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Abstract

Rough is an exceptional mathematical tool for effectively
analyzing and addressing the complexities of vague action
descriptions in decision problems. This paper explores
the concept of an L-algebra, which leads to the introduc-
tion of lower and upper approximations. The properties
of these approximations are also discussed and elucidated.
Furthermore, it is proved that the lower and upper ap-
proximations serve as interior and closure operators, re-
spectively. Additionally, by employing A-lower and A-
upper approximations, this paper presents and examines
conditions for a nonempty subset to be definable. Fur-
thermore, we investigated the circumstances under which
the A-lower and A-upper approximations can be rough
ideals. Finally, we define an operation y on the set of all
upper approximations of L and prove that it is made an
L-algebra.
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1 Introduction

The rough sets theory, initially introduced by Pawlak in [25], has consistently demonstrated its
effectiveness as a powerful mathematical tool for analyzing the inherent vagueness in describing
objects, precisely actions, in decision problems. Rough sets theory has proven to apply to a wide
range of issues. In recent years, mathematicians have explored the idea of roughness in various
fields of mathematics. For instance, Iwinski presented an algebraic perspective on rough sets
in [14]. The application of rough set theory to semigroups and groups has been investigated in
[17, 18]. In 1994, Biswas and Nanda introduced and examined the concept of rough groups and
rough subgroups in [6]. Jun applied rough set theory to BCK-algebras in [7, 15, 24]. More recently,
Rasouli introduced and studied the notion of roughness in MV-algebras in [26].
The quantum Yang-Baxter equation (QYBE), formulated independently by Zhenning Yang and
R.J. Baxter in 1967 and 1972, respectively, stands as the cornerstone in the field of mathematical
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physics [10]. This equation serves as a fundamental principle linking various mathematical struc-
tures, including quantum binomial algebras [11, 12], I-type semigroups, and Bieberbach groups
[13], plane curves, dyeing of bijective 1-type cocycles [10], semi-munipolar small triangular Hopf
algebra [22], dynamic systems [9], geometric crystals [8], and more. While numerous early solu-
tions to the QYBE have been discovered and extensively studied about their algebraic structures,
these solutions primarily consist of variations of the standard identity solutions. Therefore, the
search for non-trivial solutions becomes imperative. Drinfeld proposed investigating of a specific
class of ”set theory solutions” involving linear operators [8]. These operators act on vector spaces
V generated by a set L and induced by a mapping L × L → L × L. In 2005, W. Rump studied
the algebraic solution of the quantum Yang-Baxter equation. He pointed out that L is a set with
a binary operation y. The equation

(b y p) y (b y w) = (p y b) y (p y w), (L)

is a true statement of propositional logic and some of its generalizations [21]. On the other hand,
(L) is closely related to the quantum Yang-Baxter equation. In algebraic logic, new aspects were
recently found in [19]. We say that an element 1 ∈ L is a logical unit [19] if b y b = b y 1 = 1
and 1 y b = b holds for all b ∈ L. In the presence of (L), a logical unit defines a quasi-ordering
b ≤ p if and only if b y p = 1, and if this is a partial order, we call L an L-algebra [19]. For the
theory of L-algebras, the reader is referred to [1, 2, 3, 4, 5, 19, 20, 23].

Rough is an exceptional mathematical tool for analyzing vague action descriptions in decision
problems. This paper discusses L-algebras, which introduce lower and upper approximations and
examine their properties. Furthermore, it is proven that the lower and upper approximations
serve as interior and closure operators, respectively. Additionally, by employing A-lower and A-
upper approximations, this paper presents and examines conditions for a nonempty subset to be
definable. Furthermore, we investigate the circumstances under which the A-lower and A-upper
approximations can be rough ideals. Finally, we define an operation y on the set of all upper
approximations of L and prove that it is made an L-algebra.

2 Preliminaries

This section provides a list of the default contents known to be used later.

Definition 2.1. [19] An algebraic structure (L;y, 1) is referred to as an L-algebra if it satisfies
the following conditions for any b, p,w ∈ L:
(L1) b y b = b y 1 = 1 and 1 y b = b,
(L2) (b y p) y (b y w) = (p y b) y (p y w),
(L3) if b y p = p y b = 1, then b = p.

Note. We must note that each logical unit in L is always unique. If L has the smallest element
0, it is a bounded L-algebra. In an L-algebra with 0, for any element b, we define an operation ′

on L such that b′ = b y 0. A bounded L-algebra L is said to have a ’negation’ if the mapping
b 7→ b′ is bijective. The inverse mapping is b 7→ b. If b = b′, then L is known as an L-algebra with
double negation.

If we consider the operation y as a logical implication, then we can define a partial order on
L using the following:

b ≤ p if and only if b y p = 1. (2.1)

You can see the proof in [19].
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Proposition 2.2. Consider an L-algebra (L,y, 1). If b ≤ p, then it follows that w y b ≤ w y p
for any b, p,w ∈ L.

