \zeta_{b^{\prime}}\right),\left(z^{\prime}, \zeta_{c^{\prime}}\right) \in\left(Y, \zeta_{Y}\right)$. Then there exist $x, y, z, a, b, c \in X$ such that $f(x)=x^{\prime}, f(y)=y^{\prime}$, $f(z)=z^{\prime}, f(a)=a^{\prime}, f(b)=b^{\prime}$ and $f(c)=c^{\prime}$. Hence

$$
\begin{aligned}
& \left(\left(\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(y^{\prime}, \zeta_{b^{\prime}}\right)\right) \circledast\left(\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(z^{\prime}, \zeta_{c^{\prime}}\right)\right)\right) \circledast\left(\left(z^{\prime}, \zeta_{c^{\prime}}\right) \circledast\left(y^{\prime}, \zeta_{b^{\prime}}\right)\right) \\
& =\left(\left(\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(y), \zeta_{f(b)}\right)\right) \circledast\left(\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(z), \zeta_{f(c)}\right)\right)\right) \circledast\left(\left(f(z), \zeta_{f(c)}\right) \circledast\left(f(y), \zeta_{f(b)}\right)\right) \\
& =\left(\left(f(x) * f(y), \zeta_{f(a) * f(b)}\right) \circledast\left(f(x) * f(z), \zeta_{f(a) * f(c)}\right)\right) \circledast\left(f(z) * f(y), \zeta_{f(c) * f(b)}\right) \\
& =\left(\left(f(x * y), \zeta_{f(a * b)}\right) \circledast\left(f(x * z), \zeta_{f(a * c)}\right)\right) \circledast\left(f(z * y), \zeta_{f(c * b)}\right) \\
& =\left(f(x * y) * f(x * z), \zeta_{f(a * b) * f(a * c)}\right) \circledast\left(f(z * y), \zeta_{f(c * b)}\right) \\
& =\left(f(((x * y) *(x * z)) *(z * y)), \zeta_{f(((a * b) *(a * c)) *(c * b)))}\right) \\
& =\left(f(0), \zeta_{f(0)}\right)=\left(0, \zeta_{0}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(y^{\prime}, \zeta_{b^{\prime}}\right)\right)\right) \circledast\left(y^{\prime}, \zeta_{b^{\prime}}\right)\right) \\
& =\left(\left(\left(f(x), \zeta_{f(a)}\right) \circledast\left(\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(y), \zeta_{f(b)}\right)\right)\right) \circledast\left(f(y), \zeta_{f(b)}\right)\right) \\
& =\left(\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(x) * f(y), \zeta_{f(a) * f(b)}\right)\right) \circledast\left(f(x), \zeta_{f(a)}\right) \\
& =\left(\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(x * y), \zeta_{f(a * b)}\right)\right) \circledast\left(f(x), \zeta_{f(a)}\right) \\
& =\left(f(x *(x * y)), \zeta_{f(a *(a * b))}\right) \circledast\left(f(x), \zeta_{f(a)}\right) \\
& =\left(f((x *(x * y)) * y), \zeta_{f((a *(a * b))) * b}\right) \\
& =\left(f(0), \zeta_{f(0)}\right)=\left(0, \zeta_{0}\right)
\end{aligned}
$$

and $\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(x^{\prime}, \zeta_{a^{\prime}}\right)=\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(x), \zeta_{f(a)}\right)=\left(f(x * x), \zeta_{f(a * a)}\right)=\left(f(0), \zeta_{f(0)}\right)=\left(0, \zeta_{0}\right)$. Hence $\left\langle\left(Y, \zeta_{Y}\right), \circledast,\left(0, \zeta_{0}\right)\right\rangle$ is a two dimensional BCI-eventful algebra. Since $\left(0, \zeta_{0}\right) \circledast\left(x^{\prime}, \zeta_{a^{\prime}}\right)=\left(f(0), \zeta_{f(0)}\right) \circledast$ $\left(f(x), \zeta_{f(a)}\right)=\left(f(0 * x), \zeta_{f(0 * a)}\right)=\left(f(0), \zeta_{f(0)}\right)=\left(0, \zeta_{0}\right)$, we know that $\left\langle\left(Y, \zeta_{Y}\right), \circledast,\left(0, \zeta_{0}\right)\right\rangle$ is a two dimensional BCK-eventful algebra. Assume that $\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(y^{\prime}, \zeta_{b^{\prime}}\right)=\left(0, \zeta_{0}\right)$ and $\left(y^{\prime}, \zeta_{b^{\prime}}\right) \circledast\left(x^{\prime}, \zeta_{a^{\prime}}\right)=\left(0, \zeta_{0}\right)$. Then

