

Journal of Algebraic Hyperstructures and Logical Algebras

Volume 2, Number 4, (2021), pp. 25-37

The investigate of Γ UP-algebras

S. Ostadhadi-Dehkordi 1 and K.P. $\rm Shum^2$

¹Department of Mathematics, University of Hormozgan, Bandar Abbas, Iran. ²Institute of Mathematics, Yunnan University, Kunming, 650091, P.R. China.

ostadhadi@hormozgan.ac.ir, kpshum@ynu.edu.cn.

"This paper is dedicated to Professor Young Bae Jun on the occasion of his 70th birthday."

Abstract

We first define a new concept, namely, the Γ UP-algebra. Then, we study and investigate the properties of its Γ UPideals and Γ UP-subalgebras. As a consequence, we construct a covariant functor between the Γ UP-category and the UP algebra-category. Some possible connections between these categories are also considered.

Article Information

Corresponding Author: S. Ostadhadi-Dehkordi; Received: August 2021; Accepted: November 2021; Paper type: Original.

Keywords:

 $\Gamma \mathrm{UP}\text{-algebra},\ \Gamma \mathrm{UP}\text{-ideal},\ \mathrm{associated}\ \mathrm{UP}\text{-algebras}.$

1 Introduction and preliminaries

The algebras of logic form important class of algebras such as BCK-algebras, BCI-algebras, SU-algebras, SU-algebras and others that they are strongly connected with logic [2, 5, 6, 7]. The concept of BCI-algebras introduced by Iseki in 1966 such that have connections with BCI-logic which has application in the language of functional programming. Also, the class of BCK-algebras is a proper subclass of the class of BCI-algebras. The concept of a KU-algebra was first introduced by Prabpayak et. al. and they gave the concept of homomorphisms of KU-algebras and investigated some related properties. In continue, some researcher investigate the characterizations of KU-algebras. For example, Mostafa et.al. introduced the notion of intuition-istic fuzzy KU-ideals in KU-algebras and fuzzy intuitionistic image (preimage) of KU-ideals in KU-algebras and investigated some results [8, 9] and Yaqoob et.al. introduced the notion of cubic

https://doi.org/10.52547/HATEF.JAHLA.2.4.3

KU-ideals of KU-algebras and several results are presented in this regard [14]. In 2013, Sithar Selvam et.al. introduced the concept of anti Q-fuzzy KU-subalgebras of KU-algebras and discussed few results of KU-ideals of KU-algebras under homomorphisms and anti homomorphisms and some of its properties [13]. The concept of UP-algebra introduced by Iampan as a new algebraic structure and he investigated fully UP-ideals, UP-subalgebras, congruences and UP-homomorphisms in UP-algebras, and considered some related properties of them [3]. Also, he introduced some new classes of algebras related to UP-algebras and semigroups, called a left UP-semigroup, a right UPsemigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully UP-semigroup, a fully-fully UP-semigroup [4]. In continue the concept of cubic sets in UP-subalgebras introduced by Senapati and relationships between the cubic UP-subalgebras and the cubic UP-ideals of a UP-algebra are investigated [12]. Also, Senapati et.al. introduced the concept of picture fuzzy sets in UP-algebras to the eight new concepts of picture fuzzy sets by means of a special type: Special picture fuzzy UP-subalgebras, special picture fuzzy near UP-filters, special picture fuzzy UP-filters, special picture fuzzy implicative UP-filters, special picture fuzzy comparative UP-filters, special picture fuzzy shift UP-filters, special picture fuzzy UP-ideals, and special picture fuzzy strong UP-ideals. Also, we discuss the relationship between the eight new concepts of picture fuzzy sets in UP-algebras [11].

In this paper, we first generalize the well known UP-algebras to the so-called Γ UP-algebra. Then, we consider and investigate Γ UP-ideals and the Γ UP-homomorphisms. Also, we define congruence relations on Γ UP-algebras and we construct quotient Γ UP-algebras. A covariant functor between the categories of Γ UP-algebras and UP-algebras is constructed and their related properties are therefore investigate. The fundamental theorems of homomorphisms of Γ UP-algebras are established.

Before we begin we will introduce the definition of a UP-algebras and some related topics:

Definition 1.1. [3] An algebra $A = (A; \cdot, 0)$ of type (2, 0) is called an UP-algebra if it satisfies the following axiom: (UP 1) (x, z) = ((x, y), (x, z)) = 0

(UP-1) $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0$, (UP-2) $0 \cdot x = x$, (UP-3) $x \cdot 0 = 0$, (UP-4) $x \cdot y = y \cdot x = 0$, implies x = y, for every $x, y, z \in A$.

Example 1.2. We define binary operation \circ on $A = \{a, b, c, d\}$ by following table:

0	a	b	С	d
a	a	b	С	d
b	a	a	a	a
c	a	b	a	d
d	a	b	С	a

Then, (A, \circ, a) is a ΓUP -algebra.

Proposition 1.3. [3] In an UP-algebra A, the following properties hold:

- (1) $x \cdot x = 0$,
- (2) $x \cdot y = 0$ and $y \cdot z = 0$ imply $x \cdot z = 0$,
- (3) $x \cdot y = 0$ implies $(z \cdot x) \cdot (z \cdot y) = 0$,

- (4) $x \cdot y = 0$ implies $(y \cdot z) \cdot (x \cdot z) = 0$,
- $(5) \ x \cdot (y \cdot x) = 0,$
- (6) $(y \cdot x) \cdot x = 0$ if and only if $x = y \cdot x$,
- (7) $x \cdot (y \cdot y) = 0.$

Definition 1.4. [3] Let A be an UP-algebra and B be a non-empty subset of A. Then, A is called an UP-ideal if it satisfies the following properties:

- (1) the constant 0 of A in B,
- (2) for every $x, y, z \in A$, $x \cdot (y \cdot z) \in B$ and $y \in B$ imply $x \cdot z \in B$.

Clearly, A and $\{0\}$ are UP- ideals of A.

Definition 1.5. [3] Let $(A, \cdot, 0)$ be an UP-algebra and S be a non-empty subset of A. Then, S is called an UP-subalgebra of A if $0 \in S$ and $(S, \cdot, 0)$ itself forms an UP-algebra.

Proposition 1.6. A non-empty subset S of an UP-algebra $(A, \cdot, 0)$ is an UP-subalgebra of A if and only if S is closed under binary multiplication \cdot .

Proof. The proof is straightforward and is hence omitted.

