Commutative ideals of BCI-algebras based on Łukasiewicz fuzzy sets

G.R. Rezaei¹ and Y.B. Jun²

¹Department of Mathematics, University of Sistan and Baluchestan, Zahedan 98131, Iran
²Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

grezai@math.usb.ac.ir, skywine@gmail.com

Abstract

With the aim of applying the Łukasiewicz fuzzy set to commutative ideal in BCI-algebras, the concept of Łukasiewicz fuzzy commutative ideal is introduced, and its properties are investigated. The relationship between a Łukasiewicz fuzzy ideal and a Łukasiewicz fuzzy commutative ideal are discussed. After providing an example of a Łukasiewicz fuzzy ideal, not a Łukasiewicz fuzzy commutative ideal, conditions under which a Łukasiewicz fuzzy ideal can be a Łukasiewicz fuzzy commutative ideal are explored. Characterizations of Łukasiewicz fuzzy commutative ideals are displayed. Conditions under which ε-set, q-set, and O-set can be commutative ideals are found.

1 Introduction

Ideal concepts are a very important factor in studying BCK/BCI-algebras, and studies have been conducted on various types of ideals. The commutative ideal introduced by Meng [1] in 1993 is one of these ideals. The fuzzy set acts as a bridge so that algebra theory can be applied to applied sciences. Various kinds of fuzzy sets have been used in the study of substructures such as ideals in BCK/BCI-algebras (see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]). Łukasiewicz logic, which is the logic of the Łukasiewicz t-norm, is a non-classical and many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued logic. Using the idea of Łukasiewicz t-norm, Y. B. Jun [3] constructed the concept of Łukasiewicz fuzzy sets based on a given fuzzy set and applied it to BCK-algebras and BCI-algebras. Y. B. Jun and S. Z. Song studied Łukasiewicz fuzzy (positive implicative) ideals in BCK/BCI-algebras (see [8, 9, 10, 11, 12, 13]).

For the purpose of applying the Łukasiewicz fuzzy set to a commutative ideal in BCI-algebras, we introduce the concept of Łukasiewicz fuzzy commutative ideal and study its properties. We discuss the relationship between Łukasiewicz fuzzy ideal and Łukasiewicz fuzzy commutative ideal. We give an example...
of a Łukasiewicz fuzzy ideal, not a Łukasiewicz fuzzy commutative ideal, and explore the conditions under which a Łukasiewicz fuzzy ideal can be a Łukasiewicz fuzzy commutative ideal. We discuss characterizations of Łukasiewicz fuzzy commutative ideals. We explore the conditions under which \in-set, q-set, and O-set can be commutative ideals.

2 Preliminaries

2.1 Basic concepts about BCK/BCI-algebras

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [2] and [3]) and was extensively investigated by several researchers. We recall the definitions and basic results required in this paper. See the books [1], [12] for further information regarding BCK-algebras and BCI-algebras.

If a set X has a special element “0” and a binary operation “$*$” satisfying the conditions:

\((I_1)\) (\(\forall a, b, c \in X\)) ((\(a * b\) \(a * c\)) \(c * b\)) = 0),
\((I_2)\) (\(\forall a, b \in X\)) ((\(a * (a * b)\)) \(b = 0\)),
\((I_3)\) (\(\forall a \in X\)) (\(a * a = 0\)),
\((I_4)\) (\(\forall a, b \in X\)) (\(a * b = 0, b * a = 0 \Rightarrow a = b\)),

then we say that X is a BCI-algebra. If a BCI-algebra X satisfies the following identity:

\((K)\) (\(\forall a \in X\)) (\(0 * a = 0\)),

then X is called a BCI-algebra. The BCI/BCK-algebra is written as $(X, 0)_*$. The order relation “\leq” in a BCK/BCI-algebra $(X, 0)_*$ is defined as follows:

\((\forall a, b \in X) (a \leq b \iff a * b = 0)\).

Every BCK/BCI-algebra $(X, 0)_*$ satisfies the following conditions (see [1], [12]):

\((\forall a \in X) (a * 0 = a)\),
\((\forall a, b, c \in X) (a \leq b \Rightarrow a * c \leq b * c, c * b \leq c * a)\),
\((\forall a, b, c \in X) ((a * b) * c = (a * c) * b)\).

Every BCI-algebra $(X, 0)_*$ satisfies (see [1]):

\((\forall a, b \in X) (a * (a * b)) = a * b)\),
\((\forall a, b \in X) (0 * (a * b) = (0 * a) * (0 * b))\).

A BCI-algebra $(X, 0)_*$ is said to be commutative (see [13]) if it satisfies:

\((\forall a, b \in X) (a \leq b \Rightarrow a = b * (b * a))\).

A subset K of a BCK/BCI-algebra $(X, 0)_*$ is called

- a subalgebra of X (see [1], [12]) if it satisfies:

\((\forall a, b \in K) (a * b \in K)\),

- an ideal of X (see [1], [12]) if it satisfies:

\(0 \in K,\)
\((\forall a, b \in X) (a * b \in K, b \in K \Rightarrow a \in K)\).

A subset K of a BCI-algebra $(X, 0)_*$ is called a commutative ideal of X (see [11]) if it satisfies (10) and

\((\forall a, b, c \in X) \left((a * b) * c \in K, c \in K \Rightarrow a * (((b * (b * a)) * (0 * (0 * (a * b)))) \in K) \right)\).
2.2 Basic concepts about (Łukasiewicz) fuzzy sets

A fuzzy set ξ in a set X of the form

$$\xi(b) := \begin{cases} t \in (0, 1) & \text{if } b = a, \\ 0 & \text{if } b \neq a, \end{cases}$$

is said to be a fuzzy point with support a and value t and is denoted by $\langle a/t \rangle$.

For a fuzzy set ξ in a set X, we say that a fuzzy point $\langle a/t \rangle$ is

1. contained in ξ, denoted by $\langle a/t \rangle \in \xi$, (see [14]) if $\xi(a) \geq t$.

2. quasi-coincident with ξ, denoted by $\langle a/t \rangle \approx q \xi$, (see [14]) if $\xi(a) + t > 1$.

If $\langle a/t \rangle \alpha \xi$ is not established for $\alpha \in \{e, q\}$, it is denoted by $\langle a/t \rangle \Pi \xi$.