Proposition 2.3. The following conditions are equivalent for an L-algebra (L,y, 1):
(i) b ≤ p y b,
(ii) if b ≤ p, then p y w ≤ b y w,
(iii) ((b y p) y w) y w ≤ ((b y p) y w) y ((p y b) y w), for any b, p,w ∈ L.

Definition 2.4. [19] A KL-algebra is defined as an L-algebra (L,y, 1) that satisfies the condition:

b y (p y b) = 1, (K)

for any b, p ∈ L.

Notation. If (L,y, 1) is a KL-algebra, then the equivalent statements of Proposition 2.3 hold
true.

Definition 2.5. [19] A CKL-algebra is an L-algebra (L,y, 1) that satisfies the condition:

b y (p y w) = p y (b y w), (C)

for any b, p,w ∈ L.

Note. It is evident that every CKL-algebra is also a KL-algebra. This is because for any
b, p ∈ L, we have the following:

b y (p y b) = p y (b y b) = p y 1 = 1. (2.2)

Proposition 2.6. [4] Assuming (L,y, 1) is a CKL-algebra, then the following properties hold for
any b, p,w ∈ L:
(i) if b ≤ p, then w y b ≤ w y p,
(ii) b y (p y b) = 1, i.e., b ≤ p y b,
(iii) b ≤ (b y p) y p,
(iv) b ≤ p y w if and only if p ≤ b y w,
(v) if b ≤ p, then p y w ≤ b y w,
(vi) ((b y p) y w) y w ≤ ((b y p) y w) y ((p y b) y w),
(vii) w y p ≤ (p y b) y (w y b),
(viii) w y p ≤ (b y w) y (b y p),
If L has a least element as 0, then
(ix) if b ≤ p, then p′ ≤ b′,
(x) b ≤ b′′, and b′ = b′′′,
(xi) b′ ≤ b y p,
(xii) ((b y p) y p) y p = b y p,
(xiii) (n y p) y (b y p) ≤ (n y x) y [(x y p) y (b y p)].
(xiv) If L has double negation, then b y p = p′ y b′.

Definition 2.7. [19] A subset I of an L-algebra (L,y, 1) is referred to as an ideal of L if it satisfies
the following conditions for all b, p ∈ L:
(I1) 1 ∈ I,
(I2) if b ∈ I and b y p ∈ I, then p ∈ I,
(I3) if b ∈ I, then (b y p) y p ∈ I,
(I4) if b ∈ I, then p y b ∈ I and p y (b y p) ∈ I.
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It is evident that {1} and L are two trivial ideals of the L-algebra. An ideal I of L is considered
a proper ideal if I is not equal to L. The set of all ideals of L is denoted by Id(L), while the set
of all proper ideals of L is denoted by pId(L).

Proposition 2.8. [4] Every ideal of L is upset.

In the context of an L-algebra, a binary relation ∼= is considered a congruence relation on L if
it satisfies the following properties:
1. It is an equivalence relation.
2. For any b, p,w ∈ L, the following holds:

b ∼= p ⇔ (w y b) ∼= (w y p) and (b y w) ∼= (p y w).

Theorem 2.9. [19, Proposition 1] Let (L,y, 1) be an L-algebra. Then every ideal I of L defines
a congruence relation on L, for any b, p ∈ L, where

b ∼= p ⇔ b y p, p y b ∈ I.

Conversely, every congruence relation ∼= defines an ideal I = {b ∈ L | b ∼= 1}.

Let
L
I
= {[b] | b ∈ L}, where [b] = {p ∈ L | b ∼= p} and I ∈ I(L). Then the binary relation ≤I

on
L
I
which is defined by

[b] ≤I [p] if and only if b y p ∈ I,

and (
L
I
,≤I) is a poset (see [19, Proposition 2]).

Consider L1 and L2 are two L-algebras. A map h : L1 → L2 is an L-homomorphism if it
satisfies in the following conditions:

h(b y p) = h(b) y h(p).

An L-homomorphism h is called an L-isomorphism if h is bijective.

Let Ξ be an equivalence relation on a set L and P(L) denote the power set of L. For all b ∈ L,
let [b]Ξ denote the equivalence class of b with respect to Ξ. Let Ξ∗ and Ξ∗ be mappings from P(L)
to P(L) defined by

Ξ∗ : P(L) → P(L), A 7→ {b ∈ L | [b]Ξ ⊆ A},

and

Ξ∗ : P(L) → P(L), A 7→ {b ∈ L | [b]Ξ ∩A ̸= ∅},

respectively. The pair (L,Ξ) is called an approximation space based on Ξ. A subset A of L is
called definable if Ξ∗(A) = Ξ∗(A), and rough otherwise. The set Ξ∗(A) (resp., Ξ∗(A)) is called the
lower (resp. upper) approximation.

Notation. In the following, we will assume that (L,y, 1) is an L-algebra (or simply denoted
by L) and I is an ideal of L, unless stated otherwise.
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3 Roughness of ideal of L

In this section, we introduce the concept of lower and upper approximations of L-algebras and
examine some of their properties. Additionally, we demonstrate that the lower and upper approx-
imations constitute an interior operator and a closure operator, respectively.