$$
\left(0, \zeta_{0}\right)=\left(x^{\prime}, \zeta_{a^{\prime}}\right) \circledast\left(y^{\prime}, \zeta_{b^{\prime}}\right)=\left(f(x), \zeta_{f(a)}\right) \circledast\left(f(y), \zeta_{f(b)}\right)=\left(f(x) * f(y), \zeta_{f(a) * f(b)}\right)
$$

and

$$
\left(0, \zeta_{0}\right)=\left(y^{\prime}, \zeta_{b^{\prime}}\right) \circledast\left(x^{\prime}, \zeta_{a^{\prime}}\right)=\left(f(y), \zeta_{f(b)}\right) \circledast\left(f(x), \zeta_{f(a)}\right)=\left(f(y) * f(x), \zeta_{f(b) * f(a)}\right)
$$

which imply that $f(x) * f(y)=0, f(y) * f(x)=0, f(a) * f(b)=0$ and $f(b) * f(a)=0$. Hence $x^{\prime}=f(x)=$ $f(y)=y^{\prime}$ and $a^{\prime}=f(a)=f(b)=b^{\prime}$. Therefore $\left(x^{\prime}, \zeta_{a^{\prime}}\right)=\left(y^{\prime}, \zeta_{b^{\prime}}\right)$. Consequently, $\left\langle\left(Y, \zeta_{Y}\right), \circledast,\left(0, \zeta_{0}\right)\right\rangle$ is a paired BCK/BCI-algebra.

4 Conclusions

We have introduced two-dimensional event sets and have applied it to algebraic structures. We have introduced the notions of two dimensional BCK/BCI-eventful algebra, paired B-algebra and paired BCK/BCIalgebra, and have investigated several properties. We have considered conditions for two dimensional eventful algebra to be a B-algebra and a BCK/BCI-algebra. We have discussed the process of inducing a paired B-algebra using a group, and have established a commutative group using two dimensional BCI-eventful algebra. We have presented examples to show that a two dimensional eventful BCK/BCIalgebra is not a BCK/BCI-algebra, and then we have considered conditions for a two dimensional eventful BCK/BCI-algebra to be a BCK/BCI-algebra. We have studied a paired BCK/BCI-algebra in relation to the BCK/BCI-homomorphism.

References

[1] A.A.A. Agboola, B. Davvaz, F. Smarandache, Neutrosophic quadruple algebraic hyperstructures, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 29-42.
[2] S.A. Akinleye, F. Smarandache, A.A.A. Agboola, On neutrosophic quadruple algebraic structures, Neutrosophic Sets and Systems, 12 (2016), 122-126.
[3] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
[4] Y.B. Jun, S.Z. Song, S.J. Kim, Event and its application in algebraic structures, New Mathematics and Natural Computation, (in press).
[5] Y.B. Jun, S.Z. Song, F. Smarandache, H. Bordbar, Neutrosophic quadruple BCK/BCI-algebras, Axioms, 7 (2018), 41.
[6] J. Meng, Y.B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea, 1994.
[7] M. Mohseni Takallo, Y.B. Jun, Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1) (2020), 95-105.
[8] J. Neggers, H.S. Kim, On B-algebras, Matematicki Vesnik, 54(1-2) (2002), 21-29.
[9] F. Smarandache, Neutrosophy, neutrosophic probability, set, and logic, Proquest Information and Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).
[10] F. Smarandache, A unifying field in logics: Neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, American Reserch Press, Rehoboth, NM, 1999.
[11] F. Smarandache, Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Sets and Systems, 10 (2015), 96-98.

[^0]: https://doi.org/10.29252/HATEF.JAHLA.1.2.2