A fuzzy set ξ in a BCK/BCI-algebra $(X, 0)_*$ is called

- a fuzzy subalgebra of $(X, 0)_*$ (see [3]) if it satisfies:

$$\forall a, b \in X (\xi(a * b) \geq \min\{\xi(a), \xi(b)\}). \quad (12)$$

- a fuzzy ideal of $(X, 0)_*$ (see [4]) if it satisfies:

$$\forall a \in X (\xi(0) \geq \xi(a)), \quad (13)$$

$$\forall a, b \in X (\xi(a) \geq \min\{\xi(a * b), \xi(b)\}). \quad (14)$$

A fuzzy set ξ in a BCI-algebra $(X, 0)_*$ is called

- a closed fuzzy ideal of $(X, 0)_*$ (see [4]) if it is a fuzzy ideal of $(X, 0)_*$ which satisfies:

$$\forall a \in X (\xi(0 * a) \geq \xi(a)). \quad (15)$$

- a fuzzy commutative ideal of $(X, 0)_*$ (see [5]) if it satisfies (13) and

$$\xi(a * ((b * (b * a)) * (0 * (0 * (a * b)))) \geq \min\{\xi((a * b) * c), \xi(c)\} \quad (16)$$

for all $a, b, c \in X$.

Definition 2.1. Let ξ be a fuzzy set in a set X and let $\delta \in (0, 1)$. A function

$$\delta : X \to [0, 1], \quad x \mapsto \max\{0, \xi(x) + \delta - 1\}$$

is called the Łukasiewicz fuzzy set of ξ in X.

Definition 2.2. Let ξ be a fuzzy set in $(X, 0)_*$ and δ an element of $(0, 1)$. Then its Łukasiewicz fuzzy set $\delta \xi$ in X is called a Łukasiewicz fuzzy subalgebra of $(X, 0)_*$ if it satisfies:

$$\langle x/t_a \rangle \in \delta \xi, \quad \langle y/t_b \rangle \in \delta \xi \quad \Rightarrow \quad \langle (x/y)/\min\{t_a, t_b\} \rangle \in \delta \xi \quad (17)$$

for all $x, y \in X$ and $t_a, t_b \in (0, 1]$.

Lemma 2.3. Let ξ be a fuzzy set in X. Then its Łukasiewicz fuzzy set $\delta \xi$ in X is a Łukasiewicz fuzzy subalgebra of $(X, 0)_*$ if and only if it satisfies:

$$\forall x, y \in X (\delta \xi(x * y) \geq \min\{\delta \xi(x), \delta \xi(y)\}). \quad (18)$$

Definition 2.4. Let ξ be a fuzzy set in a BCK/BCI-algebra X. Then its Łukasiewicz fuzzy set $\delta \xi$ in X is called a Łukasiewicz fuzzy ideal of X if it satisfies:

$$\delta \xi(0) \text{ is an upper bound of } \{\delta \xi(x) \mid x \in X\}, \quad (19)$$

$$\langle (x * y)/t_a \rangle \in \delta \xi, \quad \langle y/t_b \rangle \in \delta \xi \quad \Rightarrow \quad \langle x/\min\{t_a, t_b\} \rangle \in \delta \xi \quad (20)$$

for all $x, y \in X$ and $t_a, t_b \in (0, 1]$.
Lemma 2.5. Let ξ be a fuzzy set in $(X,0)_*$. Then its Łukasiewicz fuzzy set δ^{ξ} is a Łukasiewicz fuzzy ideal of $(X,0)_*$ if and only if it satisfies:

\[(\forall x \in X)(\forall t_a \in (0,1]) ((x/t_a) \in \delta^{\xi} \Rightarrow (0/t_a) \in \delta^{\xi}),\]

\[(\forall x,y \in X)(\xi(x) \geq \min\{\xi(x*y), \xi(y)\}).\]

Let ξ be a fuzzy set in X. For the Łukasiewicz fuzzy set ξ of ξ in X and $t \in (0,1]$, consider the sets

\[(\xi, t)_e := \{x \in X \mid (x/t) \in \delta^{\xi}\} \quad \text{and} \quad (\xi, t)_q := \{x \in X \mid (x/t) \in q^{\xi}\},\]

which are called the \in-set and q-set, respectively, of δ^{ξ} (with value t). Also, consider a set:

\[O(\xi) := \{x \in X \mid \xi(x) > 0\}\]

which is called an O-set of ξ. It is observed that

\[O(\xi) = \{x \in X \mid \xi(x) + \delta - 1 > 0\}.

3 Łukasiewicz fuzzy commutative ideals in BCI-algebras

In this section, let $(X,0)_*$ be a BCI-algebra, and δ be an element of $(0,1]$ unless otherwise specified.

For any elements x and y of X, let

\[x^n \ast y := x \ast \cdots \ast (x \ast (x \ast y)) \cdots,\]

where x appears n times.

Definition 3.1. Let ξ be a fuzzy set in X. Then its Łukasiewicz fuzzy set δ^{ξ} in X is called a Łukasiewicz fuzzy commutative ideal (briefly, LFC-ideal) of X if it satisfies \((21)\) (or, equivalently \((21)\)) and

\[(\forall x,y,z \in X)(\forall t_a,t_c \in (0,1]) \left((\xi(x \ast y) \ast z)/t_a \in \delta^{\xi}, (\xi(z/t_c) \in \delta^{\xi} \Rightarrow ((x \ast (y^2 \ast x) \ast (0^2 \ast (x \ast y))))/\min\{t_a,t_c\} \in \delta^{\xi} \right).\]

Example 3.2. Let $X = \{\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4\}$ be a set with a binary operation \ast given as follows:

<table>
<thead>
<tr>
<th></th>
<th>κ_0</th>
<th>κ_1</th>
<th>κ_2</th>
<th>κ_3</th>
<th>κ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_0</td>
<td>κ_0</td>
<td>κ_0</td>
<td>κ_4</td>
<td>κ_3</td>
<td>κ_2</td>
</tr>
<tr>
<td>κ_1</td>
<td>κ_1</td>
<td>κ_0</td>
<td>κ_4</td>
<td>κ_3</td>
<td>κ_2</td>
</tr>
<tr>
<td>κ_2</td>
<td>κ_2</td>
<td>κ_2</td>
<td>κ_0</td>
<td>κ_4</td>
<td>κ_3</td>
</tr>
<tr>
<td>κ_3</td>
<td>κ_3</td>
<td>κ_3</td>
<td>κ_2</td>
<td>κ_0</td>
<td>κ_4</td>
</tr>
<tr>
<td>κ_4</td>
<td>κ_4</td>
<td>κ_4</td>
<td>κ_3</td>
<td>κ_2</td>
<td>κ_0</td>
</tr>
</tbody>
</table>