Let ∼=A denote a relation on L defined as follows:

b ∼=A p if and only if b y p ∈ A and p y b ∈ A.

It is evident that ∼=A is an equivalence relation on L with respect to A, where A ∈ I(L). Moreover,
∼=A satisfies the following condition:

if v ∼=A a and b ∼=A p, then (v y b) ∼=A (a y p).

Therefore, ∼=A can be considered a congruence relation on L, and we refer to it as the A-congruence

relation on L. Let
L
A

denote the collection of all equivalence classes, i.e.,
L
A

= {A[b] | b ∈ L}. It

is worth noting that A[1] = A. For any A[b], A[p] ∈ L
A
, we can define a binary operation denoted

by ”I” on
L
A

as follows:

A[b] I A[p] = A[b y p].

It can be easily verified that (
L
A
,I, A[1]) forms an L-algebra.

Let’s consider the mappings for the A-congruence relation ∼=A on L:

appr
A
: P(L) → P(L), L 7→ {b ∈ L | A[b] ⊆ L},

apprA : P(L) → P(L), L 7→ {b ∈ L | A[b] ∩ L ̸= ∅}.

These mappings, known as the A-lower approximation and the A-upper approximation of L, re-
spectively, define an approximation space on (L,∼=A) based on the ideal A of L. This approximation
space is (L, A). A subset L of L is considered ”definable” to A if the A-lower approximation and
A-upper approximation of L are equal, i.e., appr

A
(L) = apprA(L). If the A-lower approximation

and A-upper approximation of L are not equal, then L is considered ”rough”.

The following proposition bears similarity to Proposition 3.3 in [16].

Proposition 3.1. [16] Consider an A-approximation space (L, A). For any subsets L and M in
the power set of L, we have the following:

(i) appr
A
(L) ⊆ L ⊆ apprA(L),

(ii) appr
A
(L ∩M) = appr

A
(L) ∩ appr

A
(M),

(iii) appr
A
(L) ∪ appr

A
(M) ⊆ appr

A
(L ∪M),

(iv) apprA(L ∩M) ⊆ apprA(L) ∩ apprA(M),

(v) apprA(L) ∪ apprA(M) = apprA(L ∪M).

(vi) appr
A
(apprA(L)) ⊆ apprA(apprA(L)),
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(vii) appr
A
(appr

A
(L)) ⊆ apprA(apprA(L)),

(viii) appr
A
(Lc) = (apprA(L))

c,

(ix) apprA(L
c) =

(
appr

A
(L)

)c
,

(x) appr
A
(L) = ∅ for L ̸= L,

(xi) apprA(L) = L for L ̸= ∅.

(xii) appr
A
(L) = L if and only if apprA(L

c) = Lc.

Definition 3.2. [19] Let S be a set. A function C : P(S) → P(S) is referred to as a closure
operator on the set S if it satisfies the following conditions for all subsets X and Y of S:

(C1) X ⊆ C(X),

(C2) if X ⊆ Y , then C(X) ⊆ C(Y ),

(C3) C(C(X)) = C(X).

Definition 3.3. [20] Let S be a set. A function int : P(S) → P(S) is considered an interior
operator on the set S if it satisfies the following conditions for all subsets X and Y of S:

(i) int(X) ⊆ X,

(ii) if X ⊆ Y , then int(X) ⊆ int(Y ),

(iii) int(int(X)) = int(X).

Theorem 3.4. Consider an A-approximation space (L, A). In this context, appr
A

and apprA
function as an interior operator and a closure operator, respectively.

Proof. For any L ∈ P(L), by Proposition 3.1(i), we have L ⊆ apprA(L) and apprA(L) ⊆ apprA(apprA(L)).
Let b ∈ apprA(apprA(L)). Then A[b] ∩ apprA(L) ̸= ∅, and so A[b] = A[p] for some p ∈ apprA(L).
It follows that A[b] ∩ L = A[p] ∩ L ̸= ∅. Thus b ∈ apprA(L), which shows that

apprA(apprA(L)) ⊆ apprA(L)

Hence apprA is idempotent. Let L,M ∈ P(L) such that L ⊆ M . If b ∈ apprA(L), then ∅ ≠
A[b] ∩ L ⊆ A[b] ∩M , and so b ∈ apprA(M). Hence, apprA(L) ⊆ apprA(M). Therefore, apprA is a
closure operator on L.

Moreover, by Proposition 3.1(i), we get appr
A
(L) ⊆ L and appr

A
(appr

A
(L)) ⊆ appr

A
(L). Let

b ∈ appr
A
(L). Then A[b] ⊆ L. Let w ∈ A[b]. Then A[w] = A[b] ⊆ L, and so w ∈ appr

A
(L). Thus

A[b] ⊆ appr
A
(L) which implies that b ∈ appr

A
(appr

A
(L)). Therefore,

appr
A
(appr

A
(L)) = appr

A
(L)

Now, let L,M ∈ P(L) such that L ⊆ M . If b ∈ appr
A
(L), then A[b] ⊆ L ⊆ M , and so b ∈

appr
A
(M). Hence, appr

A
(L) ⊆ appr

A
(M). Therefore, appr

A
is an interior operator on L.

