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Abstract

This article aims to provide a method for defining L-
fuzzy algebraic substructures on general algebras. In ad-
dition, the properties of L-fuzzy sets are first reviewed,
and their representations are then provided. Then, alge-
braic substructures are generalized as the closure systems
on the power set of the algebra, and the properties of the
prime and maximal elements in the above closure system
are investigated. By using on these facts, L-fuzzy al-
gebraic substructures concerning the closure system are
defined and studied. Two equivalence characterizations
of the sup property of the ordered set L are provided us-
ing L-fuzzy substructures. Similarly, some properties of
L-fuzzy prime and maximal substructures concerning the
closure system are discussed. Finally, to demonstrate the
broad applicability of the theory of L-fuzzy algebraic sub-
structures, the theory is applied to some specific algebraic
structures, such as groups and pseudo MV -algebras.
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1 Introduction

Zadeh [20] first proposed fuzzy sets in 1965. Then, Goguen [12] generalized fuzzy sets to L-fuzzy
sets in 1967. In 1971, Rosenfeld [17] applied Zadeh’s fuzzy theory to groups and proposed fuzzy
subgroups, which led to the subsequent study of fuzzy structures on groups and rings.

In recent years, logical algebras have been widely used in artificial intelligence. As a result,
many scholars have conducted extensive research on various logical algebras and their substruc-
tures, such as ideals and filters. Fuzzification of these substructures has also been proposed and
studied. For instance, Hoo [13] proposed fuzzy ideals of MV -algebras and BCI-algebras. Later,
Jun and Dymek [9, 10, 14] proposed fuzzy, fuzzy prime, and fuzzy maximal ideals of pseudo
MV -algebras. In another pseudo algebraic structure–pseudo hoops, the theory of fuzzy filters
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was established by Borzooei [1]. Further, Borzooei [5] introduced the concept of Multipolar fuzzy
a-ideals in BCI-algebra. Jun [18] introduced a new type of hesitant fuzzy subalgebras and ideals
in BCK/BCI-algebras. Jun [2] studied the lattice structure of fuzzy A-ideals in an MV -module.
Recently, Xin [19] proposed fuzzy filters on Heyting algebras. Zhan [22] studied fuzzy ideals of
L-algebras.

Although the fuzzifications of substructures in various algebraic structures have been widely
studied, their definitions heavily depend on the algebraic structures themselves. On the contrary,
we propose a method for fuzzifying the substructure, which uses closure systems instead of oper-
ations on algebras. Consequently, a unified L-fuzzification method is established.

This paper is organized as follows. Section 2 presents some basic concepts and properties used
throughout the paper, while Section 3 presents the concept of L-fuzzy sets and their properties.
Moreover, L-fuzzy sets are used to characterize the sup property of the ordered set L. Section
4 provides a represents for L-fuzzy sets to prove that L-fuzzy sets LX and L-nested systems
LN(X) are isomorphic. Moreover, a more straightforward representation is obtained for all L-
fuzzy sets by using our theorem. In Section 5, algebraic substructures are generalized as closure
systems on the power set of an algebra and prime and maximal elements are discussed in a closure
system. The concept of L-fuzzy substructures is introduced concerning a closure system, and their
properties are explored. It is proved that L-fuzzy substructures form a complete lattice when L
is complete, and some equivalent characterizations of the sup property of L are provided using
L-fuzzy substructures. Furthermore, some concrete forms of L-fuzzy substructures are found when
the closure systems satisfy some conditions. Section 6 introduces the concept of L-fuzzy prime and
maximal substructures for a closure system and gives some properties. Equivalent characterizations
of L-fuzzy maximal substructures are also provided to the closure system with some conditions.
Section 7 applies the theory of L-fuzzy substructures to some algebras, such as groups and pseudo
MV -algebras. It is proved that some related definitions in [7, 9, 10, 16, 21] are equivalent to the
concept of L-fuzzy substructures in our paper when the appropriate closure system and L are
chosen. Several results presented in these papers can be considered corollaries of our theory.

2 Preliminaries

Definition 2.1. [6] Suppose that A is set. Recall that a binary relation R on A is a subset of
A × A. A binary relation R on A is called an equivalence relation on A if it satisfies, for any
a, b, c ∈ A,
(E1) (a, a) ∈ R;
(E2) (a, b) ∈ R implies (b, a) ∈ R;
(E3) (a, b), (b, c) ∈ R implies (a, c) ∈ R.
Denote Eq(A) as the set of all equivalence relations on A.

Definition 2.2. [6] Let A be an algebra of type F . Denote r(f ) as the arity of f for any operation
f ∈ F . A subset B of A is a subuniverse of A if B is closed under every operations in F , i.e.,
f(a1, · · · , ar(f )) ∈ B for any a1, · · · , ar(f ) ∈ B and f ∈ F .

Definition 2.3. [4] Let A be a nonempty set and R a binary relation on A. R is called an order
on A if it satisfies, for any x, y, z ∈ A,
(1) (x, x) ∈ R;
(2) (x, y), (y, x) ∈ R implies x = y;
(3) (x, y), (y, z) ∈ R implies (x, z) ∈ R.
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We say that the pair (A,R) is an ordered set if R is an order on A. A subset B of an ordered
set A with the order of A restricted on B is said to be a sub-ordered set of A. A sub-ordered set
B of an ordered set A is said to be an upset if any element of A is greater than some element of B
is in B. By the duality, we have the concept of a down set. If an ordered set A has a supremum
x, we say that x is the greatest element or top element of A. Similarly, if A has an infimum x, we
say that x is the lowest element or bottom element of A. An ordered set is a chain if every pair of
elements in it are comparable. An ordered set is an antichain if every pair of distinct elements in
it is incomparable. If x and y have a supremum; we use the notion x∨ y to denote the supremum
of x and y and call x∨ y the join of x and y; if x, y have an infimum, then we use the notion x∧ y
to denote the infimum of x and y and call x ∧ y the meet of x and y.

Definition 2.4. [4] An ordered set A is called a ∨-semilattice if every pair of elements in A has
a supremum. Similarly, A is called a ∧-semilattice if every pair of elements in A has an infimum.
An ordered set is said to be a lattice if it is both a ∨-semilattice and a ∧-semilattice.

A ∧-semilattice L is considered ∧-complete if it has arbitrary nonempty meets. Similarly, a
∨-semilattice L is considered ∨-complete if it has arbitrary nonempty joins. A lattice is complete
if it is ∨-complete and ∧-complete.

Theorem 2.5. [4] A ∧-complete ordered set is a complete lattice if and only if it has a top element.

Definition 2.6. [4] Let A and B be two ordered sets. A and B are order isomorphic if there exists
a mapping f from A to B such that f is a bijection and both f and f−1 are isotone. Two lattices
M and N are considered to be isomorphic if they are isomorphic as ordered sets.

3 L-fuzzy sets

Definition 3.1. [12] Let X be a nonempty set and L be an ordered set. An L-fuzzy set of X is a
mapping µ : X → L. We denote the set of all L-fuzzy sets of X as LX .

Note: Let X be a nonempty set and (L,≤) be an ordered set. If we define a binary relation on
LX as µ ≤ v if µ(x) ≤ v(x) for any x ∈ X, then ≤ is an order on LX . We have the following
obvious conclusions.

Lemma 3.2. Suppose that X is a nonempty set and (L,≤) is an ordered set. Then, the following
statements hold:
(1) LX is a lattice if and only if L is a lattice;
(2) LX is a complete lattice if and only if L is a complete lattice.