Then $(X,\kappa_0)_*$ is a BCI-algebra (see \([3]\)). Define a fuzzy set ξ in X as follows:

\[\xi : X \rightarrow [0,1], \ x \mapsto \begin{cases} 0.97 & \text{if } x = \kappa_0, \\ 0.79 & \text{if } x = \kappa_1, \\ 0.59 & \text{if } x = \kappa_2, \\ 0.59 & \text{if } x = \kappa_3, \\ 0.59 & \text{if } x = \kappa_4. \end{cases}\]

Given $\delta := 0.58$, the Łukasiewicz fuzzy set δ^{ξ} of ξ in X is given as follows:

\[\delta^{\xi} : X \rightarrow [0,1], \ x \mapsto \begin{cases} 0.55 & \text{if } x = \kappa_0, \\ 0.37 & \text{if } x = \kappa_1, \\ 0.17 & \text{if } x = \kappa_2, \\ 0.17 & \text{if } x = \kappa_3, \\ 0.17 & \text{if } x = \kappa_4. \end{cases}\]

It is routine to verify that δ^{ξ} is a LFC ideal of $(X,\kappa_0)_*$.

Proposition 3.3. Every LFC ideal \(\delta \) of \((X, 0)_*\) satisfies:

\[
(\forall x, y \in X)(\forall t \in (0, 1]) \left((x \ast y)/t \right) \in \delta \Leftrightarrow \left((x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))))/t \right) \in \delta \tag{25}
\]

Proof. If we choose 0 instead of \(z \), and \(t := t_a = t_c \) from (24) and use (19), we will get (25). \(\square \)

We discuss the relationship between Łukasiewicz fuzzy ideals and LFC ideals.

Theorem 3.4. Every LFC ideal is a Łukasiewicz fuzzy ideal.

Proof. Let \(\delta \) be a LFC ideal of \((X, 0)_*\). Let \(x, y \in X \) and \(t_a, t_c \in (0, 1] \) be such that \((x \ast y)/t \in \delta \) and \((z/t_c) \in \delta \). Then \((x \ast y)/t \in \delta \) and so

\[
\langle x/\min\{t_a, t_c\} \rangle = \langle (x \ast 0)/\min\{t_a, t_c\} \rangle = \langle (x \ast ((0^2 \ast x) \ast (0^2 \ast (x \ast 0))))/\min\{t_a, t_c\} \rangle \in \delta
\]

by (I, 4) and (24). Hence \(\delta \) is a Łukasiewicz fuzzy ideal of \((X, 0)_*\). \(\square \)

The converse of Theorem 3.4 may not be true as shown in the following example.

Example 3.5. Let \(X = \{\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4\} \) be a set with a binary operation “\(\ast \)” given as follows:

<table>
<thead>
<tr>
<th>(\ast)</th>
<th>(\kappa_0)</th>
<th>(\kappa_1)</th>
<th>(\kappa_2)</th>
<th>(\kappa_3)</th>
<th>(\kappa_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_0)</td>
</tr>
<tr>
<td>(\kappa_1)</td>
<td>(\kappa_1)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
</tr>
<tr>
<td>(\kappa_2)</td>
<td>(\kappa_2)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
</tr>
<tr>
<td>(\kappa_3)</td>
<td>(\kappa_3)</td>
<td>(\kappa_3)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
</tr>
<tr>
<td>(\kappa_4)</td>
<td>(\kappa_4)</td>
<td>(\kappa_4)</td>
<td>(\kappa_4)</td>
<td>(\kappa_0)</td>
<td>(\kappa_0)</td>
</tr>
</tbody>
</table>

Then \((X, \kappa_0)_*\) is a BCK-algebra and so a BCI-algebra (see [12]). Define a fuzzy set \(\xi \) in \(X \) as follows:

\[
\xi : X \rightarrow [0, 1], \quad x \mapsto \begin{cases}
0.89 & \text{if } x = \kappa_0, \\
0.77 & \text{if } x = \kappa_1, \\
0.43 & \text{if } x = \kappa_2, \\
0.59 & \text{if } x = \kappa_3, \\
0.43 & \text{if } x = \kappa_4.
\end{cases}
\]

Given \(\delta := 0.36 \), the Łukasiewicz fuzzy set \(\delta^{\xi} \) of \(\xi \) in \(X \) is given as follows:

\[
\delta^{\xi} : X \rightarrow [0, 1], \quad x \mapsto \begin{cases}
0.25 & \text{if } x = \kappa_0, \\
0.13 & \text{if } x = \kappa_1, \\
0.00 & \text{if } x \in \{\kappa_2, \kappa_3, \kappa_4\}.
\end{cases}
\]

A simple calculation confirms that \(\delta^{\xi} \) is a Łukasiewicz fuzzy ideal of \((X, \kappa_0)_*\). If we take \(t_a \) and \(t_c \) in \((0, 0.23]\), then \((\kappa_2 \ast \kappa_3)/t_a \in \delta \) and \((\kappa_0/t_c) \in \delta \). But

\[
(\kappa_2 \ast ((\kappa_2 \ast \kappa_2) \ast (\kappa_3 \ast (\kappa_2 \ast \kappa_3))))/\min\{t_a, t_c\} = (\kappa_2/\min\{t_a, t_c\}) \in \delta.
\]

Hence \(\delta^{\xi} \) is not a LFC ideal of \((X, \kappa_0)_*\).

We explore the conditions under which a Łukasiewicz fuzzy ideal becomes LFC ideal.

Theorem 3.6. If a Łukasiewicz fuzzy ideal \(\delta^{\xi} \) of \((X, 0)_*\) satisfies the condition (25), then it is a LFC ideal of \((X, 0)_*\).
Let \(h \) which is equivalent to the following assertion.

\[
\delta \xi
\]

Hence \(\delta (x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \geq \delta (x \ast y) \) for all \(x, y \in X \). Let \(x, y, z \in X \) and \(t_a, t_c \in (0, 1] \) be such that \(\langle (x \ast y) \ast z) / t_a \rangle \in \delta \xi \) and \((z / t_c) \in \delta \xi \). Then \(\langle (x \ast y) / \min\{t_a, t_c\} \rangle \in \delta \xi \) by (20), and so

\[
\delta (x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \geq \delta (x \ast y) \geq \min\{t_a, t_c\},
\]

that is, \(\langle (x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) / \min\{t_a, t_c\} \rangle \in \delta \xi \). Therefore, \(\delta \xi \) is a LFC ideal of \((X, 0)_*\).

\[\square \]

Definition 3.7. A Lukasiewicz fuzzy ideal \(\delta \xi \) of \((X, 0)_*\) is said to be closed if it is also a Lukasiewicz fuzzy subalgebra of \((X, 0)_*\).

