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Abstract

In this paper, we focus on the intuitionistic propositional logic
extended with a local operator [22] (also called nucleus [21]);
such logic is commonly named lax logic after [9]. We prove
that unification is finitary in this logic and supply algorithms
for computing a basis of unifiers and for recognizing admissi-
bility of inference rules, following analogous known results for
intuitionistic logic.
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1 Introduction
It is well-known that the algebraic counterpart of intuitionistic logic is given by Heyting algebras, which are
among the most important examples of residuated lattices, whereas the algebraic counterpart of the logic
we study in this paper (namely, lax logic) is given by Heyting algebras with nuclei. So we believe that this
paper sits both in the scope of the journal and in the area of interest of Antonio Di Nola.

More precisely, in this paper we consider the extension of intuitionism obtained by adding it a unary
modal operator j (a nucleus) subject to the axiom schemata (1) below. This logic comes from Lawvere’s
suggestion that a Grothendieck topology appears in a natural way as a modal operator; as such, this
geometrically inspired modality (and the related algebraic and categorical counterparts) found numerous
applications in topos theory [22, 28, 29] and point-free topology [21].

The investigation of the basic properties (completeness, finite model property, decidability) of such logic
at the propositional level was first undertaken in [5, 6] and later on in [16]. In more recent times, the logic
was rediscovered (and renamed as lax logic) inside the area of applications to hardware verification [9, 24, 25].
The problem there is the timing analysis of logical circuits, implication in lax logic is interpreted as follows:
A → B holds if A gives rise to B in a bounded amount of time.

In the last two decades, there have been increasing interest in lax logic, from various sources. We give
here a list (far from exhaustive) of examples.
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In [27] the authors give a new presentation of lax logic and finds that the lax modality is already
expressible using possibility and necessity.

In [17] the author gives two proof-search calculi for lax logic. The first calculus is useful for enumerating
without redundancy all proofs in the logic; especially where proof-search is for natural deductions. The
other calculus builds on the propositional fragment of the first calculus to give a decision procedure for
propositional lax logic, so useful for hardware verification.

In [10] we find an interpretation of first order lax logic in the theorem prover HOL.
[8] shows that lax logic can be faithfully embedded into the underlying intuitionistic logic and discusses

(computational) properties of the embedding. Using the proposed polynomial-time computable embedding,
PSPACE-completeness of the provability problem of propositional lax logic is shown.

In the area of algebraic logic, there have been further intersting recent contributions. In [3], the authors
associate to each superintuitionistic logic its downward and upward subframizations, and characterize them
by embedding si-logics into the extensions of the propositional lax logic PLL.

In [7] a study is performed of what we call the {→, j}-fragment of lax logic. The paper studies the
algebraic correspondent of this fragment, called Lax Hilbert algebras, and their dual objects, lax Hilbert
spaces.

In [4] a full duality theorem is given for Heyting algebras with nuclei and in [2] duality techniques are
exploited in order to show the somewhat surprising result that the disjunction-free fragment of lax logic is
locally finite.

Our main result and plan of the paper
Despite the progresses described above, it seems that the unification problem for lax logic has not been
settled yet, whereas unification for intuitionism has been investigated in [11] (for a survey on results in
unification theory in modal and description logics, the reader is referred to [1]).

The main result of [11] is the following:

Theorem 1.1. [11] Intuitionism has finitary unification type.

Likewise in this paper we prove:

Theorem 1.2. Lax logic has finitary unification type.

The proof is given in the following sections. Actually, our proof of Theorem 1.2 is similar to the one of
Theorem 1.1, so we will stress mostly the points where the two proofs differ.

The paper is entirely self-contained: to this aim, we supply in Section 2 below an essential background
on propositional lax logic, tailored to the semantic results we need in the main sections.

2 Basic syntax and semantics
The formulae of intuitionistic propositional logic are obtained from a countable set of atomic propositions
(atoms) x1, . . . , y1, . . . by applying them the connectives ⊤,⊥,∧,∨,→. For a complete Hilbert style axiom-
atization of intuitionistic propositional calculus (IPC), the reader is referred to textbooks like [26].

The language of propositional lax logic (PLL) includes also an additional unary operator j and an
axiomatization for such logic is obtained by adding to the axiomatization of (IPC) the following axiom
schemata

A → jA, jjA ↔ jA, j(A ∧B) ↔ jA ∧ jB . (1)

Given a formula A, we write ⊢PLL A if A is provable in (PLL). More generally, we write A1, . . . , An ⊢PLL

B to denote ⊢PLL A1 ∧ . . . ∧An → B.
From an algebraic point of view, we consider Heyting algebras with nuclei, i.e. Heyting algebras H =

(H,⊓,⊔,⇒, 1, 0) endowed with a unary operator j satisfying the following conditions

a ≤ j(a), j(j(a)) = j(a), j(a ⊓ b) = j(a) ⊓ j(b) (2)
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for every a, b in the support H of H (the partial order relation a1 ≤ a2 is defined as usual as a1 ⊓ a2 = a1).
We recall that a Heyting algebra is a bounded distributive lattice endowed with an extra operation ⇒
satisfying the following condition

a ⊓ b ≤ c iff a ≤ b ⇒ c (3)

for all a, b, c in its support (it is well-known that condition (3) can be formulated equationally, so that
Heyting algebras are an equational class).

A valuation V for (PLL)-formulae is a map associating with every atom x an element V (x) of the support
of an Heyting algebra with nucleus. The valuation V is then extended to the set of all formulae by induction
in the obvious way. A Lindenbaum construction easily gives the following

Theorem 2.1. For every formula A, we have that ⊢PLL A iff V (A) = 1 for every valuation V .