Proposition 3.5. Consider an A-approximation space (L, A). In this context, for all b ∈ L, A[b]
is definable with respect to A.
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Proof. By Proposition 3.1(i), clearly appr
A
(A[b]) ⊆ apprA(A[b]), for all b ∈ L. Let p ∈ apprA(A[b]).

Then A[p]∩A[b] ̸= ∅, and so A[b] = A[p]. Thus p ∈ appr
A
(A[b]). Hence apprA(A[b]) ⊆ appr

A
(A[b]).

Therefore, A[b] is definable with respective to A, for all b ∈ L.

Proposition 3.6. Consider an A-approximation space (L, A) with A = {1}. In this case, every
subset of L is definable.

Proof. Let L be a subset of L. Then by (L3), for all b ∈ L we have

A[b] = {p ∈ L | b ∼=A p} = {p ∈ L | b y p = p y b = 1} = {p ∈ L | b = p} = {b}.

Thus

appr
A
(L) = {b ∈ L | A[b] ⊆ L} = {b ∈ L | {b} ⊆ L} = {b ∈ L | b ∈ L} = L,

and

apprA(L) = {b ∈ L | A[b] ∩ L ̸= ∅} = {b ∈ L | {b} ∩ L ̸= ∅} = {b ∈ L | b ∈ L} = L.

Therefore, L is definable.

Corollary 3.7. Every L-algebra is definable with respect to any ideal.

Proposition 3.8. Consider the equivalence relations ∼=A and ∼=B on L, which are associated with
the ideals A and B, respectively. If A ⊆ B, then ∼=A⊆∼=B.

Proof. Consider b, p ∈ L such that b ∼=A p. In this case, we have b y p, p y b ∈ A ⊆ B, which
implies that b ∼=B p. Therefore, we can conclude that ∼=A⊆∼=B.

Let A and B be subsets of L. We define the operation y as follows:

A y B = {v y a | v ∈ A, a ∈ B},

If either A or B is empty, then we define A y B = ∅.

Proposition 3.9. Consider an A-approximation space (L, A). Let ∼=A be an A-congruence relation
on L. For any subsets L,M ∈ P(L), we have the following:

(i) apprA(L) y apprA(M) ⊆ apprA(L y M),

(ii) appr
A
(L) y appr

A
(M) ⊆ appr

A
(L y M),

(iii) If appr
A
(L y M) = ∅, then appr

A
(L) = ∅ or appr

A
(M) = ∅.

Proof. (i) Let q ∈ apprA(L) y apprA(M). Then q = v y a for some v ∈ apprA(L) and a ∈
apprA(M), and so A[v] ∩ L ̸= ∅ and A[a] ∩ M ̸= ∅. It follows that there are b, p ∈ L such that
b ∈ A[v] ∩ L and p ∈ A[a] ∩M . Since ∼=A is an A-congruence relation on L, we have

b y p ∈ A[v] y A[a] = A[v y a] = A[q].

From b y p ∈ L y M , we consequence b y p ∈ A[q] ∩ (L y M), and so q ∈ apprA(L y M).
(ii) Let q ∈ appr

A
(L) y appr

A
(M). Then q = v y a for some v ∈ appr

A
(L) and a ∈ appr

A
(M).

Hence A[v] ⊆ L and A[a] ⊆ M . It follows that

A[v y a] = A[v] y A[a] ⊆ L y M.
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Then q = v y a ∈ appr
A
(L y M).

(iii) Let L,M ∈ P(L) such that appr
A
(L) ̸= ∅ and appr

A
(M) ̸= ∅. Then there exist v ∈ appr

A
(L)

and a ∈ appr
A
(M), such that A[v] ⊆ L and A[a] ⊆ M . Since v ∈ A[v] and a ∈ A[a], we have v ∈ L

and a ∈ M . Then v y a ∈ L y M , and so

v y a ∈ A[v y a] = A[v] y A[a] ⊆ L y M.

Hence appr
A
(L y M) ̸= ∅, which is a contradiction. Therefore, appr

A
(L) = ∅ or appr

A
(M) =

∅.

Corollary 3.10. Consider an A-approximation space (L, A). Let APPR(L) and APPR(L) be
the sets defined as follows:

APPR(L) = {apprA(X) |X ⊆ L}

APPR(L) = {appr
A
(X) |X ⊆ L}.

Then both APPR(L) and APPR(L) are closed under the operation y, where X,Y ∈ Id(L) and
A ⊆ X.