Theorem 3.8. Every Lukasiewicz fuzzy ideal \(\delta \xi \) of \((X, 0)_*\) is closed if and only if it satisfies:

\[
(\forall x \in X) (\forall t \in (0, 1]) \left((x / t) \in \delta \xi \Rightarrow (0 \ast x / t) \in \delta \xi \right).
\]

Proof. Assume that a Lukasiewicz fuzzy ideal \(\delta \xi \) of \((X, 0)_*\) is closed. Let \(x \in X \) and \(t \in (0, 1] \) be such that \(\langle x / t \rangle \in \delta \xi \). Then \(\langle 0 / t \rangle \in \delta \xi \) by (21), and so \(\langle (0 \ast x) / t \rangle = \langle (0 \ast x) / \min\{t, t\} \rangle \in \delta \xi \) by (17).

Conversely, let \(\delta \xi \) be a Lukasiewicz fuzzy ideal of \((X, 0)_*\) that satisfies (20). Let \(x, y \in X \) and \(t_a, t_b \in (0, 1] \) be such that \(\langle x / t_a \rangle \in \delta \xi \) and \(\langle y / t_b \rangle \in \delta \xi \). Then \(\langle (x \ast y) / t_a \rangle = \langle (0 \ast y) / t_b \rangle \in \delta \xi \) by (I3), (4) and (21). It follows from (21) that \(\langle (x \ast y) / \min\{t_a, t_b\} \rangle \in \delta \xi \). Consequently, \(\delta \xi \) is a closed Lukasiewicz fuzzy ideal of \((X, 0)_*\).

\[\square \]

Lemma 3.9. Every Lukasiewicz fuzzy ideal \(\delta \xi \) of \(X \) satisfies:

\[
(\forall x, y, z \in X) (\forall t_b, t_c \in (0, 1]) \left(x \ast y \leq z, \langle y / t_b \rangle \in \delta \xi, \langle z / t_c \rangle \in \delta \xi \Rightarrow \langle x / \min\{t_b, t_c\} \rangle \in \delta \xi \right),
\]

which is equivalent to the following assertion.

\[
(\forall x, y, z \in X) (x \ast y \leq z \Rightarrow \delta \xi (x) \geq \min\{\delta \xi (y), \delta \xi (z)\}).
\]

Theorem 3.10. Let \(\delta \xi \) be a closed Lukasiewicz fuzzy ideal of \((X, 0)_*\). Then it is a LFC ideal of \((X, 0)_*\) if and only if it satisfies:

\[
(\forall x, y \in X) (\forall t \in (0, 1]) \left(\langle (x \ast y) / t \rangle \in \delta \xi \Rightarrow \langle (x \ast (y^2 \ast x)) / t \rangle \in \delta \xi \right).
\]

Proof. Let \(\delta \xi \) be a closed Lukasiewicz fuzzy ideal of \((X, 0)_*\). Assume that \(\delta \xi \) is a LFC ideal of \((X, 0)_*\). Let \(x, y \in X \) and \(t \in (0, 1] \) be such that \(\langle (x \ast y) / t \rangle \in \delta \xi \). Since \(\langle (x \ast y) / \xi (x \ast y) \rangle \in \delta \xi \), we have \(\langle (x \ast (y^2 \ast x)) \ast (0^2 \ast (x \ast y))) / \xi (x \ast y) \rangle \in \delta \xi \) by Proposition 3.3. That is,

\[
\delta (x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \geq \delta (x \ast y).
\]

Since

\[
(x \ast (y^2 \ast x)) \ast (x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))))
\]

\[
\leq ((y^2 \ast x) \ast (0^2 \ast (x \ast y))) \ast (y^2 \ast x)
\]

\[
= (y^2 \ast x) \ast (y^2 \ast x) \ast (0^2 \ast (x \ast y))
\]

\[
= 0 \ast (0^2 \ast (x \ast y)) = 0 \ast (x \ast y),
\]

\[\square \]
it follows from Theorem 3.8 and Lemma 3.4 that
\[\delta_\xi(x \ast (y^2 \ast x)) \geq \min\{\delta_\xi(x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))), \delta_\xi(0 \ast (x \ast y))\} \]
\[\geq \min\{\delta_\xi(x \ast y), \delta_\xi(0 \ast (x \ast y))\} \]
\[= \delta_\xi(x \ast y) \geq t, \]

i.e., \((x \ast (y^2 \ast x))/t) \in \delta_\xi\).

Conversely, let \(\delta_\xi\) be a closed Łukasiewicz fuzzy ideal of \((X, 0)_\ast\) satisfying the condition (29). Let \(x, y \in X\) and \(t \in (0, 1]\) be such that \(\langle x \ast y\rangle/t) \in \delta_\xi\). Then \(\delta_\xi(x \ast y) \geq t\). Since \(\langle x \ast y\rangle/\delta_\xi(x \ast y) \in \delta_\xi\), we get
\[\langle (x \ast (y^2 \ast x))/\delta_\xi(x \ast y) \rangle \in \delta_\xi\) by (29), and so \(\delta_\xi(x \ast (y^2 \ast x)) \geq \delta_\xi(x \ast y)\). Since
\[(x \ast (y^2 \ast x)) \ast (0^2 \ast (x \ast y))) \ast (x \ast (y^2 \ast x)) \]
\[\leq (y^2 \ast x) \ast (y^2 \ast x) \ast (0^2 \ast (x \ast y))) \]
\[\leq 0^2 \ast (x \ast y), \]

we have
\[\delta_\xi(x \ast (y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \geq \min\{\delta_\xi(x \ast (y^2 \ast x)), \delta_\xi(0^2 \ast (x \ast y))\} \]
\[\geq \min\{\delta_\xi(x \ast y), \delta_\xi(0 \ast (x \ast y))\} = \delta_\xi(x \ast y) \geq t \]

by Theorem 3.8 and Lemma 3.4. Hence \(\langle (x \ast (y^2 \ast x) \ast (0^2 \ast (x \ast y))))/t) \in \delta_\xi\), and therefore \(\delta_\xi\) is a LFC ideal of \((X, 0)_\ast\) by Theorem 3.6. \(\square\)

Lemma 3.11. \(\square\) A BCI-algebra is commutative if and only if it satisfies:
\[(\forall x, y \in X)(x^2 \ast y = y^2 \ast (x^2 \ast y)). \] (30)

Theorem 3.12. In a commutative BCI-algebra, every closed Łukasiewicz fuzzy ideal is a LFC ideal.