Lemma 3.3. Let X be a nonempty set and L an ordered set. For each µ ∈ LX and t ∈ L, we
denote µt = {x ∈ X | µ(x) ≥ t}. Then
(1) for any m,n ∈ L and µ ∈ LX , m ≥ n implies µm ⊆ µn;
(2) for any µ, v ∈ LX , µ ≤ v if and only if µt ⊆ vt for all t ∈ L;
(3) for any µ, v ∈ LX , µ = v if and only if µt = vt for all t ∈ L;
(4) if L is a lattice, then for any µ, v ∈ LX , and t ∈ L, (µ ∧ v)t = µt ∩ vt and µt ∪ vt ⊆ (µ ∨ v)t;
(5) if L is a complete lattice, then for any µi, i ∈ Λ, and t ∈ L,

( ∧
i∈Λ

µi)t = ∩
i∈Λ

(µi)t and ( ∨
i∈Λ

µi)t ⊇ ∪
i∈Λ

(µi)t.

(6) if L is a lattice, then for any µ ∈ LX and m,n ∈ L, µm∨n = µm ∩ µn.
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In the following, we will demonstrate that µt ∪ vt may not be equal to (µ∨ v)t when L is just a
lattice, and also illustrate that ∪(µi)t may not be equal to (∨µi)t even when L is a complete chain.

Example 3.4. Let X = {a, b, c, d} and L be a lattice as shown in the following Hasse graph. We
define µ, v ∈ LX as follows:
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µ(x) =


n x = a
m x = b
m x = c
0 x = d

µt =


X t = 0

{b, c} t = m
{a} t = n
∅ t = 1

v(x) =


m x = a
n x = b
0 x = c
0 x = d

vt =


X t = 0

{a} t = m
{b} t = n
∅ t = 1

(µ ∨ v)(x) =


1 x = a
1 x = b
m x = c
0 x = d

(µ ∨ v)t =


X t = 0

{a, b, c} t = m
{a, b} t = n
{a, b} t = 1

Apparently, µ1 ∪ v1 ̸= (µ ∨ v)1.

Example 3.5. Let X be a nonempty set and L be the real interval [0, 1]. Define µn ∈ LX as
µn(x) = 1− 1

n (∀x ∈ X), n ∈ {1, 2, 3, . . . }. It is clear that ( ∨
n∈N

µn)1 = X ̸= ∅ = ∪
n∈N

(µn)1.

The following two theorems give the characterizations for the inclusion in Lemma 3.3 (4) and
(5) being equal.

Theorem 3.6. Let X be a nonempty set and L be a lattice. Then for any µ, v ∈ LX , µt ∪ vt =
(µ ∨ v)t(∀t ∈ L) if and only if L is a chain.

Proof. Suppose that L is a chain, µ, v ∈ LX and t ∈ L. Then we have x ∈ (µ∨v)t ⇔ (µ(x)∨v(x)) ≥
t ⇔ max{µ(x ), v(x )} ≥ t ⇔ µ(x ) ≥ t or v(x) ≥ t ⇔ x ∈ µt ∪ vt. and hence µt ∪ vt = (µ ∨ v)t.
Conversely, if L is not a chain, then there exist two elements m,n of L such that m ∨ n is strictly
greater than m and n. Define µ, v ∈ LX as µ(x) = m and v(x) = n (∀x ∈ X). It is apparent that
(µ∨ v)m∨n = {x ∈ X | (µ∨ v)(x) ≥ m∨n} = X ̸= ∅ = µm∨n∪ vm∨n, which is a contradiction.

Theorem 3.7. Let X be a nonempty set and L a complete lattice. Then the following statements
are equivalent.
(i) For any µi ∈ LX , (i ∈ Λ), ( ∨

i∈Λ
µi)t = ∪

i∈Λ
(µi)t (∀t ∈ L).

(ii) L has the sup property (The sup property of a complete lattice L means that
∨
R ∈ R for any

R (̸= ∅) ⊆ L).
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Proof. Suppose that L has the sup property. Then, we have

x ∈ ( ∨
i∈Λ

µi)t ⇒ ∨
i∈Λ

µi(x) ≥ t⇒ ∃ i0 ∈ Λ,

such that
µi0(x) = ∨

i∈Λ
µi(x) ≥ t⇒ x ∈ (µi0)t ⇒ x ∈ ∪

i∈Λ
(µi)t,

and thus ( ∨
i∈Λ

µi)t ⊆ ∪
i∈Λ

(µi)t. The converse inclusion follows from Lemma 3.3 and hence ( ∨
i∈Λ

µi)t =

∪
i∈Λ

(µi)t. Conversely, suppose R = {ai ∈ L | i ∈ Λ} and a = ∨
i∈Λ

ai and define µi(x) = ai (∀x ∈ X).

Since X = ( ∨
i∈Λ

µi)a = {x ∈ X | ( ∨
i∈Λ

µi)(x) ≥ a} = ∪
i∈Λ

(µi)a, there exists an index i0 ∈ Λ such that

(µi0)a ̸= ∅. So a ≥ ai0 = µi0(x0) ≥ a for some x0 in X, which implies a = ai0 ∈ R and hence L
has the sup property.

4 Representation of L-fuzzy sets

Belohlavek [3] proved that there exists a bijection between LX and L-nested systems when L is a
complete residuated lattice. Similarly, we proved that the same result holds when L is an ordered
set. Moreover, there is a one-to-one correspondence between LX and a special subset of C-nested
systems, where C is a complete lattice that L can be embedded in.

The definition of L-nested systems was given in [3], where L is a complete residuated lattice.
In the following, the index L is considered as an ordered set.

Definition 4.1. [3] Let X be a nonempty set and L an ordered set. An L-indexed system
A = {Aa ⊆ X | a ∈ L} is called an L-nested system if
(1) a ≤ b implies Ab ⊆ Aa for any a, b ∈ L;
(2) for any x ∈ X, the set {a ∈ L | x ∈ Aa} is nonempty and has the greatest element.

Let LN(X) denote the collection of all L-nested systems on X. We say that the two L-indexed
systems {Aa ⊆ X | a ∈ L} and {Ba ⊆ X | a ∈ L} are equal if Aa = Ba for every a ∈ L.

Lemma 4.2. Suppose that X is a nonempty set and L is an ordered set. Then the L-indexed
system {µa ⊆ X | a ∈ L} is L-nested for any µ ∈ LX .

Proof. By Lemma 3.3, m ≥ n implies µm ⊆ µn. Suppose x ∈ X and denote xµL = {a ∈ L | x ∈ µa}.
Since µ(x) ∈ xµL and µ(x) ≥ a for each a ∈ xµL, µ(x) = max{a ∈ L | x ∈ µa}, {µa ⊆ X | a ∈ L} is
L-nested.

Lemma 4.3. Let X be a nonempty set, L an ordered set and A = {Aa ⊆ X | a ∈ L} ∈ LN(X).
Then A admits an L-fuzzy set µA , where µA (x) = max{a ∈ L | x ∈ Aa} (∀x ∈ X) and µA

t = At

for every t ∈ L.

Proof. The mapping µA : X → L is well defined since {a ∈ L | x ∈ Aa} has the greatest element
for every x ∈ X. Suppose t ∈ L and At = ∅. If µA

t ̸= ∅, then, we have

µA
t ̸= ∅ ⇒ ∃x0 ∈ µA

t ⇒ µA (x0) = max{a ∈ L | x0 ∈ Aa} ≥ t .

Denote a0 = max{a ∈ L | x0 ∈ Aa}, then it follows from the definition of L-nested systems that
x0 ∈ Aa0 ⊆ At, which contradicts At = ∅. Therefore, At = µA

t = ∅. Suppose t ∈ L and At ̸= ∅.
Then

x ∈ At ⇒ t ∈ {a ∈ L | x ∈ Aa} ⇒ µA (x) = max{a ∈ L | x ∈ Aa} ≥ t ⇒ x ∈ µA
t ,
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which implies µA
t ̸= ∅ and At ⊆ µA

t . Conversely,

x ∈ µA
t ⇒ t ≤ µA (x) = max{a ∈ L | x ∈ Aa}.

