What are pseudo EMV-algebras?

Document Type : Original Article

Authors

1 Mathematical Institute, Slovak Academy of Sciences, Stef´anikova 49, SK-814 73 Bratislava, Slovakia ˇ and Palack´y University Olomouc, Faculty of Sciences, tˇr. 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic

2 Tehran, Iran

Abstract

In the paper, we present EMV-algebras as a common generalization of MV-algebras and generalized Boolean algebras where a top element is not assumed a priori. In addition, we present a non-commutative generalization of EMV-algebras, pseudo MV-algebras and of generalized Boolean algebras. We present main representation results showing a very close connection of pseudo EMValgebra with pseudo MV-algebras, and we give a categorical representation of the category o pseudo EMValgebras without top element. We study also states as analogs of finitely additive states, their topological properties, and we present an integral representation of states by σ-additive probability measures. The paper is a survey over papers [13]{[19].

Keywords


[1] R. Baudot, Non-commutative logic programming language NoClog, In: Symposium 868 LICS,
Santa Barbara, (Short Presentation), (2000), pp 3–9.
[2] G. Boole, An investigation of the Laws of Thought, Macmillan, 1854, reprinted by Diver ress,
New York, (1967).
[3] S. Burris, H.P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York,
(1981).
[4] C.C. Chang, Algebraic analysis of many valued logics, Transactions of the American Mathematical Society, 88 (1958), 467–490.
[5] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning,
Kluwer Academic Publishers, Dordrecht, (2000).
[6] P. Conrad, M.R. Darnel, Generalized Boolean algebras in lattice-ordered groups, Order, 14
(1998), 295–319.
[7] M.R. Darnel, Theory of lattice-ordered groups”, Marcel Dekker, Inc., New York, Basel, Hong
Kong, (1995).
[8] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL-algebras: Part I, Many-valued logic, 8
(2002), 673–714.
[9] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL-algebras: Part II, Many-valued logic, 8
(2002), 715–750.
[10] A. Di Nola, A. Lettieri, Equational characterization of all varieties of MV-algebras, Journal
of Algebra, 221 (1999), 463–474.
[11] A. Dvureˇcenskij, States on pseudo MV-algebras, Studia Logica, 68 (2001), 301–327.
[12] A. Dvureˇcenskij, Pseudo MV-algebras are intervals in `-groups, Journal of the Australian
Mathematical Society, 72 (2002), 427–445.
[13] A. Dvureˇcenskij, O. Zahiri, On EMV-algebras, Fuzzy Sets and Systems, 369 (2019), 57–81.
[14] A. Dvureˇcenskij, O. Zahiri, Loomis–Sikorski theorem for σ-complete EMV-algebras, Journal
of the Australian Mathematical Society, 106 (2019), 200–234.
[15] A. Dvureˇcenskij, O. Zahiri, States on EMV-algebras, Soft Computing, 23 (2019), 7513–7536.
[16] A. Dvureˇcenskij, O. Zahiri, Morphisms on EMV-algebras and their applications, Soft Computing, 22 (2018), 7519–7537.
[17] A. Dvureˇcenskij, O. Zahiri, Pseudo EMV-algebras. I. Basic properties, Journal of Applied
Logics – IfCoLog Journal of Logics and their Applications, 6 (2019), 1285–1327.
[18] A. Dvureˇcenskij, O. Zahiri, Pseudo EMV-algebras. II. Representation and states, Journal of
Applied Logics – IfCoLog Journal of Logics and their Applications, 6 (2019), 1285–1327.
[19] A. Dvureˇcenskij, O. Zahiri, A variety containing EMV-algebras and Pierce sheaves,
http://arxiv.org/abs/1911.06625
[20] A. Dvureˇcenskij, O. Zahiri, Generalized pseudo-EMV-effect algebras, Soft Computing, 23
(2019), 9807–9819.
[21] A. Dvureˇcenskij, O. Zahiri, EMV-pairs, International Journal of General Systems, 48 (2019),
382–405.
[22] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, New York, (1963).
[23] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Multi-Valued Logic, 6 (2001), 95–135.
[24] G. Georgescu, L. Leu¸stean, V. Preoteasa, Pseudo-hoops, J. Multiple-Valued Logic Soft Computing, 11 (2005), 153–184.
[25] K.R. Goodearl, Partially ordered Abelian groups with interpolation, Mathematical Surveys
and Monographs, No. 20, American Mathematical Society, Providence, Rhode Island, (1986).
[26] P. H´ajek, Metamathematics of fuzzy logic, Dordrecht, Kluwer, (1998).
[27] J.L. Kelley, General topology, Van Nostrand, Priceton, New Jersey, (1955).
[28] Y. Komori, Super Lukasiewicz propositional logics, Nagoya Mathematical Journal, 84 (1981),
119–133.
[29] T. Kroupa, Every state on semisimple MV-algebra is integral, Fuzzy Sets and Systems, 157
(2006), 2771–2782.
[30] J. Lukasiewicz, O. Logice tr´ojwarto´sciowej (On three-valued logic) (in Polish), Ruch filozoficzny, 6 (1920), 170–171.
[31] D. Mundici, Interpretation of AF C

-algebras in Lukasiewicz sentential calculus, Journal of
Functional Analysis, 65 (1986), 15–63.
[32] D. Mundici, Averaging the truth-value in Lukasiewicz logic, Studia Logica, 55 (1995), 113–127.
[33] G. Panti, Invariant measures in free MV-algebras, Communications in Algebra, 36 (2008),
2849–2861.
[34] J. Rach˚unek, A non-commutative generalization of MV-algebras, Czechoslovak Mathematical
Journal, 52 (2002), 255–273.