Proof. Let \(\delta_\xi\) be a closed Łukasiewicz fuzzy ideal of a commutative BCI-algebra \((X, 0)_\ast\). Let \(x, y \in X\) and \(t \in (0, 1]\) be such that \(\langle x \ast y\rangle/t) \in \delta_\xi\). Using \((I_1), (I_3), (4), (6)\), and Lemma 3.11, leads to
\[(x \ast (y^2 \ast x)) \ast (x \ast y) = (y^2 \ast (x \ast y)) \ast (y^2 \ast x) \]
\[= (y^3 \ast x) \ast (y \ast (x^2 \ast y)) \ast (y \ast (x^2 \ast y)) \leq (x^2 \ast y) \ast x = 0 \ast (x \ast y). \]

It follows from Theorem 3.8 and Lemma 3.4 that
\[\delta_\xi(x \ast (y^2 \ast x)) \geq \min\{\delta_\xi(x \ast y), \delta_\xi(0 \ast (x \ast y))\} = \delta_\xi(x \ast y) \geq t, \]

that is, \((x \ast (y^2 \ast x))/t) \in \delta_\xi\). Therefore, \(\delta_\xi\) is a LFC ideal of \((X, 0)_\ast\) by Theorem 3.10. \(\square\)

The theorem below reveals that an LFC ideal can be derived from fuzzy commutative ideal.

Theorem 3.13. If \(\xi\) is a fuzzy commutative ideal of \((X, 0)_\ast\), then its Łukasiewicz fuzzy set \(\delta_\xi\) is a LFC ideal of \((X, 0)_\ast\).

Proof. Let \(\xi\) be a fuzzy commutative ideal of \((X, 0)_\ast\). Then
\[\delta_\xi(0) = \max\{0, \xi(0) + \delta - 1\} \geq \max\{0, \xi(x) + \delta - 1\} = \delta_\xi(x) \]

for all \(x \in X\). Hence \(\delta_\xi(0)\) is an upper bound of \(\{\xi_\xi(x) \mid x \in X\}\). Let \(x, y, z \in X\) and \(t_a, t_c \in (0, 1]\) be such that \(\langle (x \ast y \ast z)/t_a\rangle \in \delta_\xi\) and \(z/t_c) \in \delta_\xi\). Then \(\delta_\xi((x \ast y \ast z) \geq t_a\) and \(\delta_\xi(z) \geq t_c\), which imply that
\[\delta_\xi(x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))))) = \max\{0, \xi(x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \ast \delta - 1\} \]
\[\geq \max\{0, \min\{\xi((x \ast y \ast z), \xi(z)) \ast \delta - 1\} \]
\[\geq \max\{0, \min\{\xi((x \ast y \ast z) \ast (\xi(z) + \delta - 1\} \}
\[\geq \min\{0, \xi((x \ast y \ast z) + \delta - 1, \max\{0, \xi(z) + \delta - 1\}\} \}
\[\geq \min\{\delta_\xi((x \ast y \ast z), \delta_\xi(z)) \geq \min\{t_a, t_c\}. \]

Hence \((x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))))/\min\{t_a, t_c\}) \in \delta_\xi\), and therefore \(\delta_\xi\) is a LFC ideal of \(X\). \(\square\)
We explore the conditions under which \(\varepsilon \)-set, \(q \)-set, and \(O \)-set can be commutative ideals.

Theorem 3.14. Let \(\delta \xi \) be the Lukasiewicz fuzzy set of a fuzzy set \(\xi \) in \(X \). Then the \(\varepsilon \)-set \((\xi_t)_{t \in \varepsilon}\) of \(\delta \xi \) is a commutative ideal of \((X, 0)\), for all \(t \in (0.5, 1) \) if and only if the following assertions are valid.

\[
(\forall x \in X) \left(\delta^{(\xi_t)}(x) \leq \max(\delta^{(\xi_t)}(0), 0.5) \right), \\
(\forall x, y, z \in X) \left(\min(\delta^{(\xi_t)}((x+y) * z), \delta^{(\xi_t)}(z)) \leq \max(\delta^{(\xi_t)}((y^2 * x) + (0^2 * (x+y))), 0.5) \right).
\]

Proof. Assume that \((\xi_t)_{t \in \varepsilon}\) is a commutative ideal of \((X, 0)\) for \(t \in (0.5, 1) \). If

\[
\delta^{(\xi_t)}(a) > \max(\delta^{(\xi_t)}(0), 0.5),
\]

for some \(a \in X \), then \(\delta^{(\xi_t)}(a) > \delta^{(\xi_t)}(0) \). If we take \(t := \delta^{(\xi_t)}(a) \), then \((a/t) = \delta^{(\xi_t)}(a) \), that is, \(a \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \), and \(0 \notin \delta^{(\xi_t)}(t)_{t \in \varepsilon} \). This is a contradiction, and so \(\delta^{(\xi_t)}(x) \leq \max(\delta^{(\xi_t)}(0), 0.5) \) for all \(x \in X \). Now, suppose that the condition \((31)\) is not valid. Then there exist \(x, y, z \in X \) such that

\[
\min(\delta^{(\xi_t)}((x+y) * z), \delta^{(\xi_t)}(z)) > \max(\delta^{(\xi_t)}((y^2 * x) + (0^2 * (x+y))), 0.5).
\]

If we take \(t := \min(\delta^{(\xi_t)}((x+y) * z), \delta^{(\xi_t)}(z)) \), then \(t = (0.5, 1) \) and \(((x+y) * z)/t, \ (z/t) \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \), i.e., \((x+y) * z, z \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \). Since \((\xi_t)_{t \in \varepsilon}\) is a commutative ideal of \(X \), we have \(x * ((y^2 * x) + (0^2 * (x+y))) \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \). But \(\delta^{(\xi_t)}((x+y) * z) > \min(\delta^{(\xi_t)}((x+y) * z), \delta^{(\xi_t)}(z)) \) implies \(x * ((y^2 * x) + (0^2 * (x+y))) \notin \delta^{(\xi_t)}(t)_{t \in \varepsilon} \), a contradiction. Hence the condition \((32)\) is valid.