By the definition of L-nested systems, we have µA (x) ∈ {a ∈ L | x ∈ Aa} and AµA (x) ⊆ At, which

implies x ∈ AµA (x) ⊆ At and µ
A
t ⊆ At. Therefore, At = µA

t for any t ∈ L.

The following theorem shows that L-fuzzy sets of X can be represented by L-nested systems,
and also, the order structure of LX is determined by L-nested systems.

Theorem 4.4. Let X be a nonempty set and L an ordered set. Then there is a bijection between
LX and LN(X). Furthermore, if we define an order ≤ on LN(X), for any A = {Aa ⊆ X | a ∈
L},B = {Ba ⊆ X | a ∈ L} ∈ LN(X), A ≤ B if and only if Aa ⊆ Ba for any a ∈ L, then LX and
LN(X) are order isomorphic. If L is a lattice, then LX and LN(X) are lattice isomorphic.

Proof. Define φ : LX → LN(X) as µ 7→ {µa | a ∈ L} (∀µ ∈ LX), ψ : LN(X) → LX as
A = {Aa ⊆ X | a ∈ L} 7→ µA (∀A ∈ LN(X)), where µA (x) = max{a ∈ L | x ∈ Aa}(∀x ∈ X ).
Then φ and ψ are both well-defined due to Lemma 4.2 and Lemma 4.3.

Suppose µ ∈ LX . By Lemma 4.3, we have ψ(φ(µ))t = µt for each t ∈ L, and hence ψ(φ(µ)) = µ
by Lemma 3.3 (3). Conversely, suppose A = {Aa ⊆ X | a ∈ L} ∈ LN(X). Then by Lemma 4.3,
we have φ(ψ(A )) = A . Therefore, φ is a bijection and φ−1 = ψ.

Suppose that µ, v are in LX and µ ≤ v. By Lemma 3.3, φ(µ) ≤ φ(v). Conversely, suppose
that A = {Aa ⊆ X | a ∈ L} and B = {Ba ⊆ X | a ∈ L} ∈ LN(X) with A ≤ B. It follows from
Lemma 4.3 that ψ(A )t = At ⊆ Bt = ψ(B)t for each t ∈ L. This implies ψ(A ) ≤ ψ(B) and hence
LX and LN(X) are order isomorphic.

Next, we will prove that LX and LN(X) are lattice isomorphic when L is a lattice. Since it
has been proven that LX and LN(X) are order isomorphic, we only need to prove that LN(X) is
also a lattice.

Denote A ∧ B = {(ψ(A ) ∧ ψ(B))t | t ∈ L} for all A = {Aa ⊆ X | a ∈ L} and B =
{Ba ⊆ X | a ∈ L} ∈ LN(X). Since ψ(A ) ∧ ψ(B) ∈ LX , it follows directly from Lemma 4.2 that
A ∧B ∈ LN(X). By Lemma 3.3 (4), we have (ψ(A )∧ψ(B))t = (ψ(A )t ∩ (ψ(B))t = At ∩Bt for
each t ∈ L. It is easy to see that A ∧ B is indeed the infimum of A and B in LN(X).

Define A ∨ B = {(ψ(A ) ∨ ψ(B))t | t ∈ L}. Similarly, we have A ∨ B ∈ LN(X). By Lemma
3.3 (4), we have (ψ(A ) ∨ ψ(B))t ⊇ ψ(A )t ∪ ψ(B)t = At ∪ Bt for any t ∈ L, which implies that
A ∨B is an upper bound of A and B. Suppose C = {Ca ⊆ X | a ∈ L} is an upper bound of A and
B, i.e., (ψ(C ))t = Ct ⊇ At = (ψ(A ))t and (ψ(C ))t = Ct ⊇ Bt = (ψ(B))t for any t ∈ L. It follows
from Lemma 3.3 that ψ(C ) ≥ ψ(A ) and ψ(C ) ≥ ψ(B), which implies ψ(C ) ≥ ψ(A ) ∨ ψ(B).
Since LX and LN(X) are order isomorphic, we have C = φ(ψ(C )) ≥ φ(ψ(A ) ∨ ψ(B)) = A ∨ B
and A ∨ B is indeed the supremum of A and B. Hence (LN (X ),∧,∨) is a lattice and LX and
LN (X ) are lattice isomorphic.

Remark: When L is an ordered set, any subset of L is also an ordered set. For an arbitrary
L-fuzzy set µ ∈ LX , µ can be viewed as a mapping from X to the ordered set Im(µ)–the image
of µ, which implies that µ can be determined by {µa ⊆ X | a ∈ Im(µ)} and µ(x) = max{a ∈
Im(µ) | x ∈ µa}(∀x ∈ X ).

Next, we will show a simple fact and a very famous theorem proved in [15].

Lemma 4.5. Let X be a nonempty set and M and L be two ordered sets. Then MX is a sub-
ordered set of LX if and only if M is a sub-ordered set of L.
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Lemma 4.6. [15] (Dedekind–MacNeille) For any ordered set E, there exists a complete lattice L
such that E can be embedded into L and the meets and joins that exist in E are preserved in L.

Corollary 4.7. Suppose that X is a nonempty set, L is an ordered set, C is a complete lattice,
and L can be embedded into C. Then LX is a sub-ordered set of CX . Similarly, L is a lattice,
implying that LX is a sublattice of CX .

Corollary 4.7 implies that when L is an ordered set or lattice, LX can be viewed as a sub-ordered
set or sublattice of CX . However, it remains a question whether CX is the smallest complete lattice
that LX can be embedded in, when C is the smallest complete lattice where L can be embedded.
The following example demonstrates that the answer may not be positive.

Example 4.8. Let X = {a, b} and L = {m,n} be an antichain. Then LX = {Amm, Ann, Amn, Anm}
is an antichain, where

Amm(x) =

{
m x = a
m x = b

Ann(x) =

{
n x = a
n x = b

Amn(x) =

{
m x = a
n x = b

Anm(x) =

{
n x = a
m x = b

Denote M = {0, Amm, Ann, Amn, Anm, 1}, where 0 and 1 are the infimum and the supremum
ofM and {Amm, Ann, Amn, Anm} is an anti-chain. Obviously, M is a complete lattice that LX can
be embedded in. Put C = {0,m, n, 1}. Clearly, C is the smallest complete lattice which contains
L. Since CX has 16 elements, which is far more than the number of elements in M , CX is not the
smallest complete lattice that LX can be embedded in.

Note: When C is the smallest complete lattice where L can be embedded, although CX may not
be the smallest complete lattice that LX can be embedded in, C is indeed the smallest complete
lattice that guarantees that CX is a complete lattice and LX ⊆ CX .

5 L-fuzzy substructures

In many algebras, there special substructures exist such as subgroups in groups, ideals in rings or
lattices. These substructures play a fundamental role in studying the structures of the algebras
themselves. For instance, normal subgroups, first introduced by Galois, are essential for defining
quotient groups and the homomorphism theorem between groups. Some special substructures of
algebras are closely related to congruences on the algebras. For example, filters and congruences
on MV -algebras are equivalent. Since these substructures are often associated with the closure
systems and closure operators on the power set of the algebra, in this section, we will delve into
closure systems and closure operators on the power set of an algebra, and introduce the concept
of L-fuzzy substructures to closure systems.

Definition 5.1. [8] Suppose that M is an ordered set. The mapping c : M → M is called a
closure operator on M if
(1) for all x, y ∈M , x ≤ y implies c(x) ≤ c(y);
(2) for all x ∈M , c(x) ≥ x;
(3) for all x ∈M , c(c(x)) = c(x).