Definition 1.7. Let ρ be an equivalence relation on UP-algebra $(A, \cdot, 0)$ such that $\rho(0) = 0$. Then, ρ is called congruence if for any $x, y, z \in A$,

$$x\rho y \Longrightarrow \rho(x \cdot z) = \rho(y \cdot z), \quad \rho(z \cdot x) = \rho(z \cdot y).$$

Proposition 1.8. Let $(A, \cdot, 0)$ be an UP-algebra and ρ be a congruence. Then, $A/\rho = \{\rho(x) : x \in A\}$ is an UP-algebra by following binary operation:

$$\rho(x) \odot \rho(y) = \rho(x \cdot y).$$

Proof. Suppose that $\rho(x_1) = \rho(x_2)$ and $\rho(y_1) = \rho(y_2)$. Hence $(x_1 \cdot y_1)\rho(x_2 \cdot y_1)$ and $(x_2 \cdot y_1)\rho(x_2 \cdot y_2)$. This implies $(x_1 \cdot y_1)\rho(x_2 \cdot y_2)$ and the binary operation \odot is well-defined. Also, for every $\rho(x), \rho(y), \rho(z) \in A/\rho$,

$$(\rho(y) \odot \rho(z)) \odot ((\rho(x) \odot \rho(y)) \odot (\rho(x) \odot \rho(z)) = \rho(0).$$

Also,

$$\rho(0) \odot \rho(x) = \rho(0 \cdot x) = \rho(x), \quad \rho(x) \odot \rho(0) = \rho(0),$$

and

$$\rho(x) \odot \rho(y) = \rho(y) \odot \rho(x) = \rho(0)$$

implies that $\rho(x \cdot y) = \rho(y \cdot x) = \rho(0)$. Also, $x \cdot y \in \rho(0) = 0$ and $y \cdot x \in \rho(0) = 0$, implies that $x \cdot y = y \cdot x = 0$. By (UP - 4), x = y. Thus, $\rho(x) = \rho(y)$. Therefore, $(A/\rho, \odot, \rho(0))$ is an UP-algebra.

Definition 1.9. [3] Let $(A, \cdot, 0_A)$ and $(B, \cdot, 0_B)$ be two UP-algebras. A mapping $\varphi : A \longrightarrow B$ is called an UP-homomorphism, if for every $x, y \in A$,

$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y), \quad \varphi(0_A) = 0_B.$$

An UP-homomorphism $\varphi : A \longrightarrow B$ is called an UP-epimorphism if φ is surjective, and is an UP-monomorphism if φ is injective, and is called an UP-isomorphism if f is bijective.

Let A and B be two homomorphisms. Then, every homomorphism $\varphi : A \longrightarrow B$ induces the binary relation ρ_{φ} as follows:

$$\rho_{\varphi} = \{ (x_1, x_2) \in A_1 \times A_1 : \varphi(x_1) = \varphi(x_2) \}.$$

Example 1.10. Let A and B be two UP-algebras and $\varphi : A \longrightarrow B$ be a homomorphism. Then, the relation ρ_{φ} is a congruence relation.

2 ΓUP-algebra

In this section, we concentrate on the Γ UP-algebras that is generalization of UP-algebras. Also, we now consider the covariant functor between the category of Γ UP-algebras and the category of UP-algebras.

Definition 2.1. An algebra $A = (A, \Gamma, 0)$ of type (2, 0) is called a ΓUP -algebra if every binary operation $\oplus_{\alpha} \in \Gamma$ satisfies the following axioms:

 $(\Gamma \mathbf{UP-1}): (y \oplus_{\alpha_1} z) \oplus_{\alpha_2} ((x \oplus_{\alpha_3} y) \oplus_{\alpha_2} (x \oplus_{\alpha_1} z)) = 0,$ $(\Gamma \mathbf{UP-2}): 0 \oplus_{\alpha} x = x,$ $(\Gamma \mathbf{UP-3}): x \oplus_{\alpha} 0 = 0,$ $(\Gamma \mathbf{UP-4}): x \oplus_{\alpha} y = y \oplus_{\alpha} x = 0 \text{ implies } x = y, \\ \text{for every } x, y, z \in A \text{ and } \oplus_{\alpha}, \oplus_{\alpha_i} \in \Gamma, \text{ for } 1 \le i \le 3.$

Example 2.2. Let U be a universal set and \oplus_{α} defined on P(U) as follows:

$$A \oplus_{\alpha} B = A - B.$$

Then, $(P(U), \oplus_{\alpha}, \emptyset)$ is a ΓUP -algebra.

Proposition 2.3. Let A be a Γ UP-algebra. Then, the following properties hold:

- (1) $x \oplus_{\alpha} x = 0$,
- (2) $x \oplus_{\alpha_1} y = 0$ and $y \oplus_{\alpha_2} z = 0$ imply $x \oplus_{\alpha_3} z = 0$,
- (3) if $x \oplus_{\alpha_1} y = 0$, then $(z \oplus_{\alpha_2} x) \oplus_{\alpha_3} (z \oplus_{\alpha_4} y) = 0$,
- (4) $x \oplus_{\alpha_1} (y \oplus_{\alpha_2} x) = 0$,
- (5) $x \oplus_{\alpha_1} (y \oplus_{\alpha_2} y) = 0.$

Proof. (1). By Γ UP-1 and Γ UP-2, we have

$$0 = (0 \oplus_{\alpha} x) \oplus_{\alpha} ((0 \oplus_{\alpha} 0) \oplus_{\alpha} (0 \oplus_{\alpha} x)) = (0 \oplus_{\alpha} x) \oplus_{\alpha} (0 \oplus_{\alpha} x) = x \oplus_{\alpha} x \oplus_$$

Hence, $x \oplus_{\alpha} x = 0$.

(2). Suppose that $x \oplus_{\alpha_1} y = 0$ and $y \oplus_{\alpha_2} z = 0$. Hence, by Γ UP-1 and Γ UP-2

$$x \oplus_{\alpha_2} z = 0 \oplus_{\alpha_3} (0 \oplus_{\alpha_3} (x \oplus_{\alpha_2} z)) = (y \oplus_{\alpha_2} z) \oplus_{\alpha_3} ((x \oplus_{\alpha_1} y) \oplus_{\{\alpha_3} (x \oplus_{\alpha_2} z)) = 0$$

(3). Assume that $x \oplus_{\alpha_1} y = 0$. Hence,

$$\begin{aligned} (z \oplus_{\alpha_2} x) \oplus_{\alpha_3} (z \oplus_{\alpha_4} y) &= 0 \oplus_{\alpha_3} ((z \oplus_{\alpha_2} x) \oplus_{\alpha_3} (z \oplus_{\alpha_1} y)) \\ &= (x \oplus_{\alpha_1} y) \oplus_{\alpha_3} ((z \oplus_{\alpha_2} x) \oplus_{\alpha_3} (z \oplus_{\alpha_1} y)) \\ &= 0. \end{aligned}$$