Conversely, suppose that \(\delta^{(\xi)} \) satisfies \((31)\) and \((32)\). Let \(t \in (0.5, 1) \). For every \(x \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \), we have \(0.5 < t \leq \delta^{(\xi_t)}(x) \leq \max(\delta^{(\xi_t)}(0), 0.5) \) by \((31)\). Thus \(0 \notin \delta^{(\xi_t)}(t)_{t \in \varepsilon} \). Let \(x, y, z \in X \) be such that \((x+y) * z \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \) and \(z \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \). Then \(\delta^{(\xi_t)}((x+y) * z) \geq t \) and \(\delta^{(\xi_t)}(z) \geq t \), which imply from \((32)\) that

\[
0.5 < t \leq \min(\delta^{(\xi_t)}((x+y) * z), \delta^{(\xi_t)}(z)) \leq \max(\delta^{(\xi_t)}((y^2 * x) + (0^2 * (x+y))), 0.5).
\]

Hence \(((x+y) * z) \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \), i.e., \(x * ((y^2 * x) + (0^2 * (x+y))) \in \delta^{(\xi_t)}(t)_{t \in \varepsilon} \). Therefore \(\delta^{(\xi_t)}(t)_{t \in \varepsilon} \) is a commutative ideal of \(X \) for \(t \in (0.5, 1) \).

Theorem 3.15. If a Lukasiewicz fuzzy set \(\delta^{\xi} \) in \(X \) satisfies:

\[
(\forall x \in X) (\forall t \in (0.5, 1)) \left((x/t) q^{\delta^{\xi}} \Rightarrow (0/t) \leq \delta^{\xi}(t) \right), \\
(\forall x, y, z \in X)(\forall t_0, t_1 \in (0.5, 1)) \left(((x+y) * z)/t_0 q^{\delta^{\xi}}, (z/t_1) q^{\delta^{\xi}} \Rightarrow (x * ((y^2 * x) + (0^2 * (x+y))))/\max(t_0, t_1) \in \delta^{\xi} \right),
\]

then the non-empty \(\varepsilon \)-set \((\delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \) of \(\delta^{\xi} \) is a commutative ideal of \((X, 0)\), for all \(t_0, t_1 \in (0.5, 1) \).

Proof. Let \(t_0, t_1 \in (0.5, 1) \) and assume that the \(\varepsilon \)-set \((\delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \) of \(\delta^{\xi} \) is non-empty. Then there exists \(x \in \delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \), and so \(\delta^{\xi}(x) \geq \max(t_0, t_1) > 1 - \max(t_0, t_1) \), i.e., \(x/\max(t_0, t_1) \in \delta^{\xi} \). Hence \((0/\max(t_0, t_1)) \in \delta^{\xi} \) by \((33)\), and thus \(0 \in \delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \). Let \(x, y, z \in X \) be such that \((x+y) * z \in \delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \) and \(\delta^{\xi}(z) \geq \max(t_0, t_1) > 1 - \max(t_0, t_1) \), that is, \(((x+y) * z)/\max(t_0, t_1) q^{\delta^{\xi}} \) and \(z/\max(t_0, t_1) q^{\delta^{\xi}} \). It follows from \((34)\) that

\[
((x+y) * (y^2 * x) + (0^2 * (x+y)))/\max(t_0, t_1) \in \delta^{\xi}.
\]

Hence \(((x+y) * (y^2 * x) + (0^2 * (x+y))) \in \delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \), and therefore \((\delta^{\xi}, \max(t_0, t_1))_{t_0, t_1 \in \varepsilon} \) is a commutative ideal of \((X, 0)\), for all \(t_0, t_1 \in (0.5, 1) \).

Theorem 3.16. If a Lukasiewicz fuzzy set \(\delta^{\xi} \) in \(X \) satisfies \((33)\) and

\[
(\forall x, y, z \in X)(\forall t_0, t_1 \in (0.5, 1)) \left(((x+y) * z)/t_0 q^{\delta^{\xi}}, (z/t_1) q^{\delta^{\xi}} \Rightarrow (x * ((y^2 * x) + (0^2 * (x+y))))/\min(t_0, t_1) \in \delta^{\xi} \right),
\]

then the non-empty \(\varepsilon \)-set \((\delta^{\xi}, \min(t_0, t_1))_{t_0, t_1 \in \varepsilon} \) of \(\delta^{\xi} \) is a commutative ideal of \((X, 0)\), for all \(t_0, t_1 \in (0.5, 1) \).
Proof. It can be verified through a process similar to the proof in Theorem 3.18.

Lemma 3.17. Every LFC ideal δ_ξ of $(X,0)_\ast$ satisfies:

$$\forall x, y, z \in X, (x * ((y^2 * x) * (0^2 * (x * y)))) \geq \min\{\delta_\xi((x * y) * z), \delta_\xi(z)\}. \quad (36)$$

Proof. Note that $\langle ((x * y) * z) / \delta_\xi, \langle (x * y) * z \rangle \rangle \in \delta_\xi$ and $\langle z / \delta_\xi, \langle z \rangle \rangle \in \delta_\xi$ for all $x, y, z \in X$. It follows from (24) that

$$\langle (x * ((y^2 * x) * (0^2 * (x * y)))) / \delta_\xi, \langle (x * y) * z \rangle \rangle \rangle \in \delta.$$

Hence $\delta_\xi(x * ((y^2 * x) * (0^2 * (x * y)))) \geq \min\{\delta_\xi((x * y) * z), \delta_\xi(z)\}$ for all $x, y, z \in X$.

Theorem 3.18. If the Lukasiewicz fuzzy set δ_ξ of a fuzzy set ξ in X is a LFC ideal of X, then its q-set $(\delta_\xi, t)_q$ is a commutative ideal of X for all $t \in (0, 1]$.

Proof. Assume that δ_ξ is a LFC ideal of $(X,0)_\ast$, and let $t \in (0, 1]$. If $0 \notin (\delta_\xi, t)_q$, then $\langle 0/t, \pi^q_\xi \rangle$, that is, $\delta_\xi(0) + t \leq 1$. Since $\delta_\xi(0) \geq \delta_\xi(x)$ for $x \in (\delta_\xi, t)_q$, it follows that $\delta_\xi(x) \leq \delta_\xi(0) \leq 1 - t$. Hence $\langle x/t, \pi^q_\xi \rangle$, and so $x \notin (\delta_\xi, t)_q$. This is a contradiction, and therefore $0 \notin (\delta_\xi, t)_q$.

Corollary 3.19. If ξ is a fuzzy commutative ideal of $(X,0)_\ast$, then the q-set $(\delta_\xi, t)_q$ of δ_ξ is a commutative ideal of X for all $t \in (0, 1]$.