24 F.H. Xiao, X.F. Yang, X.L. Xin

Definition 5.2. [8] Let M be a complete lattice. A ⊆M is called a closure system if
(1) 1 ∈ A, where 1 is the top element of M ;
(2) A is closed under arbitrary nonempty meet.
We use the notation C (M) to represent the set of all closure systems on M when M is complete.

Remark:[8] When M is a complete lattice, we can observe that a closure system A of M is a ∧-
complete ∧-sublattice ofM , and (A,∧M ,∨A) forms a complete lattice. Both C (M ) and C (M) are
complete lattices and are dual isomorphic, where the isomorphic mapping from C (M ) to C (M)
is given by c 7→ Im(c) = {c(x ) | x ∈ X } (∀c ∈ C (M )), and the inverse mapping is A 7→ cA

(∀A ∈ C (M)), where cA(x) = ∧{a ∈ A | x ≤ a} (∀x ∈M).

Definition 5.3. [4] Let X be a nonempty set and A ∈ C (P(X)). M ∈ A where M ̸= ∅ is said
to be prime in A if M is proper and A ∩ B ⊆ M implies A ⊆ M or B ⊆ M for any A,B ∈ A .
M ∈ A is said to be maximal in A if M is proper and M ⊆ A implies A =M or A = X for any
A ∈ A . We denote by Prim(A ) and Max (A ) the set of all prime elements and maximal elements
in A , respectively.

Remark: In fact, if we regard A as a lattice, then the definition of prime elements in A is similar
to that in lattice theory, so we still use Prim(L) to denote the set of all prime elements in lattice
or ∧-semilattice L.

Proposition 5.4. Let X be a nonempty set, A ∈ C (P(X)) and P1, P2 ∈ Prim(A ). Then
(1) P1 ∩ P2 ∈ Prim(A ) if and only if P1 ⊆ P2 or P2 ⊆ P1;
(2) Prim(A ) is ∩-closed if and only if (Prim(A ),⊆) is a chain.

Proof. (1) If P1 ⊆ P2 or P2 ⊆ P1, then P1 ∩ P2 = P1 or P2 and hence P1 ∩ P2 ∈ Prim(A ).
Conversely, if P1 ∩ P2 ∈ Prim(A ), then P1 ∩ P2 ⊆ P1 ∩ P2 implies P1 ⊆ P1 ∩ P2 or P2 ⊆ P1 ∩ P2,
and hence P1 ⊆ P2 or P2 ⊆ P1 and (Prim(A ),⊆) is a chain.

(2) The result follows directly from (1).

Definition 5.5. Let X be a nonempty set, A ∈ C (P(X)) and L an ordered set. µ ∈ LX is called
an L-fuzzy substructure to A if µt (µt ̸= ∅) ∈ A for any t ∈ L. We call µ an L(A ) substructure
for short and denote L(A ) as the set of all the L(A ) substructures.

Proposition 5.6. Let X be a nonempty set, A a closure system of X and L a complete lattice.
Then L(A ) is a closure system.

Proof. Obviously, L(A ) has the greatest element—the constant mapping which sends every ele-
ment of X to 1. Suppose µi ∈ L(A ), i ∈ Λ. Since µit ∈ A (∀t ∈ L, i ∈ Λ), we have ∩

i∈Λ
µit ∈ A .

It follows from Lemma 3.3 that ( ∧
i∈Λ

µi)t = ∩
i∈Λ

µit ∈ A (∀t ∈ L), which implies ∧
i∈Λ

µi ∈ L(A ), and

hence L(A ) is a closure system.

Note: Proposition 5.6 shows that L(A ) is a complete lattice for any A ∈ C (P(X)) when L is
complete. When L is a lattice, it is evident that L(A ) forms a ∧-semilattice for any A ∈ C (P(X)).
However, whether L(A ) forms a lattice for any A ∈ C (P(X)) remains a question.

The following theorem shows the order relations between the set of all closure systems C (P(X))
and the set of all L-fuzzy substructures concerning these closure systems. We reveal that C (P(X))
and the set of all L-fuzzy substructures for these closure systems are lattice isomorphic under
inclusion order, i.e., L(A 1 ∩ A 2 ) = L(A 1 ) ∩ L(A 2 ) and L(A 1 ∨ A 2 ) = L(A 1 ) ∨ L(A 2 ), where
A 1∩A 2 and A 1∨A 2 are the infimum and the supremum of A 1 and A 2 in C (P(X)), respectively.
L(A 1 )∩L(A 2 ) and L(A 1 )∨L(A 2 ) are the infimum and the supremum of L(A 1 ) and L(A 2 ) in
{L(A ) | A ∈ C (P(X ))}, respectively.
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Theorem 5.7. Let X be a nonempty set and L an ordered set. Then the mapping f , A 7→ L(A ),
is a lattice isomorphism between C (P(X)) and the image Im(f ) of f and Im(f ) is a complete
lattice, where the order on C (P(X)) and Im(f ) is inclusion order.

Proof. We first prove that f is injective. Suppose that A 1, A 2 ∈ C (P(X)) and A 1 ̸= A 2. We
may assume that there exists an element E of A 1 such that E /∈ A 2. Define µE : X → L as

µE(x) =

{
1 x ∈ E
0 x /∈ E

.

It’s clear that µE ∈ f(A 1) and µE /∈ f(A 2), which implies f(A 1) ̸= f(A 2) and hence f is
injective. f is order-preserving. Suppose B1,B2 ∈ Im(f) with B1 ⊆ B2. Assume that A 1 =
f−1(B1) and A 2 = f−1(B2) and A 1 * A 2, then ∃E ∈ A 1 such that E /∈ A 2. It follows directly
that µE ∈ f(A 1) = B1 and µE /∈ f(A 2) = B2, which is a contradiction. Therefore, A 1 ⊆ A 2,
i.e., f−1 is isotone and hence C (P(X)) and Im(f ) are order isomorphic.

Let Bi ∈ Im(f), i ∈ Λ and f(A i) = Bi. It’s easy to see that ∩
i∈Λ

A i ∈ C (P(X)). Next, we

will prove that f( ∩
i∈Λ

A i) = ∩
i∈Λ

Bi. Since f is order preserving, we have f( ∩
i∈Λ

A i) ⊆ ∩
i∈Λ

f(A i) =

∩
i∈Λ

Bi. Conversely, for any µ ∈ ∩
i∈Λ

Bi, we have µt ∈ A i (∀i ∈ Λ, t ∈ L), which implies µt ∈ ∩
i∈Λ

A i

(∀t ∈ L) and hence µ ∈ f( ∩
i∈Λ

A i). Therefore, ∩
i∈Λ

Bi ⊆ f( ∩
i∈Λ

A i) and so f( ∩
i∈Λ

A i) = ∩
i∈Λ

Bi,

i.e., ∩
i∈Λ

Bi ∈ Im(f ). Apparently, ∩
i∈Λ

Bi is indeed, the infimum of {Bi, i ∈ Λ}, which implies

that Im(f ) is ∩-complete. Since Im(f ) has the greatest element LX , Im(f ) is a complete lattice.
Since C (P(X)) and Im(f ) are both complete lattices and are order isomorphic, they are lattice
isomorphic.

Since every closure system in C (P(X)) admits a closure operator on P(X), by the above proof,
the set of all closure operators in P(X) can be embedded in the set of all closure operators in
P(LX) when L is a complete lattice.

Theorem 5.8. Suppose that X is a nonempty set and L is a complete lattice. Then the following
statements are equivalent.
(1) L has the sup property.
(2) For any A ∈ C (P(X)), µi ∈ L(A ), i ∈ Λ and t ∈ L, ( ∨

i∈Λ
µi)t = ∨

i∈Λ
µit, where ∨

i∈Λ
µi is the

supremum of µi in L(A ) and ∨
i∈Λ

µit is the supremum of µit in A .