(4). By $(\Gamma UP - 2)$ and $(\Gamma UP - 3)$

$$\begin{aligned} x \oplus_{\alpha_1} (y \oplus_{\alpha_2} x) &= (0 \oplus_{\alpha_2} x) \oplus_{\alpha_1} (y \oplus_{\alpha_2} x) \\ &= (0 \oplus_{\alpha_2} x) \oplus_{\alpha_1} ((y \oplus_{\alpha_2} 0) \oplus_{\alpha_1} (y \oplus_{\alpha_2} x)) \\ &= 0. \end{aligned}$$

(5). $x \oplus_{\alpha_1} (y \oplus_{\alpha_1} y) = x \oplus_{\alpha_1} 0 = 0.$

Definition 2.4. Let A be a ΓUP -algebra and B be a non-empty subset of A. Then, B is called a ΓUP -ideal if satisfies in the following properties:

- (1) the constant 0 of A in B,
- (2) for every $x, y, z \in A$, $x \oplus_{\alpha_1} (y \oplus_{\alpha_2} z) \in B$ and $y \in B$ implies that for every $\alpha \in \Gamma$, $x \oplus_{\alpha} z \in B$

Clearly, A and $\{0\}$ are Γ UP- ideals of A.

Example 2.5. Let $A = \{a, b, c, d\}$ be a set and \bigoplus_{α} defined on A as follows:

\oplus_{lpha}	a	b	С	d	e
a	a	b	С	d	e
b	a	b	c	d	e
<i>c</i>	a	a	a	d	e
d	a	a	c	a	e
e	a	a	a	a	a

Then, (A, \oplus_{α}, a) is a Γ UP-algebra and $\{a, b, d\}$ and $\{a, b, c\}$ are Γ UP-idelas of Γ UP-algebra (A, \oplus_{α}, a) .

Proposition 2.6. Let I be a Γ UP-ideal of a Γ UP-algebra such that $x_1, x_2 \in I$. Then, for every $\alpha \in \Gamma$, $x_1 \oplus_{\alpha} x_2 \in I$. Also, for every $z \in A$, $z \oplus_{\alpha} x_1 \in I$.

Proof. Suppose that $x_1, x_2 \in I$ and $\alpha \in \Gamma$. Hence,

$$x_1 \oplus_\alpha 0 = x_1 \oplus_\alpha (x_2 \oplus_\alpha x_2) = 0 \in I.$$

Since, I is a Γ UP-ideal, $x_1 \oplus_{\alpha} x_2 \in I$. Also, $z \oplus_{\alpha} (x_1 \oplus_{\alpha} x_1) = z \oplus_{\alpha} 0 = 0 \in I$. Hence, $z \oplus_{\alpha} x_1 \in I$. \Box

Lemma 2.7. Let A be a ΓUP -algebra and $\{I_i\}_{i \in J}$ be a family of ΓUP -ideals in A. Then, $\bigcap_{i \in J} I_i$ is a ΓUP -ideal.

Proof. Suppose that for every $i \in J$, I_j are Γ UP-ideals of A. Then, for every $i \in J$, $0 \in I_i$. This implies that $0 \in \bigcap_{i \in J} I_i$. Let $x_1 \oplus_{\alpha_1} (x_2 \oplus_{\alpha_2} x_3) \in \bigcap_{i \in J} I_i$ and $x_2 \in \bigcap_{i \in I_i} I_i$. Since, I_i is a Γ UP-algebra, for every $\alpha \in \Gamma$, $x_1 \oplus_{\alpha} x_3 \in I_i$. Therefore, $\bigcap_{i \in J} I_i$ is a Γ UP-algebra.

Theorem 2.8. Let A be a ΓUP -algebra and B be a ΓUP -ideal. Then, $A \oplus_{\alpha} B \subseteq B$ and B is a ΓUP -subalgebra of A.

Proof. Suppose that $x \in A \oplus_{\alpha} B$. Then, for some $a \in A$, $b \in B$ and $\alpha \in \Gamma$, $x = a \oplus_{\alpha} b$. Hence, $a \oplus_{\alpha} (b \oplus_{\alpha} b) = a \oplus_{\alpha} 0 = 0 \in B$. Since, B is a Γ UP-ideal of A and B, we have $x = a \oplus_{\alpha} b \in B$. Hence, $A \oplus_{\alpha} B \subseteq B$. Also, $B \oplus_{\alpha} B \subseteq A \oplus_{\alpha} B \subseteq B$, implies that B is a Γ UP-subalgebra of A. \Box

Theorem 2.9. Let A be a ΓUP -algebra and B be a ΓUP -ideal. Then, the following statement hold:

- (1) if $b \oplus_{\alpha} x \in B$ and $b \in B$, then $x \in B$. Also, if $b \oplus_{\alpha} X$ and $b \in B$, then $X \subseteq B$.
- (2) if $b \in B$, then $x \oplus_{\alpha} b \in B$. Also, $X \oplus_{\alpha} b \subseteq B$,

where $\alpha, \alpha_1, \alpha_2, \alpha_3 \in \Gamma$.

Proof. (1). Suppose that $b \oplus_{\alpha} x \in B$ and $b \in B$. Hence, $0 \oplus_{\alpha} (b \oplus_{\alpha} x) \in B$. Since, B is a Γ UP-ideal of $A, x = 0 \oplus_{\alpha} x \in B$. Let $b \oplus_{\alpha} X \subseteq B$ and $b \in B$. Then, for every $x \in X, b \oplus_{\alpha} x \in B$. By a similar argument, $x \in B$. Hence, $X \subseteq B$.

(2). Assume that $x \in A$ and $b \in B$. Hence, $x \oplus_{\alpha} (b \oplus b) = x \oplus_{\alpha} 0 = 0 \in B$. Since, B is a Γ UP-ideal of A and $b \in B$, we have $x \oplus_{\alpha} b \in B$. Obviously, $X \oplus_{\alpha} B \subseteq B$.

Definition 2.10. Let $A = (A, \Gamma, 0)$ be a ΓUP -algebra and T be a subset of A. Then, T is called a ΓUP -subalgebra of A if $0 \in B$ and $(T, \Gamma, 0)$ itself forms a ΓUP -algebra. Obviously, A and $\{0\}$ are ΓUP -subalgebras of A.