Proof. To prove this proposition, we prove the following statements:

(i) apprA(X) y apprA(Y ) = apprA(X y Y ),

(ii) appr
A
(X) y appr

A
(Y ) = appr

A
(X y Y ),

(i) By Proposition 3.9(i) one side is clear.
Conversely, assume v ∈ apprA(X y Y ) that by definition A[v]∩(X y Y ) ̸= ∅. Let w ∈ A[v]∩(X y
Y ). Then w ∈ A[v] and w ∈ X y Y . Since w ∈ X y Y , there exist x ∈ X and y ∈ Y such
that w = x y y. So, A[v] = A[w] = A[x y y] = A[x] y A[y]. So, since w ∈ A[v], we get
w ∈ A[x] y A[y]. Therefore, there is x ∈ A[x] ∩X ̸= ∅ and y ∈ A[y] ∩ Y ̸= ∅. Thus w = x y y
such that x ∈ appA(X) and y ∈ apprA(Y ). Hence w ∈ apprA(X) y apprA(Y ).
(ii) By Proposition 3.9(ii) appr

A
(X) y appr

A
(Y ) ⊆ appr

A
(X y Y ) one side is clear.

Conversely, let v ∈ appr
A
(X y Y ). Then A[v] ⊆ X y Y . Since v ∈ A[v], we have v ∈ X y Y

which by definition there exist x ∈ X and y ∈ Y such that v = x y y. Now, let α ∈ A[x] and
β ∈ A[y], then α y x, x y α ∈ A ⊆ X and β y y, y y β ∈ A ⊆ Y . So x y α ∈ X and
y y β ∈ Y . Since X,Y ∈ Id(L), so α ∈ X and β ∈ Y . Therefore A[x] ⊆ X and A[y] ⊆ Y . So we
have x ∈ appr

A
(X) and y ∈ appr

A
(Y ). Hence v = x y y ∈ appr

A
(X) y appr

A
(Y ).

Definition 3.11. Consider an A-approximation space (L, A). We define the following terms:

• A subset L of L is called an A-lower rough ideal of L if appr
A
(L) is an ideal of L.

• A subset L of L is called an A-upper rough ideal of L if apprA(L) is an ideal of L.

• If a subset L of L is both an A-lower rough ideal and an A-upper rough ideal of L, then we
refer to L as an A-rough ideal of L.

Example 3.12. Consider the poset (L = {0, v, a, 1},≤) with the following Hasse diagram, where
0 < v, a < 1.

rr rr

0

v a

1

�
�

A
A
�
�
A
A
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Define the operation y on L as follows:

y 0 v a 1

0 1 1 1 1
v a 1 a 1
a v v 1 1
1 0 v a 1

Then (L,y, 0, 1) is a bounded L-algebra. Consider an A-approximation space (L, A) where
A = {v, 1} is an ideal of L. Then A[v] = A[1] = {v, 1} and A[a] = A[0] = {a, 0}. For a subset
L = {0, v, 1} of L, we have

appr
A
(L) = {b ∈ L | A[b] ⊆ {0, v, 1}} = {v, 1},

and
apprA(L) = {b ∈ L | A[b] ∩ {0, v, 1} ̸= ∅} = {0, v, a, 1},

are ideals of L. Hence A is an A-rough ideal of L. If we take a subset M = {a} of L, then
appr

A
(M) = ∅ and apprA(M) = {0, a} are not ideals of L. Hence A is not an A-rough ideal of

L. Also, if we take a subset K = {v} of L, then appr
A
(K) = ∅ that is not an ideal of L and

apprA(K) = {v, 1} is an ideal of L. Hence A is an A-upper rough ideal of L.

The extension theorem for A-upper rough ideals of L is derived from the following theorem.

Theorem 3.13. Consider an A-approximation space (L, A), where L is a CKL-algebra. We have
the following:
(i) Every ideal L of L that contains A is an A-upper rough ideal of L.
(ii) Every ideal L of L that contains A is an A-lower rough ideal of L.

Proof. (i) Let L ∈ Id(L) such that A ⊆ L. Then A[1] ∩ L ̸= ∅, and so 1 ∈ apprA(L). Suppose
b, p ∈ L such that b ∈ apprA(L) and b y p ∈ apprA(L). Then A[b] ∩ L ̸= ∅ and A[b y p] ∩ L ̸= ∅,
which imply that there exist v, a ∈ L such that v ∈ A[b] and a ∈ A[b y p]. Hence v ∼=A b and
a ∼=A (b y p). It follows that v y b ∈ A ⊆ L and a y (b y p) ∈ A ⊆ L. Since v, a ∈ L and
L ∈ Id(L), we have b ∈ L and b y p ∈ L, and so p ∈ L. Note that p ∈ A[p], and thus p ∈ A[p]∩L.
Hence p ∈ apprA(L), and therefore apprA(L) ∈ Id(L), that is, L is an A-upper rough ideal of L.
(ii) Let L ∈ Id(L) such that A ⊆ L. Since A = A[1], if b ∈ A[1], then b ∈ A ⊆ L, and so A[1] ⊆ L.
Hence 1 ∈ appr

A
(L). Let b, p ∈ L such that b ∈ appr

A
(L) and b y p ∈ appr

A
(L). Then A[b] ⊆ L

and A[b] y A[p] = A[b y p] ⊆ L. Let v ∈ A[b] and a ∈ A[p]. Then v ∼=A b and a ∼=A p, which
imply that (v y a) ∼=A (b y p), that is, v y a ∈ A[b y p] ⊆ L. Since v ∈ L and L ∈ Id(L), we
get a ∈ L and A[p] ⊆ L. Thus p ∈ appr

A
(L), and therefore appr

A
(L) ∈ Id(L). Consequently, L is

an A-lower rough ideal of L.

