The category of hyper residuated lattices

Document Type : Original Article


Tehran, Iran


In this paper, first we consider homomorphisms and also strong homomorphisms between hyper residuated lattices, and their properties are presented. Then we use strong homomorphisms to introduce the category of hyper residuated lattices. We show that this category is neither complete but not cocomplete. Moreover, we find some conditions under which the equalizers and pullbacks exist. Finally, we verify subdirectly irreducible hyper residuated lattices and attempt to construct a hyper residuated lattice from a residuated lattice.


[1] S. Awodey, Category theory, Oxford University Press, United States, (2006).
[2] T.S. Blyth, Lattices and ordered algebraic structures, Springer-Verlag, (2005).
[3] R. Belohlavek, Some properties of residuated lattices, Czechoslovak Mathematical Journal, 53
(2003), 161–171.
[4] R.A. Borzooei, M. Bakhshi, O. Zahiri, Filter theory on hyper residuated lattices, Quasigroups
and Related Systems, 22(1) (2014), 33–50.
[5] R.A. Boorzooei, A. Hasankhani, M.M. Zahedi, Y.B. Jun, On hyper K-algebra, Mathematica
Japonica, 1 (2000), 113–121.
[6] C.C. Chang, Algebraic analysis of many valued logics, Transactions of the American Mathematical Society, 88 (1958), 467–490.
[7] P. Corsini, Prolegomena of hypergroup, Aviani Editore, (1993).
[8] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers,
Dordrecht, (2003).
[9] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms,
Fuzzy Sets and Systems, 124, (2001), 271–288.
[10] Sh. Ghorbani, A. Hasankhani, E. Eslami, Hyper MV-algebras, Set-Valued Mathematics and
Applications, 1 (2008), 205–222.
[11] P. H´ajek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, (1998).
[12] J. Mittas, M. Konstantinidou, Sur une nouvelle g´en´eration de la notion de treillis. Les supertreillis et certaines de leurs propri´t´es g´en´erales, Annales Mathmatiques Blaise Pascal (Clermont II), S´er. Math. Fasc., 25 (1989), 61–83.
[13] M. Ward, R.P. Dilworth, Residuated lattices, Transactions of the American Mathematical
Society, 45 (1939), 335–354.
[14] O. Zahiri, R.A. Borzooei, M. Bakhshi, (Quotient) hyper residuated lattices, Quasigroups and
Related Systems, 20 (2012), 125–138.