Lemma 2.11. Let $A = (A, \Gamma, 0)$ be a ΓUP -algebra and B a non-empty subset of A. Then, B is called a ΓUP -subalgebra of A if $0 \in B$ and for every $\alpha \in \Gamma$ and $x_1, x_2 \in B$, $x_1 \oplus_{\alpha} x_2 \in B$.

Proof. The proof is straightforward and is hence omitted.

Proposition 2.12. Let $(A, \Gamma, 0)$ be a ΓUP -algebra and I be a ΓUP -ideal. Then, I is a ΓUP -subalgebra.

Proof. By using Proposition 2.6 and Lemma 2.11 the proof is completed. \Box

Theorem 2.13. Let A be a ΓUP -algebra and $\{B_i\}_{i \in I}$ be a family ΓUP -subalgebra of A. Then, $\bigcap_{i \in I} B_i$ is a ΓUP -subalgebra of A.

Proof. Suppose that for every $i \in I$, B_i are Γ UP-subalgebra. Hence, $0 \in B_i$, for all $i \in I$. It follows that $0 \in \bigcap_{i \in I} B_i \neq \emptyset$. Let $x, y \in \bigcap_{i \in I} B_i$. Then, for every $i \in I$, $x, y \in B_i$. Since, B_i are Γ UP-subalgebras, $x \oplus_{\alpha} y \in B_i$, for every $\alpha \in \Gamma$. Therefore, $x \oplus_{\alpha} y \in \bigcap_{i \in I} B_i$ and $\bigcap_{i \in I} B_i$ is a Γ UP-subalgebra.

Definition 2.14. Let Θ be an equivalence relation on ΓUP -algebra A. Then, Θ is congruence when

$$x_1 \Theta x_2 \iff \forall \alpha \in \Gamma, \ z \in A, \ (x_1 \oplus_\alpha z) \Theta(x_2 \oplus_\alpha z)$$

Example 2.15. Let I be a ΓUP -ideal of an associated ΓUP -algebra A. Then, we define the relation \equiv on A as follows:

$$x_1 \equiv x_2 \iff \forall \ \alpha \in \Gamma, \ x_1 \in I \oplus_{\alpha} x_2.$$

For every $x \in A$ and $\alpha \in \Gamma$,

$$x = 0 \oplus_{\alpha} x \in I \oplus_{\alpha} x.$$

Hence the relation \equiv is reflexive. Also, $x_1 \equiv x_2$, implies that there exists $a \in I$ such that $x_1 = a \oplus_{\alpha} x_2$. Hence, $a \oplus_{\alpha} x_2 = a \oplus_{\alpha} (a \oplus_{\alpha} x_2) = (a \oplus_{\alpha} a) \oplus_{\alpha} x_2$. Hence, $x_2 = a \oplus_{\alpha} x_1 \in I \oplus_{\alpha} x_1$ and the relation \equiv symmetric. Let $x_1 \equiv x_2$ and $x_2 \equiv x_3$. Then, for some $a_1, a_2 \in I$, $x_1 = a_1 \oplus_{\alpha} x_2$ and $x_2 = a_2 \oplus_{\alpha} x_3$. Then, the relation \equiv is transitive. Therefore, \equiv is equivalence. The equivalence relation ρ_I is congruence.

$$\square$$

Example 2.16. Let I be a ΓUP -ideal of a ΓUP -algebra A. Then, we define the relation ρ_I on A as follows:

$$x_1\rho_I x_2 \iff \forall \alpha \in \Gamma, \ x_1 \oplus_\alpha x_2 \in I \ and \ x_2 \oplus_\alpha x_1 \in I.$$

For every $x \in A$ and $\alpha \in \Gamma$, $x \oplus_{\alpha} x = 0 \in I$. Hence, ρ_I is reflexive. Also, the relation ρ_I is symmetric. Let $x, y, z \in A$ such that $x\rho_I y$ and $y\rho_I z$. Then, for every $\alpha \in \Gamma$, $x \oplus_{\alpha} y \in I$, $y \oplus_{\alpha} x \in I$ and $y \oplus_{\alpha} z \in I$, $z \oplus_{\alpha} y \in I$ Hence,

$$(y \oplus_{\alpha} z) \oplus_{\alpha} ((x \oplus_{\alpha} y) \oplus_{\alpha} (x \oplus_{\alpha} z)) = 0.$$

Since, $y \oplus_{\alpha} x \in I$, $(x \oplus_{\alpha} y) \oplus_{\alpha} (x \oplus_{\alpha} z) \in I$. Also, $x \oplus_{\alpha} y \in I$, implies that $x \oplus_{\alpha} z \in I$ and the relation ρ_I is equivalence.

Theorem 2.17. Let A be a ΓUP -algebra, Θ be a congruence relation on A and T be a ΓUP -ideal of A/Θ . Then, $T = I/\Theta$, where I is a ΓUP -ideal.

Proof. Suppose that $\pi : A \longrightarrow A/\Theta$, is a natural homomorphism and T is a Γ UP-ideal of A/Θ . Hence, by Proposition 2.19, $\pi^{-1}(T)$ is a Γ UP-ideal of A. Also, $T = \pi^{-1}(T)/\Theta$.

Definition 2.18. Let A_1 and A_2 be ΓUP -algebra. Then, map $\varphi : A_1 \longrightarrow A_2$ is called homomorphism if for every $x_1, x_2 \in A_1$ and $\alpha \in \Gamma$,

$$\varphi(x_1 \oplus_\alpha x_2) = \varphi(x_1) \oplus_\alpha \varphi(x_2).$$

Also, the kernel of φ defined as follows:

$$ker\varphi = \{x \in A_1 : \varphi(x) = 0_{A_2}\}.$$

Proposition 2.19. Let $\varphi : A_1 \longrightarrow A_2$ be an epimorphism and I be a ΓUP -ideal of A_2 . Then, $\varphi^{-1}(I)$ is a ΓUP - ideal of A_1 .

Proof. Obviously, $\varphi^{-1}(I)$ is a non-empty subset of A_1 . Let $x_1 \oplus_{\alpha_1} (x_2 \oplus_{\alpha_2} x_3) \in \varphi^{-1}(I)$ and $x_2 \in \varphi^{-1}(I)$. Then, $\varphi(x_1) \oplus_{\alpha_1} (\varphi(x_2) \oplus_{\alpha_2} \varphi(x_3)) \in I$. Since I is a Γ UP-ideal, $\varphi(x_1) \oplus_{\alpha_1} \varphi(x_3) \in I$. Hence, $\varphi(x_1 \oplus_{\alpha_1} x_3) \in I$ and $x_1 \oplus_{\alpha_1} x_3 \in \varphi^{-1}(I)$. Therefore, $\varphi^{-1}(I)$ is a Γ UP-ideal. \Box

Corollary 2.20. Let $\varphi : A_1 \longrightarrow A_2$ be a homomorphism. Then, ker φ is a Γ UP-ideal of A_1 .