Corollary 3.14. Consider an A-approximation space (L, A) with A = {1}, where L is a CKL-
algebra. We have the following:
(i) Every ideal L of L is an A-upper rough ideal of L.
(ii) Every ideal L of L is an A-lower rough ideal of L.

In the following example, we demonstrate that the converse of Theorem 3.13 does not generally
hold.
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Example 3.15. Consider the L-algebra L as described in Example 3.12, and let (L, A) be an A-
approximation space of L. It is evident that A = {v, 1} ∈ Id(L) and ∼=A is an equivalence relation
on L associated with A. Consequently, we have A[0] = {0, a} = A[a] and A[v] = A = A[1]. Let
L = {a, 1} be a subset of L. Then L does not contain A and

apprA(L) = {b ∈ L | A[b] ∩ L ̸= ∅} = L.

Thus L is an A-upper rough ideal of L.

Proposition 3.16. Consider an A-approximation space (L, A). For any subset L of L, the fol-
lowing statements hold:

(i) A ⊆ L if and only if A ⊆ appr
A
(L).

(ii) L ⊆ A if and only if apprA(L) = A.

Proof. (i) Assume that A ⊆ L. If b ∈ A, then A[b] = A ⊆ L. Hence b ∈ appr
A
(L), and so

A ⊆ appr
A
(L). By Proposition 3.1(i), the proof of converse is clear.

(ii) Suppose L ⊆ A and b ∈ apprA(L). Then A[b] ∩ L ̸= ∅, and thus there exists p ∈ A[b] ∩ L
which implies that A[b] = A[p] and p ∈ L. Hence A[p] = A, and so b ∈ A. This shows that
apprA(L) ⊆ A. Let w ∈ A. Then A[w] = A and so A[w] ∩ L = A ∩ L ̸= ∅. Thus w ∈ apprA(L),
that is, A ⊆ apprA(L). By Proposition 3.1(i), the proof of converse is clear.

Corollary 3.17. Consider an A-approximation space (L, A). If L ∈ Id(L) and L ⊆ A, then L is
an A-upper rough ideal of L.

Theorem 3.18. If L is an ideal in an A-approximation space (L, A), then

(i) A ⊆ apprA(L).

(ii) A ⊆ L if and only if appr
A
(L) ⊆ L = apprA(L).

Proof. (i) Let b ∈ A. Since b ∈ A[b], clearly 1 ∈ A[b]. Moreover, since L is an ideal in an A-
approximation space (L, A), we have 1 ∈ L and so 1 ∈ A[b]∩L. Hence b ∈ apprA(L), and therefore
A ⊆ apprA(L).

(ii) Assume that A ⊆ L. Then by Proposition 3.1(i), appr
A
(L) ⊆ L ⊆ apprA(L). Let b ∈

apprA(L). Then A[b] ∩ L ̸= ∅ and thus there exists v ∈ L ∩ A[b]. Since A ⊆ L, it follows that
v y b ∈ A ⊆ L. Hence b ∈ L and so apprA(L) ⊆ L.

Conversely, suppose appr
A
(L) ⊆ L = apprA(L) and b ∈ A. Since A and L are ideals, we get

1 ∈ A ∩ L = A[b] ∩ L. Hence b ∈ apprA(L) = L. Therefore, A ⊆ L.

Corollary 3.19. If L is an ideal of an A-approximation space (L, A), then

appr
A
(L) = L = apprA(L),

and L is an A-rough ideal of L.

For any nonempty subset L of L, we let L′ = {b′ | b ∈ L}. Obviously, if L and M are nonempty
subsets of L, then L ⊆ M satisfies L′ ⊆ M ′.

Proposition 3.20. In an A-approximation space bounded CKL-algebra (L, A), for any L ∈ P(L)\
{∅}, we have (apprA(L))

′ ⊆ apprA(L
′).
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Proof. Let v ∈ (apprA(L))
′ for any nonempty subset L of L. Then v = b′ for some b ∈ apprA(L)

and so A[b] ∩ L ̸= ∅. It follows that there exists a ∈ L such that a ∈ A[b], which implies that
a′ ∈ L′ and a y b ∈ A. By Proposition 2.6(vii), we have

a y b ≤ (b y 0) y (a y 0) = b′ y a′.