Theorem 3.20. Let ξ be a fuzzy set in X. For the Lukasiewicz fuzzy set δ_ξ of ξ in X, if the q-set $(\delta_\xi, t)_q$ of δ_ξ is a commutative ideal of X, then the following assertions are valid.

$$0 \in (\delta_\xi, t_a)_\xi,$$

$$\langle (x * (y^2 * x) * (0^2 * (x * y))) / q_\xi, \langle (x / t_c) \rangle q_\xi \Rightarrow x * ((y^2 * x) * (0^2 * (x * y))) \in (\delta_\xi, \max\{t_a, t_b\})_\xi \quad (37)$$

for all $x, y \in X$ and $t_a, t_c \in (0, 0.5)$.

Proof. Let $x, y \in X$ and $t_a, t_c \in (0, 0.5)$. If $0 \notin (\delta_\xi, t_a)_\xi$, then $\langle 0/t_a, \pi^q_\xi \rangle$ and so $\delta_\xi(0) < t_a \leq 1 - t_a$ since $t_a \leq 0.5$. Hence $\langle 0/t_a, \pi^q_\xi \rangle$ and thus $0 \notin (\delta_\xi, t_a)_\xi$. This is a contradiction, and therefore $0 \notin (\delta_\xi, t_a)_\xi$.

Let $\langle (x * (y * z) / t_a) q_\xi \rangle \rangle \langle (z / t_c) q_\xi \rangle$. Then $\langle (x * (y * z) / t_a) q_\xi \rangle$ and $\langle (z / t_c) q_\xi \rangle$. Hence $x * ((y^2 * x) * (0^2 * (x * y))) / (\delta_\xi, \max\{t_a, t_c\})_q$, and so

$$\delta_\xi(x * ((y^2 * x) * (0^2 * (x * y)))) \geq 1 - \max\{t_a, t_c\}.$$

that is, $\langle x * ((y^2 * x) * (0^2 * (x * y))) / \max\{t_a, t_c\} \rangle \in (\delta_\xi, \max\{t_a, t_c\})_\xi$. Therefore $x * ((y^2 * x) * (0^2 * (x * y))) \in (\delta_\xi, \max\{t_a, t_c\})_\xi$.

Theorem 3.21. If a Lukasiewicz fuzzy set δ_ξ in X satisfies:

$$\forall x \in X, (\forall t \in (0, 0.5)) (\langle x/t \rangle \in (\delta_\xi, t)_q,$$

and

$$\langle (x, y, z \in X) (\forall t_a, t_c \in (0, 0.5)) \left(\langle (x * (y^2 * x) * (0^2 * (x * y))) / (\min\{t_a, t_c\}) q_\xi \rangle \right), \quad (40)$$

then the non-empty q-set $(\delta_\xi, \min\{t_a, t_c\})_q$ of δ_ξ is a commutative ideal of $(X,0)_\ast$ for all $t_a, t_c \in (0, 0.5)$.
Proof. Let \(t_a, t_c \in (0, 0.5] \). If \((\xi, \min\{t_a, t_c\}) \) is non-empty, then there exists \(x \in (\xi, \min\{t_a, t_c\}) \). Hence \(\xi(x) < x \). Let \(x, y, z \in X \) be such that \(x * y \in (\xi, \min\{t_a, t_c\}) \) and \(z \in (\xi, \min\{t_a, t_c\}) \). Thus \(\xi(x * y) * z = x * (y * z) \). Hence \((x * (y * z)) / \min\{t_a, t_c\} \) \((x * y) \). It follows from \(\xi \) that \((x * y) \in (\xi, \min\{t_a, t_c\}) \). Therefore \((\xi, \min\{t_a, t_c\}) \) is a commutative ideal of \((X, 0)_o\).

Theorem 3.22. If a Łukasiewicz fuzzy set \(\xi \) in \(X \) satisfies (37) and (38) for all \(x, y, z \in X \) and \(t_a, t_c \in \{0, 0.5\} \), then the q-set \((\xi, t_a, t_c) \) of \(\xi \) is a commutative ideal of \((X, 0)_o\), for all \(t \in (0, 0.5] \).

Proof. Let \(t \in (0, 0.5, 1] \). Assume that \(\xi \) satisfies (37) and (38) for all \(x, y, z \in X \). The condition \(\xi \) induces \(\xi(0) * t \geq 2t > 1 \), i.e., \((0/t) \) \((\xi, t) \) \(q \). Hence \(0 \in (\xi, t) \). Let \(x, y, z \in X \) be such that \(x * y \in (\xi, t) \) and \(z \in (\xi, t) \). Then \((x * y) * z \) / \((\xi, t)) \). It follows from (38) that \(x * y \in (\xi, t) \). Hence \(\xi(x * (y * z)) \) \((0/t) \) \((\xi, t) \). Therefore \((\xi, t) \) is a commutative ideal of \((X, 0)_o\).

Theorem 3.23. If \(\xi \) is a fuzzy commutative ideal of \((X, 0)_o\), then the non-empty O-set of \(\xi \) is a commutative ideal of \((X, 0)_o\).

Proof. If \(\xi \) is a fuzzy commutative ideal of \((X, 0)_o\), then \(\xi \) is a LFC ideal of \((X, 0)_o\) (see Theorem 1.13). It is clear that \(0 \in O(\xi) \). Let \(x, y, z \in X \) be such that \(x \in O(\xi) \) and \(x * y \) \((\xi, t) \) \(z \). Then \(\xi((x * y) * z) > 0 \) and \(\xi(z) > 0 \). Since \(((x * y) * z) / \xi(z) \) \(\xi(z) \) \(\xi(z) \), we have
\[((x * (y * z)) / \min\{\xi((x * y) * z), \xi(z)\}) \in \xi \]
by (24). It follows that
\[\xi(x * (y * z)) \geq \min\{\xi((x * y) * z), \xi(z)\} > 0. \]
Hence \(x * (y * z) \in O(\xi) \), and therefore \(O(\xi) \) is a commutative ideal of \((X, 0)_o\).

Theorem 3.24. If a Łukasiewicz fuzzy set \(\xi \) in \(X \) satisfies (21) and
\[(\forall x, y, z \in X)(\forall t_a, t_c \in (0, 1])\left(((x * y) * z) / t_a \in (\xi, t) \Rightarrow ((x * (y * z)) / \max\{t_a, t_c\}) \right) \quad (41) \]
then the non-empty O-set of \(\xi \) is a commutative ideal of \((X, 0)_o\).