Proposition 2.21. Let $\varphi : A_1 \longrightarrow A_2$. Then, $(a, b) \in \rho_{\varphi}$ if and only if $a \oplus_{\alpha} b \in ker\varphi$.

Proof. Suppose that $(a,b) \in \rho_{\varphi}$. Hence, $\varphi(a) = \varphi(b)$ and for every $\alpha \in \Gamma$,

$$0 = \varphi(a) \oplus_{\alpha} \varphi(a) = \varphi(a) \oplus_{\alpha} \varphi(b) = \varphi(a \oplus_{\alpha} b).$$

Then, $a \oplus_{\alpha} b \in ker\varphi$. Similarly, we obtain the converse inclusion.

Theorem 2.22. Let A be a ΓUP -algebra and ρ be a congruence relation on A. Then, A/ρ is a ΓUP -algebra by following operation:

$$\rho(x_1)\widehat{\oplus}_{\alpha}\rho(x_2) = \rho(x_1 \oplus_{\alpha} x_2),$$

where $\alpha \in \Gamma$, $\rho(x_1), \rho(x_2) \in A/\rho$.

Proof. The proof is similar to the proof of Theorem 1.8.

Theorem 2.23. Let ρ_1 be a congruence relation on a ΓUP -algebra A_1 and $\varphi : A_1 \longrightarrow A_2$ be a homomorphism such that $\rho_1 \subseteq \rho_{\varphi}$. Then, there is a unique homomorphism $\beta : A_1/\rho_1 \longrightarrow A_2$, such that $Im\beta = Im\varphi$ such that $\beta \circ \pi = Im\varphi$, where $\pi : A_1 \longrightarrow A_1/\rho_1$ is a natural homomorphism.

Proof. Suppose that $\beta : A_1/\rho_1 \longrightarrow A_2$ defined by $\beta(\rho_1(x)) = \varphi(x)$, for $\rho_1(x_1) \in A_1/\rho_1$. Then, β is well-defined, since, for all $x_1, x_2 \in A_1$,

$$\rho_1(x_1) = \rho_1(x_2) \Longrightarrow (x_1, x_2) \in \rho_1 \Longrightarrow (x_1, x_2) \in \rho_{\varphi} \Longrightarrow \varphi(x_1) = \varphi(x_2).$$

For every $\rho_1(x_1), \rho_1(x_2) \in A_1/\rho_1$ and $\alpha \in \Gamma$,

$$\begin{split} \beta(\rho_1(x_1) \widehat{\oplus}_{\alpha} \rho_1(x_2)) &= \beta(\rho_1(x_1 \oplus_{\alpha} x_2)) \\ &= \varphi(x_1 \oplus_{\alpha} x_2) = \varphi(x_1) \oplus_{\alpha} \varphi(x_2) \\ &= \beta(\rho_1(x_1)) \oplus_{\alpha} \beta(\rho_1(x_2)). \end{split}$$

Also, $Im\beta = Im\varphi$ and $\beta \circ \pi = Im\varphi$.

Theorem 2.24. Let A be a Γ UP-algebra and ρ, σ be congruence relation on A such that $\rho \subseteq \sigma$. Then,

$$\sigma/\rho = \{(\rho(x_1), \rho(x_2)) \in A/\rho \times A/\rho : (x_1, x_2) \in \sigma\},\$$

is a congruence relation on A/ρ , and $(A/\rho)/(\sigma/\rho) \cong A/\sigma$

Proof. Suppose that $\rho(x_1), \rho(x_2), \rho(x) \in A/\rho, \alpha \in \Gamma$ such that $(\rho(x_1), \rho(x_2)) \in \sigma/\rho$. Hence, $x_1 \sigma x_2$ and for every $\alpha \in \Gamma$, $(x_1 \oplus_{\alpha} x) \sigma(x_2 \oplus_{\alpha} x)$. Then,

$$(\rho(x_1)\widehat{\oplus}_{\alpha}\rho(x))\sigma/\rho(\rho(x_2)\widehat{\oplus}_{\alpha}\rho(x))$$

So, an equivalence relation σ/ρ is congruence. We define $\varphi: (A/\rho)/(\sigma/\rho) \longrightarrow A/\sigma$, by $\varphi((\sigma/\rho)(\rho(x)) = \sigma(x)$. By a routine argument φ is an isomorphism.

3 The associated UP-algebras induced by ΓUP-algebra

In this section, we turn to study those associated UP-algebras induced by a given Γ UP-algebra.

Let $(A, \Gamma, 0)$ be a Γ UP-algebra such that for every $\alpha \in \Gamma$, \oplus_{α} is an associated binary operation and for every $x, z \in A$ and $\alpha \in \Gamma$, the equation $x \oplus_{\alpha} z_1 = z$, has the solution $z_1 \in A$.

Definition 3.1. Let $(A, \Gamma, 0)$ be a Γ UP-algebra. Then, we define a relation ρ on $A \times \Gamma$ as follows:

$$(x_1, \alpha_1)\Delta(x_2, \alpha_2) \Longleftrightarrow x_1 \oplus_{\alpha_1} x = x_2 \oplus_{\alpha_2} x,$$

for every $x \in A$.

Obviously, Δ is an equivalence relation. Let $[x, \alpha]$ denote the equivalence class contains (x, α) and $M = \{[x, \alpha] : x \in A, \alpha \in \Gamma\}$. We define the binary relation \circ on M as follows:

$$[x_1, \alpha_1] \circ [x_2, \alpha_2] := [x_1 \oplus_{\alpha_1} x_2, \alpha_2].$$

Theorem 3.2. Let $(A, \Gamma, 0)$ be a ΓUP -algebra. Then, M is an UP-algebra.