(3) For any A ∈ C (P(X)), i ∈ Λ, µi ∈ L(A ), t ∈ L and I ∈ A , if ∨
i∈Λ

(µi)t ⊆ I, then there exists

an L-fuzzy set υ in L(A ) such that ∨
i∈Λ

µi ≤ υ and υt = I.

Proof. (1) ⇒ (2) Let A ∈ C (P(X)), µi ∈ L(A ), i ∈ Λ, and t ∈ L. Apparently, µit ⊆ ( ∨
i∈Λ

µi)t and

so ∨
i∈Λ

(µi)t ⊆ ( ∨
i∈Λ

µi)t. Conversely, by Lemma 3.3 (1), since m ≤ n implies µin ⊆ µim (∀i ∈ Λ), we

have ∨
i∈Λ

µin ⊆ ∨
i∈Λ

µim. Since L has the sup property, we have ∨{a ∈ L | x ∈ ∨
i∈Λ

µia} ∈ {a ∈ L | x ∈

∨
i∈Λ

µia} (∀x ∈ X) and so { ∨
i∈Λ

µia | a ∈ L} is an L-nested system. By Theorem 4.4, µjt ⊆ ∨
i∈Λ

µit =

[ψ({ ∨
i∈Λ

µia | a ∈ L})]t (∀j ∈ Λ, t ∈ L), which implies µj ≤ ψ({ ∨
i∈Λ

µia | a ∈ L}) (∀j ∈ Λ) and hence

∨
i∈Λ

µi ≤ ψ({ ∨
i∈Λ

µia | a ∈ L}). It follows that ( ∨
i∈Λ

µi)t ⊆ [ψ({ ∨
i∈Λ

µia | a ∈ L})]t = ∨
i∈Λ

µit and so

( ∨
i∈Λ

µi)t = ∨
i∈Λ

µit.
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(2) ⇒ (1) Since L(A ) = LX when A = P(X), the result follows directly from Theorem 3.7.
(2) ⇒ (3) Put

λI(x) =

{
t x ∈ I
0 x /∈ I

then it is clear that λI ∈ L(A ). Put υ = ∨
i∈Λ

µi ∨ λI , then ∨
i∈Λ

µi ≤ υ and

υt = ( ∨
i∈Λ

µi ∨ λI)t = ∨
i∈Λ

(µi)t ∨ (λI)t = I.

(3) ⇒ (2) Let A ∈ C (P(X)), µi ∈ L(A ), i ∈ Λ, and t ∈ L. Since ∨
i∈Λ

(µi)t ⊆ ∨
i∈Λ

(µi)t, there

exists an L-fuzzy set ω in L(A ) with ∨
i∈Λ

µi ≤ ω and ωt = ∨
i∈Λ

(µi)t. Hence ( ∨
i∈Λ

µi)t ⊆ ωt = ∨
i∈Λ

(µi)t

and so ( ∨
i∈Λ

µi)t = ∨
i∈Λ

(µi)t.

Remark: According to Theorem 4.4 and Theorem 5.8, it’s easy to see the following result
holds. If L has the sup property, then for any A ∈ C (P(X)), i ∈ Λ, µi ∈ L(A ), and x ∈ X,
( ∨
i∈Λ

µi)(x) = ∨{a ∈ L | x ∈ ∨
i∈Λ

µia}. Theorem 5.8 gives the join formula of two L-fuzzy substruc-

tures to the closure system and proves the existence of the L-fuzzy substructures satisfying certain
properties when L has the sup property. To be interesting, the above three are equivalent. The
result in Theorem 5.11 can be widely used. When we deal with problems by using fuzzy sets in
the real world, it is no need to use the real integer [0, 1]; a finite subset of [0, 1] will be sufficient,
and any finite subset of [0, 1] has the sup property.

In the following of part, we discuss the characters of L-fuzzy substructures for the closure
system with special features and give several equivalent characterizations for the L-fuzzy sets
equipped with special properties.

Theorem 5.9. Suppose that X and L are two ordered sets and A ∈ C (P(X)). Recall that a map
µ from X to L is said to be isotone if x ≤ y implies µ(x) ≤ µ(y) for any x, y in X. Similarly, µ
is said to be anti-tone if x ≤ y implies µ(x) ≥ µ(y). Then, the following statements hold.
(1) µ is anti-tone for any µ ∈ L(A ) if and only if every element (̸= ∅) of A is downset;
(2) µ is isotone for any µ ∈ L(A ) if and only if every element (̸= ∅) of A is upset.

Proof. (1) Suppose that A is a nonempty element in A . Define an L-fuzzy set λA as

λA(x) =

{
t x ∈ A
s x /∈ A

where s < t. Apparently, λA is in L(A ). Let y ∈ A and x ∈ X with x ≤ y. Since λA is anti-tone,
we have λA(x) ≥ λA(y) = t, i.e., x ∈ (λA)t = A. Therefore, A is down set. Conversely, suppose
µ ∈ L(A ) and x, y ∈ X with x ≤ y. We may denote n as µ(y), apparently, y ∈ µn and µn ∈ A .
Since µn is downset, we have x ∈ µn, which implies µ(x) ≥ n = µ(y) and hence µ is anti-tone.

(2) The proof for (2) is similar to (1).

Lemma 5.10. Let X be a nonempty set, L an ordered set and A ∈ C (P(X)). If there exists a
constant element c that belongs to every element (̸= ∅) of A , then µ(c) ≥ µ(x) for all µ ∈ L(A )
and x ∈ X.

Proof. Suppose µ ∈ L(A ) and x ∈ X. Since µ(x) ∈ µµ(x) implies µµ(x) ̸= ∅, c ∈ µµ(x), i.e.,
µ(c) ≥ µ(x).
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Corollary 5.11. Let X and L be two ordered sets, A ∈ C (P(X)) and µ ∈ L(A ). Then
(1) if every element (̸= ∅) of A is down set and X has the lowest element 0, then µ(0) ≥ µ(x)
(∀x ∈ X);
(2) if every element ( ̸= ∅) of A is up set and X has the greatest element 1, then µ(1) ≥ µ(x)
(∀x ∈ X).

Theorem 5.12. Let X be an algebra of type F , L a lattice and A ∈ C (P(X)). Then every
element ( ̸= ∅) of A is a subuniverse of X if and only if for any µ ∈ L(A ) and f ∈ F ,

µ(f(x1, x2, · · · , xr(f))) ≥ µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xr(f )),

for any x1, x2, · · · , xr(f ) ∈ X.

Proof. (⇒) Suppose µ ∈ L(A ), f ∈ F and x1, x2, · · · , xr(f) ∈ X and assume µ(xi) = mi,
i = 1, 2, · · · , r(f ). It’s clear that µ(xi) = mi ≥ ∧

j=1,2,··· ,r(f)
mj (i = 1, 2, · · · , r(f )). Denote m

as ∧
j=1,2,··· ,r(f )

mj , then we have xi ∈ µm. Since µm is a subuniverse of X, f(x1, x2, · · · , xr(f )) ∈ µm

and hence

µ(f(x1, x2, · · · , xr(f ))) ≥ m = ∧
j=1,2,··· ,r(f )

mj = µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xr(f )).

(⇐) Suppose A ( ̸= ∅) ∈ A , f ∈ F and x1, x2, · · · , xr(f) ∈ A and define an L-fuzzy set λA as

λA(x) =

{
t x ∈ A
s x /∈ A

where s < t. It clear that λA ∈ L(A ) and so we have

λA(f(x1, x2, · · · , xr(f ))) ≥ λA(x1) ∧ λA(x2) ∧ · · · ∧ λA(xr(f )) = t,

which implies f(x1, x2, · · · , xr(f )) ∈ (λA)t = A. Therefore, A is a subuniverse of X.