Proof. Let \(O(\xi) \) be a non-empty O-set of \(\xi \). Then there exists \(x \in O(\xi) \), and so \(t := \xi(x) > 0 \), i.e., \((\xi, t) \in \xi \) for \(t > 0 \). Hence \((0/t) \in \xi \) by (21), and thus \(\xi(0) \geq t > 0 \). Hence \(0 \in O(\xi) \). Let \(x, y, z \in X \) be such that \(x * y \) \(z \) \(O(\xi) \) and \(z \in O(\xi) \). Then \(\xi((x * y) * z) \geq \delta > 0 \) and \(\xi(z) \geq \delta > 0 \). Since \(((x * y) * z) / \xi(z) \) \(\xi(z) \) \(\xi(z) \), and \((z / \xi(z)) \in \xi \), it follows from (41) that
\[((x * (y * z)) / \max\{\xi((x * y) * z), \xi(z)\}) / q_{\xi} \]
If \(x * (y * z) \) \(O(\xi) \), then \(\xi(x * (y * z)) = 0 \), and so
\[\xi(x * (y * z)) = \max\{\xi((y * z)), \xi(z)\} = \max\{\xi((x * y) * z), \xi(z)\} \]
\[= \max\{\xi((x * y) * z) + \delta - 1, \xi(z) + \delta - 1\} \]
\[= \max\{\xi((x * y) * z) + \delta - 1, \xi(z) + \delta - 1\} \]
\[\leq 1 + \delta - 1 \leq 1. \]
Hence \(((x * (y * z)) / \max\{\xi((x * y) * z), \xi(z)\}) / q_{\xi} \), a contradiction. Thus \(x * (y * z) \) \(O(\xi) \), and therefore \(O(\xi) \) is a commutative ideal of \((X, 0)_o\).
Theorem 3.25. If a Łukasiewicz fuzzy set ξ_δ in X satisfies $(0/\delta) q_\xi$ and
\[
(\forall x, y, z \in X) \left(\left(((x \ast y) \ast z) /\delta \right) q_\xi, (z/\delta) q_\xi \Rightarrow ((x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) /\delta) \in \delta_\xi \right),
\]
then the O-set of ξ_δ is a commutative ideal of $(X, 0)_*$.

Proof. Let $O(\xi_\delta)$ be the O-set of ξ_δ. If $(0/\delta) q_\xi$, then $\xi(0) + \delta > 1$ and so
\[
\delta_\xi(0) = \max\{0, \xi(0) + \delta - 1\} = \xi(0) + \delta - 1 > 0.
\]
Hence $0 \in O(\xi_\delta)$. Let $x, y, z \in X$ be such that $(x \ast y) \ast z \in O(\xi_\delta)$ and $z \in O(\xi_\delta)$. Then $\xi((x \ast y) \ast z) + \delta > 1$ and
\[
\xi(z) + \delta > 1, \text{ i.e., } ((x \ast y) \ast z) /\delta) q_\xi \text{ and } (z/\delta) q_\xi.
\]
It follows from (42) that $\xi((x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) /\delta) \in \delta_\xi$, which shows $\xi((x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \geq \delta > 0$. Hence $x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))) \in O(\xi_\delta)$, and therefore $O(\xi_\delta)$ is a commutative ideal of $(X, 0)_*$. \hfill \square

Theorem 3.26. Let ξ_δ be a Łukasiewicz fuzzy set in X that satisfies:
\[
(\forall y \in X)(\forall t \in [\delta, 1]) \left(\langle y/t \rangle q_\xi \Rightarrow (0/\delta) \in \xi_\delta \right),
\]
\[
(\forall x, y, z \in X)(\forall t_a, t_c \in [\delta, 1]) \left(\left(((x \ast y) \ast z) /t_a \right) q_\xi, (z/t_c) q_\xi \Rightarrow x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))) \in \xi_\delta \right).
\]
Then the O-set of δ_ξ is a commutative ideal of $(X, 0)_*$.

Proof. Let $t \in [\delta, 1]$ and $y \in O(\xi_\delta)$. Then $\xi(y) + t \geq \xi(y) + \delta > 1$, and so $\langle y/t \rangle q_\xi$, which implies that $\langle 0/\delta \rangle \in \delta_\xi$ by (43). Hence $\delta_\xi(0) \geq \delta > 0$, i.e., $0 \in O(\xi_\delta)$. Let $t_a, t_c \in [\delta, 1]$ and $x, y, z \in X$ be such that $(\langle (x \ast y) \ast z \rangle/t_a) q_\xi$ and $(z/t_c) q_\xi$. Then $\xi((x \ast y) \ast z) + t_a \geq \xi((x \ast y) \ast z) + \delta > 1$ and $\xi(z) + t_c \geq \xi(z) + \delta > 1$. Thus $\langle (x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))) \rangle \in \xi_\delta$. Hence $\delta_\xi((x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y)))) \geq \delta > 0$, and so $x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))) \in O(\xi_\delta)$. Consequently, $O(\xi_\delta)$ is a commutative ideal of $(X, 0)_*$. \hfill \square

Corollary 3.27. Let ξ_δ be a Łukasiewicz fuzzy set in X that satisfies:
\[
(\forall x, y \in X) \left(\langle y/\delta \rangle q_\xi \Rightarrow (0/\delta) \in \delta_\xi \right),
\]
\[
(\forall x, y, z \in X) \left(\langle ((x \ast y) \ast z)/\delta \rangle q_\xi, (z/\delta) q_\xi \Rightarrow x \ast ((y^2 \ast x) \ast (0^2 \ast (x \ast y))) \in \xi_\delta \right).
\]
Then the O-set of δ_ξ is a commutative ideal of $(X, 0)_*$.

4 Conclusion

The concept of Łukasiewicz fuzzy sets using Łukasiewicz t-norm was first introduced by Y. B. Jun, and it was applied to BCK/BCI-algebras. For the purpose of applying the Łukasiewicz fuzzy set to a commutative ideal in BCI-algebras, we introduced the concept of Łukasiewicz fuzzy commutative ideals and study its properties. We established the relationship between a Łukasiewicz fuzzy ideal and a Łukasiewicz fuzzy commutative ideal, and provided an example to show that a Łukasiewicz fuzzy ideal may not be a Łukasiewicz fuzzy commutative ideal. We explored the conditions under which a Łukasiewicz fuzzy ideal can be a Łukasiewicz fuzzy commutative ideal. We considered characterizations of Łukasiewicz fuzzy commutative ideals, and explored the conditions under which ξ-set, q-set, and O-set can be commutative ideals.

Acknowledgment

The authors wish to thank the anonymous reviewers for their valuable suggestions.
References