Since A ∈ Id(L) and v = b′, it follows that v y a′ = b′ y a′ ∈ A. Similarly a′ y v ∈ A. Hence
a′ ∈ A[v] ∩ L′, that is, A[v] ∩ L′ ̸= ∅. Therefore, v ∈ apprA(L

′) which shows that (apprA(L))
′ ⊆

apprA(L
′).

The following example shows that the converse of Proposition 3.20 is not generally not true.

Example 3.21. Consider the poset (L = {0, v, a, q, 1},≤), where 0 < q < v, a < 1. We introduce
a binary operation denoted by “y” on L using the following Table 1:

Table 1: Table of the implication “y”

y 0 v a q 1

0 1 1 1 1 1
v 0 1 a a 1
a 0 v 1 v 1
q 0 1 1 1 1
1 0 v a q 1

Then (L,y, 1) is an L-algebra. Let A = {v, 1}. Clearly, A is an ideal of L. Let ∼=A be an
equivalence relation on L related to A. Then A[1] = A[v] = {v, 1}, A[q] = A[a] = {a, q} and
A[0] = {0}. If L = {0, v}, then L′ = {0, 1}. Thus

apprA(L
′) = {0, v, 1} , apprA(L) = {0, v, 1}.

But (apprA(L))
′ = ({0, v, 1})′ = {0, 1}. Hence apprA(L

′) * (apprA(L))
′.

In the following example, we show that there exists a nonempty subset L of L such that
appr

A
(L′) * (appr

A
(L))′.

Example 3.22. Consider an A-approximation space (L, A), where L is the L-algebra as described
in Example 3.21, and A = {v, 1} is an ideal of L. If L = {v, 0}, then L′ = {0, 1}. Thus
appr

A
(L′) = {0} and appr

A
(L) = {0}, and so (appr

A
(L))′ = {1}. Hence appr

A
(L′) * (appr

A
(L))′.

Proposition 3.23. Consider an A-approximation space (L, A) and let L be a nonempty subset of
L. Then,
(i) R(L) ∩ apprA(L

′) ⊆ (apprA(L
′′))′,

(ii) R(L) ∩ apprA((L ∩R(L))′) ⊆ (apprA(L))
′,

where R(L) := {b ∈ L | b′′ = b}.

Proof. (i) Let w ∈ R(L) ∩ apprA(L
′). Then w′′ = w and A[w] ∩ L′ ̸= ∅, which imply that there

exists b ∈ L such that A[b′] = A[w]. Hence

A[w′] ∩ L′′ = A[b′′] ∩ L′′ ̸= ∅,
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i.e., w′ ∈ apprA(L
′′). Therefore w ∈ (apprA(L

′′))′.
(ii) Let v ∈ R(L) ∩ apprA((L ∩ R(L))′). Then v′′ = v and A[v] ∩ (L ∩ R(L))′ ̸= ∅. It follows that
there exists b ∈ L ∩R(L) such that A[v] = A[b′] and b′′ = b. Hence

A[v′] ∩ L = A[b′′] ∩ L = A[b] ∩ L ̸= ∅,

and so v′ ∈ apprA(L), i.e., v ∈ (apprA(L))
′. Therefore

R(L) ∩ apprA((L ∩R(L))′) ⊆ (apprA(L))
′.

Lemma 3.24. If L is a bounded CKL-algebra, then the set

E(L) := {b ∈ L | b′ = 0},

is an ideal of L.

Proof. Obviously 1 ∈ E(L). Let b, p ∈ L such that b ∈ E(L) and b y p ∈ E(L). Then b′ = 0 and
(b y p)′ = 0. Since by Proposition 2.2 and Proposition 2.6(x) p ≤ p′′, by Proposition 2.6(xiv), we
get b y p ≤ b y p′′ = p′ y b′. Hence by Proposition 2.6(x) we have

p′ = p′′′ = (p′ y 0)′ = (p′ y b′)′ ≤ (b y p)′ = 0,

and so p′ = 0, that is, p ∈ E(L). Therefore E(L) ∈ Id(L).

Proposition 3.25. Given an A-approximation space (L, A) and a nonempty subset L of CKL-
algebra L, we have the following:

A ⊆ apprA(E(L)) ⊆ {p ∈ L | p′′ ∈ A}. (3.1)

Proof. Using Lemma 3.24 and Theorem 3.18(i), we get A ⊆ apprA(E(L)). Let b ∈ apprA(E(L)).
Then A[b] ∩ E(L) ̸= ∅ and so there exists v ∈ A[b] such that v′ = 0. Thus v y b ∈ A. By
Proposition 2.6(x), v y b ≤ (b y 0) y (v y 0) = b′ y v′ and A ∈ Id(L), we have b′ y v′ ∈ A.
Thus, b′′ = b′ y 0 = b′ y v′ ∈ A. Therefore apprA(E(L)) ⊆ {p ∈ L | p′′ ∈ A}.

We provide conditions for a nonempty subset to be definable.

Theorem 3.26. Consider an A-approximation space (L, A). A nonempty subset L of L is said to
be definable concerning A if and only if either appr

A
(L) = L or apprA(L) = L.