6 L-fuzzy prime substructures and maximal substuctures

Definition 6.1. Let X be a nonempty, L an ordered set and A ∈ C (P(X)). Then µ ∈ L(A ) is
said to be prime if µ is not constant and µt (µt ̸= ∅, X) ∈ Prim(A ) for all t ∈ L, and µ is called
an L-fuzzy prime substructure concerning A . We may denote PL(A ) as the set of all the L-fuzzy
prime substructures to A .

Proposition 6.2. Suppose that X is a nonempty set, L is a lattice, A ∈ C (P(X)) and µ ∈ PL(A ).
Then µm ∩ µn ̸= ∅ implies µm ⊆ µn or µn ⊆ µm for all m,n ∈ L.

Proof. Let m,n ∈ L with µm ∩ µn ̸= ∅. If µm = X or µn = X, then result is obvious. Otherwise,
we have µm, µn ∈ Prim(A ). Since µm∨n = µm∩µn (by Lemma 3.3 (6)), we have µm∨n ∈ Prim(A )
and it follows from Proposition 5.4 that µm ⊆ µn or µn ⊆ µm.

Prime substructures are necessary for algebras. In the following, we give a sufficient condition
for an L-fuzzy substructure to be a prime L-fuzzy substructure when L is a lattice. Every prime
element of L-fuzzy substructures L(A ) is a prime L-fuzzy substructure for A , and we show that
the inverse result may not valid in Example 6.4.
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Theorem 6.3. Let X be a nonempty set, L a lattice with a bottom element 0 and A ∈ C (P(X)).
Then every prime element in L(A ) is an L-fuzzy prime substructures concerning A , i.e.,

Prim(L(A )) ⊆ PL(A ).

Proof. Let ω ∈ Prim(L(A )) and t ∈ L with ωt ̸= ∅ and ωt ̸= X. For any A,B ∈ A with
A ∩B ⊆ ωt, define two L-fuzzy sets λA and λB as

λA(x) =

{
t x ∈ A
0 x /∈ A

and λB(x) =

{
t x ∈ B
0 x /∈ B

then it follows directly that λA, λB ∈ L(A ) and λA ∧ λB ≤ ω. Since ω ∈ Prim(L(A )), we have
λA ≤ ω or λB ≤ ω. By Lemma 3.3(2), we have A = (λA)t ⊆ ωt or B = (λB)t ⊆ ωt and hence
ωt ∈ Prim(A ), which implies ω ∈ PL(A ) and hence Prim(L(A )) ⊆ PL(A ).

In general, the inverse inclusion in Theorem 6.3 may not hold, and the following example will
show that.

Example 6.4. Let X = {a, b, c}, L a lattice as shown in Example 3.4 and A = P(X). It can be
easily checked that Prim(A ) = {{a, b}, {a, c}, {b, c}}. Put

ω(x) =


m x = a
m x = b
0 x = c

Apparently, ω is in PL(A ) and if we put

µ(x) =


m x = a
1 x = b
m x = c

, ν(x) =


1 x = a
m x = b
n x = c

it’s easy to check that µ, ν ∈ L(A ), µ ∧ ν ≤ ω, µ � ω and ν � ω, which implies ω /∈ Prim(L(A )).

Definition 6.5. Let X be a nonempty set, L an ordered set and A ∈ C (P(X)). Then µ ∈ L(A )
is said to be maximal if µ is not constant and µt (µt ̸= ∅, X) ∈ Max (A ) for all t ∈ L, and then
µ is called an L-fuzzy maximal substructure to A . Denote ML(A ) as the set of all the L-fuzzy
maximal substructures for A .

Theorem 6.6 gives two characterizations of maximal L-fuzzy substructures concerning closure
A . We find the formula of maximal L-fuzzy substructures and use the set µµ(c) to characterize
it. This result will be helpful to readers who want to define maximal L-fuzzy substructures on a
specific algebra, such as MV -algebra (see Example 7.8).

Theorem 6.6. Let X be a nonempty set, L an ordered set, A ∈ C (P(X)) and µ ∈ L(A ). If there
exists an element c that belongs to every element (̸= ∅) of A . Then the following statements are
equivalent
(1) µ ∈ ML(A );
(2) µµ(c) ∈ Max (A );

(3) µ(x) =

{
n x ∈ A
m x /∈ A

for some A ∈ Max (A ) and m,n ∈ L with m < n.
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Proof. (1) ⇒ (2) Suppose µ ∈ ML(A ). By Lemma 5.10, we have µ(c) ≥ µ(x) for all x ∈ X. Since µ
is not constant, there exists an element x0 ofX such that µ(x0) ̸= µ(c), i.e., µ(x0) < µ(c). It follows
that x0 /∈ µµ(c). Since c ∈ µµ(c), we have µµ(c) ̸= ∅ and µµ(c) ̸= X and hence µµ(c) ∈ Max (A ).

(2) ⇒ (3) Suppose µµ(c) ∈ Max (A ). For any x ∈ µµ(c), we have µ(c) ≥ µ(x) (by Lemma
5.10) and µ(x) ≥ µ(c), which implies µ(x) = µ(c) for all x ∈ µµ(c). Since µ is not constant, there
is an element x1 of X with µ(x1) ̸= µ(c) (i.e., µ(c) > µ(x1)). Assume that there exists another
element x2 ∈ X with µ(x2) ̸= µ(x1) and µ(x2) ̸= µ(c). If µ(x1) < µ(x2) or µ(x2) < µ(x1), then
µµ(c) $ µµ(x2) $ µµ(x1) or µµ(c) $ µµ(x1) $ µµ(x2), which contradicts µµ(c) ∈ Max (A ). If µ(x1)
and µ(x2) are incomparable, then x1 /∈ µµ(x2) and so µµ(c) $ µµ(x2) $ X, which is a contradiction.
Therefore,

µ(x) =

{
µ(c) x ∈ µµ(c)
µ(x1) x /∈ µµ(c)

where µµ(c) ∈ Max (A ) and µ(x1) < µ(c).
(3) ⇒ (1) Suppose

µ(x) =

{
n x ∈ A
m x /∈ A

for some A ∈ Max (A ) and m,n ∈ L with m < n. Apparently, µt ∈ {A,X,∅} (∀t ∈ L) and hence
µ ∈ ML(A ).

The following example reveals that the condition that there exists a constant element c that
belongs to every element ( ̸= ∅) of A is necessary for Theorem 6.6.

Example 6.7. Let X = {a, b, c}, L a lattice as shown in Example 3.4 and

A = {∅, {a}, {b}, {c}, {a, b, c}}.

Clearly, Max (A ) = {{a}, {b}, {c}}. Denote

µ(x) =


m x = a
n x = b
0 x = c

It can be seen that µ is in ML(A ) without being the form in Theorem 6.6.

7 Applications

Firstly, we will discuss the application of our theory in defining L-fuzzy relations. Fuzzy relations
were first introduced by Zadeh [20]. We use FR(A) to denote the set of all fuzzy relations on a
nonempty set A. Zadeh defined a fuzzy relation from X to Y as a mapping from X×Y to the real
interval [0, 1], and he also introduced fuzzy equivalence relations [21]. Another particular type of
fuzzy relations, namely fuzzy congruence relations, was introduced by V. Murali [16].

Next, we will apply our theory to some specific algebraic structures to define their fuzzy sub-
structures. We will provide examples of fuzzy substructures that have been defined, as well as
fuzzy prime substructures and fuzzy maximal substructures that have been introduced by some
authors.

