Results on hoops

Document Type : Original Article


1 Shahid Beheshti University

2 Hatef University


In this paper, by considering the notion of hoop, were introduced by Bosbach in [7, 8] under the name of complementary semigroups, we show that there are relations among hoops and some of other logical algebras such as residuated lattices, MT L-algebras, BL-algebras, MV-algebras, BCK-algebras, equality algebras, EQ-algebras, R0-algebras, Hilbert algebras, Heyting algebras, Hertz algebras, lattice implication algebras and fuzzy implication algebras. The aim of this paper is to find that under what conditions hoops are equivalent to these logical algebras.


[1] P. Aglian`o., I.M. Ferreirim, F. Montagna, Basic hoops: An algebraic study of continuous
t-norm, Studia Logica, 87(1) (2007), 73–98.
[2] S.Z. Alavi, R.A. Borzooei, M. Aaly Kologani, Filter theory of pseudo hoop-algebras, Italian
Journal of Pure and Applied Mathematics, 37 (2017), 619–632.
[3] W.J. Blok, I.M.A. Ferreirim, On the structure of hoops, Algebra Universalis, 43(2-3) (2000),
[4] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Lukasiewicz-Moisil algebras, Annals of
Discrete Mathematics, 49 (1991).
[5] R.A. Borzooei, M. Aaly Kologani, Local and perfect semihoops, Journal of Intelligent and
Fuzzy Systems, 29(1) (2015), 223–234.
[6] R.A. Borzooei, M. Aaly Kologani, State hoops, Mathematica Slovaca, 67(1) (2017), 1–16.
[7] B. Bosbach, Komplement¨are Halbgruppen. Axiomatik und Arithmetik, Fundamenta Mathematicae, 64 (1969), 257–287.
[8] B. Bosbach, Komplement¨are Halbgruppen. Kongruenzen und Quotienten, Fundamenta Mathematicae, 69 (1970), 1–14.
[9] D. Busneag, Hertz algebras of fractions and maximal Hertz algebra of quotients, Mathematica
Japonica, 39(3) (1993), 461–469.
[10] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics,
2 (1985), 29–35.
[11] C.C. Chang, Algebraic analysis of many valued logics, Transactions of the American Mathematical Society, 88(2) (1958), 467–490.
[12] L.Ciungu, On pseudo-BCK-algebras with pseudo double negation, Annals of the University
of Craiova, Mathematics and Computer Science Series, 37(1) (2010), 19–26.
[13] M. El-Zekey, V.N. Ak, R. Mesiar, On good EQ-algebras, Fuzzy Sets and Systems, 178 (2011),
[14] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms,
Fuzzy Sets and Systems, 124(3) (2001), 271–288.
[15] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of Multiple-Valued Logic
and Soft Computing, 11(1-2) (2005), 153–184.
[16] P. H´ajek, Metamathematics of fuzzy logic, Springer Science and Business Media, 4 (1998).
[17] A. Iorgulescu, Algebras of logic as BCK-algebras, Bucharest: Editura ASE, (2008).
[18] K. Iseki, Y. Imai, On axiom systems of propositional calculi, XIV Proc. Japan Academy, 42(1)
(1966), 19–22.
[19] S. Jenei, Equality algebras, Studia Logica, 100 (2012), 1201–1209.
[20] D.W. Pei, A unified normal residuated based logic system and its completeness, Southeast
Asian Bulletin of Mathematics, 28(6) (2004), 1089–1098.
[21] G.J. Wang, Non-classical mathematical logic and approximate reasoning, Beijing: Science
Press (2000).
[22] M. Ward, R.P. Dilworth, Residuated lattices, Transactions of the American Mathematical
Society, 45(3) (1939), 335–354.
[23] W.M. Wu, Fuzzy implication algebra, Fuzzy Systems and Mathematics, 4(1) (1990), 56–64.
[24] Y. Xu, D. Ruan, K. Qin, J. Liu, Lattice valued logic, Studies in Fuzziness and Soft Computing,
132 (2003).
[25] F. Zebardast, R.A. Borzooei, M. Aaly Kologani, Results on equality algebras, Information
Sciences, 381 (2017), 270–282.