Proof. Obviously, the binary operation defined on M is well-defined. Suppose that $[x, \alpha_1], [y, \alpha_2], [\alpha_3, z] \in M$. Hence,

$$\begin{aligned} [y, \alpha_2] & \circ[z, \alpha_3] \circ (([x, \alpha_1] \circ [y, \alpha_2]) \circ ([x, \alpha_1] \circ [z, \alpha_3])) \\ &= [y \oplus_{\alpha_2} z, \alpha_3] \circ ([(x \oplus_{\alpha_1} y), \alpha_2] \circ [(x \oplus_{\alpha_1} z, \alpha_3)]) \\ &= [y \oplus_{\alpha_2} z, \alpha_3] \circ [(x \oplus_{\alpha_1} y) \oplus_{\alpha_2} (x \oplus_{\alpha_1} z), \alpha_3] \\ &= [(y \oplus_{\alpha_2} z) \oplus_{\alpha_3} (x \oplus_{\alpha_1} y) \oplus_{\alpha_2} (x \oplus_{\alpha_1} z), \alpha_3)] \\ &= [0, \alpha_3] \\ &= 0_M. \end{aligned}$$

Also, for every $[x, \alpha] \in M$,

$$[0,\alpha] \circ [x,\alpha] = [0 \oplus_{\alpha} x,\alpha] = [x,\alpha]$$

and

$$[x,\alpha] \circ [0,\alpha] = [x \oplus_{\alpha} 0,\alpha] = [0,\alpha] = 0_M$$

Let $[x_1, \alpha_1], [x_2, \alpha_2] \in M$ such that

$$[x_1, \alpha_1] \circ [x_2, \alpha_2] = [x_2, \alpha_2] \circ [x_1, \alpha_1] = [0, \alpha_1] = [0, \alpha_2]$$

(By Γ UP-2, for every $\alpha_1, \alpha_2 \in \Gamma$, $[0, \alpha_1] = [0, \alpha_2]$.)

Hence,

$$[x_1 \oplus_{\alpha_1} x_2, \alpha_2] = [0, \alpha_2], \ [x_2 \oplus_{\alpha_2} x_1, \alpha_1] = [0, \alpha_1]$$

This implies that for every $z \in A$,

$$(x_1 \oplus_{\alpha_1} x_2) \oplus_{\alpha_2} z = 0 \oplus_{\alpha_2} z = z,$$

and

$$(x_2 \oplus_{\alpha_2} x_1) \oplus_{\alpha_1} z = 0 \oplus_{\alpha_1} z = z.$$

This implies that for every $z \in A$, $(x_1 \oplus_{\alpha_1} x_2) \oplus_{\alpha_2} z = (x_2 \oplus_{\alpha_2} x_1) \oplus_{\alpha_1} z$. Since the equations $x_1 \oplus_{\alpha_1} z$ and $x_2 \oplus_{\alpha_2} z$ have solutions, we have $[x_1, \alpha_1] = [x_2, \alpha_2]$. Therefore, M is an UP-algebra.

We now give the following definition:

Definition 3.3. Let A be a ΓUP -algebra and $B \subseteq A$, $C \subseteq M$. Then, we define $\widehat{B} \subseteq M$ and $C' \subseteq A$ as follows:

$$C^{'} = \{ x \in A : \forall \alpha \in \Gamma, [x, \alpha] \in C \}, \quad \widehat{B} = \{ [x, \alpha] : x \in B, \alpha \in \Gamma \}.$$

Proposition 3.4. Let A be a ΓUP -algebra and $C \subseteq M$ be an UP-ideal. Then, C' is a ΓUP -ideal of A.

Proof. Suppose that $x_1 \oplus_{\alpha_1} (x_2 \oplus_{\alpha_2} x_3) \in C'$ and $x_2 \in C'$. Hence, for every $\alpha \in \Gamma$, $[x_1 \oplus_{\alpha_1} (x_2 \oplus_{\alpha_2} x_3), \alpha] \in C$. This implies that $[x_1, \alpha_1] \circ ([x_2, \alpha_2] \circ [x_3, \alpha]) \in C$ and $[x_2, \alpha_2] \in C$. Since, C is a Γ UP-ideal of M, $[x_1, \alpha_1] \circ [x_3, \alpha] \in C$, for every $\alpha \in \Gamma$. Therefore, for every $\alpha \in \Gamma$, $[x_1 \oplus_{\alpha_2} x_3, \alpha] \in C$ and $x_1 \oplus_{\alpha_2} x_3 \in C'$ and C' is a Γ UP-ideal of A.

Proposition 3.5. Let $\varphi : A_1 \longrightarrow A_2$ be an onto homomorphism. Then, there is a homomorphism $\widehat{\varphi} : M_1 \longrightarrow M_2$, where M_1 and M_2 are associated UP-algebra A_1 and A_2 , respectively.

Proof. Suppose that $\widehat{\varphi} : M_1 \longrightarrow M_2$ defined by $\widehat{\varphi}([x_1, \alpha]) = [\varphi(x_1), \alpha]$, where $[x_1, \alpha] \in M_1$. Let $[x_1, \alpha_1] = [x_2, \alpha_2]$. Then, for every $x \in A_1$,

$$x_1 \oplus_{\alpha_1} x = x_2 \oplus_{\alpha_2} x.$$

Hence, $\varphi(x_1) \oplus_{\alpha_1} \varphi(x) = \varphi(x_2) \oplus_{\alpha_2} \varphi(x)$. Since φ is onto, for every $z \in A_2$, there exists $x \in A_1$ such that $\varphi(x) = z$. Hence, $\varphi(x_1) \oplus_{\alpha_1} z = \varphi(x_2) \oplus_{\alpha_2} z$. Then, $\widehat{\varphi}$ is well-defined. Also, for every $[x_1, \alpha_1], [y_1, \beta_1] \in M_1$,

$$\begin{aligned} \widehat{\varphi}([x_1,\alpha_1]\circ[y_1,\beta_1]) &= \widehat{\varphi}([x_1\oplus_{\alpha_1}y_1,\beta_1]) &= [\varphi(x_1)\oplus_{\alpha_1}\varphi(y_1),\beta_1] \\ &= [\varphi(x_1),\alpha_1][\varphi(y_1),\beta_1] \\ &= \widehat{\varphi}([x_1,\alpha_1]\widehat{\varphi}([y_1,\beta_1]). \end{aligned}$$

Also, $\widehat{\varphi}([0_{A_1}, \alpha]) = [\varphi(0_{A_1}), \alpha] = [0_{A_2}, \alpha]$. Therefore, $\widehat{\varphi}$ is a homomorphism.

Lemma 3.6. Let $\varphi : A_1 \longrightarrow A_2$. Then, $\widehat{\ker \varphi} = \ker \widehat{\varphi}$ and $\widehat{Im\varphi} \subseteq Im\widehat{\varphi}$.