In the following section, we will present their definitions and show how they can be characterized
by L-fuzzy substructures when we choose the appropriate set X, ordered set L and A ∈ C (P(X)).
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Example 7.1. The definition of fuzzy equivalence relations defined by Zadeh [21] is presented as
follows.

Let A be a nonempty set and [0, 1] a real interval. A binary fuzzy relation θ is called a fuzzy
equivalence relation if
(1) θ(x, x) = 1 for any x ∈ A;
(2) θ(x, y) = θ(y, x) for any x, y ∈ A;
(3) θ(x, z) ≥ θ(x, y) ∧ θ(y, z) for any x, y, z ∈ A.
Denote FEq(A) as the set of all the fuzzy equivalence relations on A.

Example 7.2. The definition of fuzzy congruence relations defined by V. Murali [16] is shown as
follows.

Let A be an algebra of type F and [0, 1] a real interval. A fuzzy equivalence relation (defined
in Example 7.1) θ is called a fuzzy congruence if θ has the substitution property. θ with the sub-
stitution property means that f̃(θ, θ, · · · , θ) ≤ θ for any f ∈ F , where f̃ is an operation on FR(A)
induced by f and r(f̃ ) = r(f ). f̃ is defined as f̃(θ1, θ2, · · · , θr(f ))(x, y) = sup

x,y
( min
1≤i≤r(f )

(θi(xi, yi))),

where the sup
x,y

stands for the supremum being taken over all representations of x and y of the form

x = f(x1, x2, · · · , xr(f )) and y = f(y1, y2, · · · , yr(f )). If no such representation for x and y exist,

then f̃(θ1, θ2, · · · , θr(f ))(x, y) = 0. Denote FCon(A) as the set of all fuzzy congruences on A.

In fact, Eq(A) and Con(A) are closure systems on P(A2).

Theorem 7.3. Let A be a nonempty set, L = [0, 1] and θ be a binary fuzzy relation. Then
(1) θ is a fuzzy equivalence relation if and only if θt ∈ Eq(A) for any t ∈ L;
(2) If A is an algebra of type F , then θ is a fuzzy congruence if and only if θt ∈ Con(A) for any
t ∈ L.

Proof. We only prove (2). V. Murali [16] had proven that if θ is a fuzzy congruence, then θt ∈
Con(A) for any t ∈ L. Conversely, suppose θt ∈ Con(A) for any t ∈ L. Since θ1 is a congruence
relation on A, (x, x) ∈ θ1 for any x ∈ A, i.e., θ(x, x) = 1 for any x ∈ A. Suppose (x, y) ∈ A2 with
θ(x, y) = t. Since (x, y) ∈ θt and θt is a congruence, we have (y, x) ∈ θt and so θ(y, x) ≥ t = θ(x, y).
Similarly, we have θ(x, y) ≥ θ(y, x) and hence θ(x, y) = θ(y, x). Suppose (x, y), (y, z) ∈ A2 and
assume θ(x, y) = m, θ(y, z) = n. Then θ(x, y) = m ≥ m ∧ n and θ(y, z) = n ≥ m ∧ n and
so (x, y), (y, z) ∈ θm∧n. Since θm∧n is a congruence on A, we have (x, z) ∈ θm∧n, and hence
θ(x, z) ≥ m ∧ n = θ(x, y) ∧ θ(y, z). Therefore, θ is a fuzzy equivalent relation on A.

Next, we will prove that θ has the substitution property. Suppose f ∈ F and (x, y) ∈ A2. If
the representations for x and y to f exist and x = f(x1, x2, · · · , xr(f )) and y = f(y1, y2, · · · , yr(f ))
is one of their representations. Assume that θ(xi, yi) = mi, 1 ≤ i ≤ r(f ), then it follows directly
that (xj , yj) ∈ θ min

1≤i≤r(f )
(mi)(1 ≤ j ≤ r(f )) since θ(xj , yj) = mj ≥ min

1≤i≤r(f )
(mi). Since θ min

1≤i≤r(f )
(mi)

is a congruence on A, we have (x, y) = (f(x1, x2, · · · , xr(f )), f(y1, y2, · · · , yr(f ))) ∈ θ min
1≤i≤r(f )

(mi). It

follows that θ(x, y) ≥ min
1≤i≤r(f)

(mi) = min
1≤i≤r(f)

(θi(xi, yi)) and hence

θ(x, y) ≥ sup
x,y

( min
1≤i≤r(f)

(θi(xi, yi))) = f̃(θ, θ, · · · , θ)(x, y).

If no such representation for x and y exist, then θ(x, y) ≥ 0 = f̃(θ, θ, · · · , θ)(x, y) and so θ(x, y) ≥
f̃(θ, θ, · · · , θ)(x, y) for any (x, y) ∈ A2. Therefore, θ ≥ f̃(θ, θ, · · · , θ), i.e., θ has the substitution
property, and hence θ is a fuzzy congruence on A.
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Remark: Put X = A2, A = Con(A) and L = [0, 1]. According to the above proof, θ is a fuzzy
congruence if and only if θt ∈ A for any t ∈ L. Apparently, the definition of fuzzy congruences
is stronger than the concept of L-fuzzy substructures for A . Next, we will use our theory to give
two weaker definitions of L-fuzzy equivalence relations and L-fuzzy congruence relations.

Example 7.4. (1) Let X be a nonempty set, L an ordered set, A = Eq(X ) and θ ∈ LX2
. Then

θ is called an L-fuzzy equivalence relation on X if θ ∈ L(A ).
(2) Let X be an algebra of type F , L an ordered set, A = Con(X ) and θ ∈ LX2

. Then θ is called
an L-fuzzy congruence on X if θ ∈ L(A ).

Next, we will give equivalent characterizations of the above definitions when L is a lattice.

(1
′
) Let X be a nonempty set, L a lattice and A = Eq(X ). Then θ ∈ LX2

is an L-fuzzy equiv-
alence relation (defined in Example 7.4) on X if and only if θ satisfies the following conditions.
(i) θ(x, x) ≥ θ(y, z) for any x, y, z ∈ X;
(ii) θ(x, y) = θ(y, x) for any x, y ∈ X;
(iii) θ(x, z) ≥ θ(x, y) ∧ θ(y, z) for any x, y, z ∈ X.

(2
′
) Let X be an algebra of type F , L a lattice and A = Con(X ). Then θ ∈ LX2

is an L-fuzzy
congruence (defined in Example 7.4) on X if and only if θ satisfies the following conditions.
(i) θ(x, x) ≥ θ(y, z) for any x, y, z ∈ X;
(ii) θ(x, y) = θ(y, x) for any x, y ∈ X;
(iii) θ(x, z) ≥ θ(x, y) ∧ θ(y, z) for any x, y, z ∈ X.
(iv) for any f ∈ F and x1, x2, · · · , xr(f ), y1, y2, · · · , yr(f ) ∈ X, θ(f(x1, x2, · · · , xr(f )),
f(y1, y2, · · · , yr(f))) ≥ θ(x1, y1) ∧ θ(x2, y2) ∧ · · · ∧ θ(xr(f ), yr(f )).

In fact, for any θ ∈ LX2
satisfying the above conditions in (2

′
), θt ̸= ∅ implies θt ∈ Con(X) =

A . Conversely, if θ is an L-fuzzy congruence on X, by Lemma 5.10 and Theorem 5.12, we have
that (i) and (iv) hold. In addition, it is easy to prove that (ii) and (iii) hold as well.

Example 7.5. [7] (Fuzzy subgroup) Let G be a group and [0, 1] be a real interval. A fuzzy subset
µ of G is called fuzzy subgroup of G if for any x, y ∈ G, µ satisfies
(1) µ(xy) ≥ min(µ(x ), µ(y));
(2) µ(x−1) ≥ µ(x).
Denote Sub(G) as the set of all subgroups of G and FSub(G) as the set of all fuzzy subgroups of
G.