Proof. Assume that L is definable with respect to A. Then L ⊆ apprA(L) = appr
A
(L) ⊆ L and so

apprA(L) = appr
A
(L) = L.

Conversely, suppose that appr
A
(L) = L or apprA(L) = L. For the case appr

A
(L) = L, let

b ∈ apprA(L). Then A[b] ∩ L ̸= ∅ which implies that A[b] = A[w] for some w ∈ L. It follows from
appr

A
(L) = L that A[b] = A[w] ⊆ L. Hence b ∈ L, and therefore apprA(L) ⊆ L. Consequently,

apprA(L) = L. Suppose that apprA(L) = L. For any b ∈ L let w ∈ A[b]. Then A[w] ∩ L =
A[b] ∩ L ̸= ∅ and so w ∈ apprA(L) = L. This shows that A[b] ⊆ L, that is, b ∈ appr

A
(L). Hence

L ⊆ appr
A
(L), and so appr

A
(L) = L. Therefore L is definable concerning A.



Ideals of roughness in L-algebras 103

Proposition 3.27. Consider an A-approximation space (L, A). For any L,M ∈ P(L), we have
the equality apprcA(L) ∪ apprA(M) = apprA(L

c ∪M).

Proof. Let x ∈ apprcA(L) ∪ apprA(M). Then x ∈ apprcA(L) or x ∈ apprA(M) and we have x /∈
apprA(L) or x ∈ apprA(M). So,

A[x] ∩ L = ∅ =⇒ A[x] ∩ Lc ̸= ∅ =⇒ x ∈ apprA(L
c),

or x ∈ apprA(M). Since, A[x] ∩M ̸= ∅ so, A[x] ∩ (Lc ∪M) ̸= ∅. Thus, x ∈ apprA(L
c ∪M). Hence

apprcA(L) ∪ apprA(M) ⊆ apprA(L
c ∪ M). By similar way, we can prove that apprA(L

c ∪ M) ⊆
apprcA(L) ∪ apprA(M). Finally, apprcA(L) ∪ apprA(M) = apprA(L

c ∪M).

Theorem 3.28. Let APPR(L) = {apprA(L)|L ⊆ L}. Define the operation y on APPR(L) as
follows:

apprA(L1) y apprA(L2) = apprcA(L1) ∪ apprA(L2).

Then (APPR(L),y, apprA(L)) is an L-algebra, where apprA(X) = apprA(Y ) implies X = Y .

Proof. Assume that X ⊆ L. Then to verify the validity of (L1), we can proceed as follows:

apprA(X) y apprA(X) = apprcA(X) ∪ apprA(X)
by Proposition 3.27

========== apprA(X
c ∪X) = apprA(L),

apprA(X) y apprA(L) = apprcA(X) ∪ apprA(L)
by Proposition 3.27

========== apprA(X
c ∪ L) = apprA(L),

apprA(L) y apprA(X) = apprcA(L) ∪ apprA(X)
by Proposition 3.27

========== apprA(Lc ∪X) = apprA(X).

Thus (L1) is holds. For proving (L3), suppose X,Y ⊆ L, then we get if apprA(X) y apprA(Y ) =
apprA(L) and apprA(Y ) y apprA(X) = apprA(L), then apprA(X

c ∪Y ) = apprA(L) and apprA(Y
c ∪

X) = apprA(L). By assumption, we have Xc ∪ Y = L and Y c ∪X = L. So, X ⊆ Y and Y ⊆ X
that consequently X = Y . Thus (L3) is holds. For proving (L2), suppose X,Y, Z ⊆ L, then we
have:

(apprA(X) y apprA(Y )) y (apprA(X) y apprA(Z))

= apprA(X
c ∪ Y ) y apprA(X

c ∪ Z)

= apprA((X
c ∪ Y )c ∪ (Xc ∪ Z))

= apprA((X ∩ Y c) ∪ (Xc ∪ Z))

= apprA((X
c ∪ Y c) ∪ Z)

= apprA((Y ∩Xc) ∪ (Y c ∪ Z))

= apprA((Y
c ∪X)c ∪ (Y c ∪ Z))

= apprA((Y
c ∪X) y apprA(Y

c ∪ Z))

= apprA(Y ) y apprA(X)) y (apprA(Y ) y apprA(Z)).

Thus (L2) is holds. Hence, (APPR(L),y, apprA(L)) is an L-algebra.
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4 Conclusion

Considering the significance of this topic in the field of decision-making, we have chosen to introduce
these concepts specifically on L-algebras. This will pave the way for future discussions on rough
soft and soft rough L-algebras, as well as their fuzzification. In this paper, we introduce the
concepts of lower and upper approximations on L-algebras and investigate their properties. We
also explore the relationship between these approximations and an interior operator and a closure
operator. Additionally, we offer criteria for a subset to be considered definable, and it must not
be an empty set. Further research opportunities exist in exploring roughness with different ideals
and ideals in L-algebras.
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