Proof. Suppose that $\widehat{\varphi} : M_1 \longrightarrow M_2$ is a homomorphism between associated UP-algebras and $[x, \alpha] \in \widehat{ker\varphi}$. Then, $[x, \alpha] = [x_1, \alpha_1]$, for some $x_1 \in ker\varphi$ and $\alpha_1 \in \Gamma$. Then,

$$\widehat{\varphi}([x,\alpha]) = \widehat{\varphi}([x_1,\alpha_1] = [\varphi(x_1),\alpha_1] = [0_{A_2},\alpha_1] = 0_{M_2}.$$

Hence, $\widehat{ker\varphi} \subseteq ker\widehat{\varphi}$. Also, $[x, \alpha] \in ker\widehat{\varphi}$, implies that

$$\widehat{\varphi}([x,\alpha]) = 0_{M_2} \Longleftrightarrow [\varphi(x),\alpha] = [0_{A_2},\alpha] \iff \forall z \in A_2, \varphi(x) \oplus_\alpha z = 0_{A_2} \oplus_\alpha z = z.$$

Since 0_{A_2} is unique, $\varphi(x) = 0_{A_2}$ and $[x, \alpha] \in \widehat{ker\varphi}$.

Let $[y, \alpha] \in \widehat{Im\varphi}$. Then, $[y, \alpha] = [y_1, \alpha_1]$, for some $y_1 \in Im\varphi$ and $\alpha \in \Gamma$. Hence, there exists $x_1 \in A_1, \varphi(x_1) = y_1$ and $\widehat{\varphi}([x_1, \alpha]) = [y, \alpha]$. Then, $\widehat{Im\varphi} \subseteq Im\widehat{\varphi}$.

Definition 3.7. A sequence $A_1 \xrightarrow{\varphi_1} A_2 \xrightarrow{\varphi_2} A_3$ is called exact if $Im\varphi_1 = ker\varphi_2$.

Proposition 3.8. Let $\varphi_1 : A_1 \longrightarrow A_2$ and $\varphi_2 : A_2 \longrightarrow A_3$ be homomorphisms. Then, $\widehat{\varphi_2 \circ \varphi_1} = \widehat{\varphi_2} \circ \widehat{\varphi_1}$.

Proof. The proof is straightforward.

Theorem 3.9. Let $A_1 \xrightarrow{\varphi_1} A_2 \xrightarrow{\varphi_2} A_3$ be an exact sequence of ΓUP -algebras and homomorphisms. Then, $M_1 \xrightarrow{\widehat{\varphi}_1} M_2 \xrightarrow{\widehat{\varphi}_2} M_3$ is an exact sequence of UP-algebras.

Proof. Since $Im\varphi_1 = ker\varphi_2$ and Proposition 3.8, implies that $Im\widehat{\varphi}_1 \subseteq ker\widehat{\varphi}_2$. Let $[x_2, \alpha_2] \in ker\widehat{\varphi}_2$. Then, $\widehat{\varphi}([x_2, \alpha_2]) = 0_{M_3}$ and $[\varphi(x_2), \alpha_2] = [0_{A_3}, \alpha_2]$. Hence, for every $z \in A_3$, $\varphi(x_2) \oplus_{\alpha_2} z = 0_{A_3} \oplus_{\alpha_2} z = z$. Thus, $x_2 \in ker\varphi = Im\varphi_1$. Then, for some $x_1 \in A_1$, $\varphi_1(x_1) = x_2$ Therefore, $\widehat{\varphi}_1([x_1, \alpha_2])$ and $ker\widehat{\varphi}_2 \subseteq Im\widehat{\varphi}_1$.

Corollary 3.10. A homomorphism $\varphi : A_1 \longrightarrow A_2$ is an isomorphism if and only if $\widehat{\varphi} : M_1 \longrightarrow M_2$ is an isomorphism.

Corollary 3.11. Let $0 \to A_1 \xrightarrow{\varphi_1} A_2 \xrightarrow{\varphi_2} A_3 \to 0$ be a short exact sequence. Then, $0 \to M_1 \xrightarrow{\widehat{\varphi}_1} M_2 \xrightarrow{\widehat{\varphi}_2} M_3 \to 0$ is a short exact sequence.

Proposition 3.12. Let $\varphi : A_1 \longrightarrow A_2$ be a homomorphism. Then, $\widehat{\varphi(A)} = \widehat{\varphi}(\widehat{A})$ and $\widehat{\varphi^{-1}(D)} \subseteq \widehat{\varphi}^{-1}(\widehat{D})$, where $A \subseteq A_1$ and $D \subseteq M_2$.

Proof. Suppose that $[y,\alpha] \in \widehat{\varphi(A)}$. Then, $[y,\alpha] = [y_1,\alpha_1]$, for some $\alpha \in \Gamma$ and $y_1 = \varphi(a)$. Hence, $[y,\alpha] = [\varphi(a),\alpha_1] = \widehat{\varphi}([\alpha_1,a,])$. Then, $\widehat{\varphi(A)} \subseteq \widehat{\varphi(A)}$. Let $[y,\alpha] \in \widehat{\varphi(A)}$. Then, for some $[x,\alpha_1] \in \widehat{A}, [y,\alpha] = \widehat{\varphi}([x,\alpha_1])$. Also, $[x,\alpha_1] = [a,\alpha_2]$, for some $a \in A$ and $\alpha_2 \in \Gamma$. This implies that $[y,\alpha] = \widehat{\varphi}([a,\alpha_2]) = [\varphi(a),\alpha_2]$. Hence, $[\varphi(a),\alpha_2] \in \widehat{\varphi(A)}$ and $\widehat{\varphi(A)} \subseteq \widehat{\varphi(A)}$.

Let $[x, \alpha] \in \widehat{\varphi^{-1}(D)}$. Then, $[x, \alpha] = [x_1, \alpha_1]$, for some $x_1 \in \varphi^{-1}(D)$ and $\widehat{\varphi}([x, \alpha]) = \widehat{\varphi}([x_1, \alpha_1]) = [\varphi(x_1), \alpha_1] \in \widehat{D}$ and $[x, \alpha] \in \widehat{\varphi^{-1}(D)}$. Hence, $\widehat{\varphi^{-1}(D)} \subseteq \widehat{\varphi^{-1}(D)}$.