The author in [7] has proven that a fuzzy set µ is a fuzzy subgroup if and only if µt (µt ̸= ∅)
is a subgroup of G for any t ∈ [0, 1]. If we put L = [0, 1] and A = Sub(G), then A is a closure
system of P(G) and FSub(G) = L(A ).

In fact, since every element ( ̸= ∅) of A is a subuniverse of G, by Theorem 5.12, µ must satisfy
(1) and (2) for any µ ∈ L(A ). The proposition given by the author, that µ(e) ≥ µ(x) for any
µ ∈ FSub(G) and x ∈ G, can be seen as an inference of Lemma 5.10, since e is a constant element
that belongs to every element of Sub(G).

Recall that a pseudo MV -algebra [9] A = (A,⊕,− ,∼ , 0, 1) is an algebra of type (2, 1, 1, 0, 0)
satisfying the following conditions.
(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(A2) x⊕ 0 = 0⊕ x = x,
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(A3) x⊕ 1 = 1⊕ x = 1,
(A4) 1∼ = 0, 1− = 0,
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,
(A6) x⊕ x∼ · y = y ⊕ y∼ · x = x · y− ⊕ y = y · x− ⊕ x,
(A7) x · (x− ⊕ y) = (x⊕ y∼) · y,
(A8) (x−)∼ = x,
where x · y = (y− ⊕ x−)∼. If the addition ⊕ is commutative, the both unary operations − and ∼

coincide and A is anMV -algebra. An ideal I of a pseudoMV -algebra A is a subset of A satisfying
(I1) 0 ∈ I,
(I2) if x, y ∈ I, then x⊕ y ∈ I,
(I3) if x ∈ I, y ∈ A and y ≤ x, then y ∈ I.

Example 7.6. [9] (Fuzzy ideals in pseudo MV -algebra) Let A be a pseudo MV -algebra and [0, 1]
a real interval. A fuzzy set µ of A is called a fuzzy ideal of A if for any x, y ∈ A, it satisfies
(1) µ(x⊕ y) ≥ µ(x) ∧ µ(y);
(2) x ≤ y implies µ(x) ≥ µ(y).
Denote FI (A) as the set of all fuzzy ideals in A.

It can be easily proven that Id(A) is a closure system of P(A). It was proven in [14] that a
fuzzy set µ is a fuzzy ideal if and only if µt (µt ̸= ∅) ∈ Id(A) for any t ∈ [0, 1]. As a result, if
we put A = Id(A) and L = [0, 1], then L(A ) = FI (A). In fact, since every element ( ̸= ∅) of A
is a subuniverse of (A,⊕) and also a down set, according to Theorem 5.9 and Theorem 5.12, any
µ ∈ L(A ) must satisfy (1) and (2).

Example 7.7. [10] (Fuzzy prime ideals in pseudo MV -algebra) Let A be a pseudo MV -algebra
and [0, 1] a real interval. A fuzzy ideal (defined in Example 7.6) µ is said to be fuzzy prime if it is
not constant and satisfies µ(x ∧ y) = µ(x) ∨ µ(y) for all x, y ∈ A. We denote by PId(A) the set of
all prime ideals of A, and by FPId(A) the set of all fuzzy prime ideals of A.

Put A = Id(A) and L = [0, 1], then the definition of prime ideals in A coincides the concept of
Prim(A ). Next, we will prove that FPId(A) = PL(A ). The fact that I ∈ Id(A) is prime if and
only if x ∧ y ∈ I implies x ∈ I or y ∈ I had been proved in [11].

Suppose µ ∈ FPId(A) and t ∈ L with µt ̸= ∅ and µt ̸= X. Then by Example 7.6, we have
µt ∈ Id(A). For any x, y ∈ A with x ∧ y ∈ µt, we have t ≤ µ(x ∧ y) = µ(x) ∨ µ(y), which implies
x ∈ µt or y ∈ µt and hence µt ∈ Prim(A ). It follows that µ ∈ PL(A ), and we have shown that
FPId(A) ⊆ PL(A ). Conversely, suppose µ ∈ PL(A ). By Example 7.6, we have µ ∈ FId(A).
Since x ∧ y ∈ µµ(x∧y), if µµ(x∧y) = A, then µ(x) ≥ µ(x ∧ y) and µ(y) ≥ µ(x ∧ y). It follows
directly that µ(x) ∨ µ(y) = µ(x ∧ y). If µµ(x∧y) ̸= A, then by the premise, µµ(x∧y) ∈ Prim(A ),
which implies x ∈ µµ(x∧y) or y ∈ µµ(x∧y). In other words, µ(x) ≥ µ(x ∧ y) or µ(y) ≥ µ(x ∧ y)
and hence µ(x) ∨ µ(y) ≥ µ(x ∧ y). Hence µ(x) ∨ µ(y) = µ(x ∧ y) and µ ∈ FPId(A). Therefore,
PL(A ) ⊆ FPId(A).

Note: The result proved in [10], that µ ∈ Prim(FId(A)) implies µ ∈ FPId(A), can be seen as a
corollary of Theorem 6.3.

Example 7.8. [9] (Fuzzy maximal ideals) Let A be a pseudoMV -algebra and [0, 1] a real interval.
Then a fuzzy ideal µ (defined in Example 7.6) is said to be fuzzy maximal if Aµ is a maximal ideal
of A, where Aµ = µµ(0).

If we denote by MId(A) and FMId(A) the set of all maximal ideals and fuzzy maximal ideals of
A, respectively, then the maximal ideals in this paper are indeed the maximal elements of Id(A).
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This paper gives the following properties:
(1) I ∈ Id(A) is maximal if and only if µI is fuzzy maximal, where

µI(x) =

{
m x ∈ I
n x /∈ I

and m,n ∈ [0, 1] with m > n.
(2) I ∈ Id(A) is maximal if and only if χI is fuzzy maximal, where χI is the characteristic function
of I.
(3) If µ ∈ FMId(A), then µ takes only two distinct values.
(4) Suppose that µ is a fuzzy subset of A and µ is not constant. Then µ ∈ FMId(A) if and only if
µt ∈ MId(A) whenever µt ̸= ∅ and µt ̸= A.

Put A = Id(A) and L = [0, 1]. Example 7.6 shows that L(A ) = FI (A). Since MId(A) =
Max (A ) and 0 is a constant element that belongs to every element ( ̸= ∅) of A , it can easily see
that the properties given above can be viewed as corollaries for Theorem 6.6.

8 Conclusions

In this paper, uses closure systems to generalize substructures in general algebra, which provides
a method to establish the unified fuzzification theory for substructures. The broad applications
of our theory are also illustrated. For example, if the closure system A is set as all equivalence
relations on a set X, then the L-fuzzy substructures concerning A are L-fuzzy equivalence re-
lations. Similarly, if the closure system A is set as all congruence relations on an algebra X,
then the L-fuzzy substructures to A are L-fuzzy congruence relations. The definitions of L-fuzzy
equivalence relations and L-fuzzy congruence relations are generalizations of Examples 7.1 and
7.2. Furthermore, our theory is also used in groups and pseudo MV -algebras. It is proved that
their definitions of fuzzy substructures are equivalent to L-fuzzy substructures when appropriate
closure system A and L are considered. Finally, it is confirmed that many results in [9], [10], and
[7] can be viewed as corollaries from our theory.

Based on the closure systems, this paper only discusses some common properties of L-fuzzy
substructures and several exceptional cases when the algebra X, the closure system A and the
ordered set L have certain characters. Thus, in our future work, we expect to use our theory in
fuzzy topologies and rough sets. We can also take some special ordered set L, such as a completely
distributive lattice. This will provide better results as our theory is used.
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