Proposition 3.13. Let $\varphi: A_1 \longrightarrow A_2$ be a homomorphism. Then, $\varphi^{-1}(C') = (\widehat{\varphi}^{-1}(C))'$

Proof. Suppose that $\varphi : A_1 \longrightarrow A_2$ is a homomorphism and $\widehat{\varphi} : M_1 \longrightarrow M_2$ is an associated homomorphism. Hence,

$$x \in \varphi^{-1}(C') \iff \varphi(x) \in C' \iff \forall \alpha \in \Gamma, \quad [\varphi(x), \alpha] \in C$$
$$\iff \forall \alpha \in \Gamma, \quad \widehat{\varphi}([x, \alpha]) \in C$$
$$\iff \forall \alpha \in \Gamma, \quad [x, \alpha] \in \widehat{\varphi}^{-1}(C)$$
$$\iff x \in (\widehat{\varphi}^{-1}(C))'$$

Therefore, $\varphi^{-1}(C') = (\widehat{\varphi}^{-1}(C))'.$

Definition 3.14. Let ρ be an equivalence relation on ΓUP -algebra A. Then, we define the relation $\hat{\rho}$ on M as follows:

$$[x_1, \alpha_1]\widehat{\rho}[x_2, \alpha_2] \iff \forall \ z \in A, \ (x_1 \oplus_{\alpha_1} z)\rho(x_2 \oplus_{\alpha_2} z)$$

In view of the above definition, our aim is to establish the following fundamental theorem of a Γ UP-algabras.

Theorem 3.15. Let ρ be an equivalence relation on Γ UP-algebra. Then, $\widehat{A/\rho} \cong M/\widehat{\rho}$.

Proof. Suppose that $\varphi: \widehat{A/\rho} \longrightarrow M/\widehat{\rho}$, defined by

$$\varphi([\rho(x), \alpha]) = \widehat{\rho}([x, \alpha]).$$

Let $[\rho(x_1), \alpha_1] = [\rho(x_2), \alpha_2]$. Then, for every $\rho(z) \in A/\rho$, $\rho(x_1) \oplus_{\alpha_1} \rho(z) = \rho(x_2) \oplus_{\alpha_2} \rho(z)$. Hence, $(x_1 \oplus_{\alpha_1} z)\rho(x_2 \oplus_{\alpha_2} z)$ and $\varphi([x_1, \alpha_1]) = \varphi([x_2, \alpha_2])$. Then, φ is well-defined. Also, for every $[\rho(x_1), \alpha_1], [\rho(x_2), \alpha_2] \in \widehat{A/\rho}$

$$\begin{aligned} \varphi([\rho(x_1), \alpha_1] \circ [\rho(x_2), \alpha_2]) &= \varphi([\rho(x_1) \oplus_{\alpha_1} \rho(x_2), \alpha_2]) \\ &= \varphi([\rho(x_1 \oplus_{\alpha_1} x_2), \alpha_2]) \\ &= \widehat{\rho}([x_1 \oplus_{\alpha_1} x_2, \alpha_2]) \\ &= \widehat{\rho}([x_1, \alpha_1]) \widehat{\rho}([x_2, \alpha_2]) \\ &= \widehat{\varphi}([\rho(x_1), \alpha_1]) \widehat{\varphi}([\rho(x_2), \alpha_2]). \end{aligned}$$

Clearly, φ is onto. To show that φ is one to one, suppose that $\varphi([\rho(x_1), \alpha_1]) = \varphi([\rho(x_1), \alpha_2])$. Hence, for every $z \in H$, $\rho(x_1 \oplus_{\alpha_1} z) = \rho(x_2 \oplus_{\alpha_2} z)$. Then, $[\rho(x_1), \alpha_1] = [\rho(x_2), \alpha_2]$ and φ is an isomorphism.

Corollary 3.16. Let $C_{\Gamma UP}$ be a category of ΓUP -algebras and C_{UP} be a category of UP-algebras and onto homomorphisms. Then, by Theorem 3.2 and Proposition 3.5, we define a functor ψ between these category such that $\psi(A) = M$ and $\psi(\varphi) = \widehat{\varphi}$, where M, M_1 and M_2 are ΓUP -algebras and $\varphi : M_1 \longrightarrow M_2$ is a onto homomorphism.

4 Conclusion

Our aim of this paper is to introduce and consider the algebraic properties of a new algebra, that is, the Γ UP-algebra. In addition, we also observe the connections between the Γ UP-algebras and UP algebras. As a consequence, we establish a convariant functor between the categories of Γ UP and UP-algebras. We hope that our research in this paper will bring some attention of the study and applications of this new algebraic structures. Would serve for further study in Γ UP- algebras and its related topics.

5 Acknowledgements

The authors are highly grateful to the referees for their valuable comments and suggestions for improving the article.

References

- M.A. Ansari, A. Haider, A. Koam, On a graph associated to UP-algebras, Mathematical and Computational Applications, 23(4) (2018), 61.
- [2] Q.P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes (Kobe University), 11(2) (1983), 313–320.
- [3] A. Iampan, A new branch of the logical algebra: UP-algebras, Journal of Algebra and Related Topics, 5(1) (2017), 35–54.
- [4] A. Iampan, Introducing fully UP-semigrpups, Discussiones Mathematicae-General Algebra and Applications, 38(2) (2018), 297–298.
- [5] Y. Imai, K. Iseki, On axiom system of propositional calculi, XIV, Proceedings of the Japan Academy, 42(1) (1966), 19–22.
- [6] K. Iseki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, 42(1) (1966), 26–29.
- [7] S. Keawrahun, U. Leerawat, On isomorphisms of SU-algebras, Scientia Magna Journal, 7(2) (2011), 39–44.
- [8] S. M. Mostafa, M.A.A. Naby, O.R. Elgendy, Interval-valued fuzzy KU-ideals in KU-algebras, International Mathematical Forum, 6(4) (2011), 3151–3159.
- S. M. Mostafa, M.A.A. Naby, O.R. Elgendy, Intuitionistic fuzzy KU-ideals in KU-algebras, International Journal of Mathematics and Mathematical Sciences, 1(3) (2011), 1379–1384.
- [10] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Scientia Magna Journal, 1(5) (2009), 54–57.
- [11] T. Senapati, Y.B. Jun, K.P. Shum, Cubic set structure applies in UP-algebras, Discrete Mathematics Algorithm and Applications, 10(4) (2018), ID 1866104, 23 pages.
- [12] T. Senapati, G. Muhiuddin, K.P. Shum, Representation of UP-algebras in interval intuitionistic fuzzy environment, Italian Journal of Pure and Applied Math, 38 (2017), 497–318.

- [13] P.M. Sithar Selvam, T. Priya, K.T. Nagalakshmi, T. Ramachandran, A note on anti Q-fuzzy KU-subalgebras and homomorphism of KU-algebras, Bulletin of Mathematics and Statistics Research, 1(1) (2013), 42–49.
- [14] N. Yaqoob, S.M. Mostafa, M.A. Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebra, (2013), Art. ID 935905, 10 pp.
- [15] S. Yuphhin, P. Kankaew, N. Lapo, *Picture fuzzy sets in UP-algebras by means of a special type*, Journal of Mathematics and Computer Science, 25(1) (2021), 37–72.