The above result can be improved, by restricting to finite valuations, i.e. to valuations whose codomain
is a finite algebra. We give below a quite short proof of this result, first we need a preliminary Lemma:

Lemma 2.2. Every finitely generated bounded distributive lattice endowed with a nucleus j (i.e. with a
unary operation satisfying conditions (2)) is finite.

Proof. The lemma holds because all elements of such a structure can be written as meets of joins of elements
which are either generators or obtained applying j to a disjunction of generators. It is so because the equality

j(a ⊔ j(b)) = j(a ⊔ b)

follows from (2).

Theorem 2.3 (Finite Model Property). [5, 6, 9, 16] For every formula A, we have that ⊢PLL A iff V (A) = 1
for every finite valuation V .

Proof. Let A be such that ̸⊢PLL A and consider a valuation V into a Heyting algebra with nucleus (H, j)
such that V (A) ̸= 1. Consider the (finite, by Lemma 2.2) bounded distributive lattice with nucleus generated
by the elements of the kind V (B) where B is a subformula of A. Every finite distributive lattice is a Heyting
algebra, hence we have a sub-Heyting algebra with nucleus (H′, j) of (H, j), including the valuation of all
the subformulae of A. The inclusion preserves joins, meets, 0, 1, j, but not the implication: In fact H′ has
its own implication, that we denote by ⇒′. However, if for a, b in the support of H′ it happens that a ⇒ b
belongs to the support of H′, then a ⇒ b coincides with a ⇒′ b: to see this, notice that a ⇒ b is the unique
element satisfying (3) for all c in the support of H, hence it is also the unique element satisfying (3) for
all c in the support of H′. Thus, we can restrict V in the codomain to the support of H′ and get a finite
valuation V ′ such that V ′(A) ̸= 1.

By Post’s theorem (a set is recursive iff both it and its complement are recursively enumerable), we get
decidability:

Corollary 2.4. Given lax formulae A1, . . . , An, B, it is decidable whether A1, . . . , An ⊢PLL B holds or not.

We now want to recover from Theorem 2.3 a Kripke-style semantics for (PLL). In fact, whereas var-
ious semantics for (PLL) have been proposed in the literature (in particular, the semantics in terms of
Grothendieck coverings remains the most natural and appropriate one),1 for the kind of propositional logic
applications considered in this paper, we focus on the simplest and the most manageable semantics.

A lax Kripke frame is a triple
PS = (P,≤, S),

where P is a poset and S is a subset of P . A lax Kripke frame as above induces a Heyting algebra with
nucleus H(PS) by taking the Heyting algebra ↓P of downward closed subsets (downsets) 2 of P ordered by

1See [14] for a comparison of the different Grothendieck coverings that can be used to prove the completeness theorem
via canonical models. The lax Kripke frames explained in this section correspond to special kinds of Grothendieck coverings
(called ‘covering by points’ in [14]).

2We say that D ⊆ P is downward closed iff for all p, q ∈ P , if p ∈ D and q ≤ p, then q ∈ D.
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set-theoretic inclusion and by endowing this algebra with the nucleus defined in the following way for every
downset D ∈↓ P :

jS(D) = {p ∈ P | ∀s ∈ S (s ≤ p ⇒ s ∈ D)}. (4)

Not all the nuclei on the downward closed sets of a poset P are of this kind, however we shall see that this
is the case when P is finite. Since all finite Heyting algebras (up to isomorphism) are of the kind ↓P for
some finite poset P , we obtain in this way a complete characterization of finite Heyting algebras with nuclei
(this is indeed part of a full duality theorem for Heyting algebras with nuclei, see [4]).

To prove such characterization (Theorem 2.6 below) we specialize some techniques from [2]. We need
some notations concerning an Heyting algebra of the kind ↓P . For p ∈ P , we let ↓ p = {q ∈ P | q ≤ p} and
pc = {q ∈ P | q ̸≥ p}. For an arbitrary downset D, we have

p ∈ D iff ↓p ⊆ D, (5)
p ̸∈ D iff D ⊆ pc. (6)

Thus, D =
∪

p∈D ↓ p and D =
∩

p ̸∈D pc. If P is finite, the elements of the kind ↓ p are precisely the join-
irreducible elements of ↓P , whereas the elements of the kind pc are precisely the meet-irreducible elements
of ↓P . 3

The minimal downsets of the kind pc for p ̸∈ D are called the meet-irreducible components of D.

Lemma 2.5 ([2], Lemma 3.14). Let P be a finite poset and let j be a nucleus on ↓P ; if pc is a meet-irreducible
component of some downset D such that D = j(D), then j(pc) = pc.

Proof. Let qc1, . . . , q
c
n be the meet-irreducible components of D; for every i = 1, . . . , n we have

j(qc1) ∩ · · · ∩ j(qcn) = j(qc1 ∩ · · · ∩ qcn) = j(D) = D ⊆ qci .

Since qci is meet-irreducible, there is k = 1, . . . , n such that qck ⊆ j(qck) ⊆ qci ; by minimality, qck = qci and so
qci = j(qci ).

Theorem 2.6. Let (H, j) be a finite Heyting algebra with nucleus. Then there exists a finite lax Kripke
frame PS = (P,≤, S) such that (H, j) is isomorphic to H(PS).

Proof. It is a basic well-known fact (see e.g. [15], Theorem 2.1) that H is isomorphic to the Heyting algebra
↓P of the downsets of a finite poset P . Hence, we only need to identify some S ⊆ P such that H(PS) is
isomorphic to (↓P, j). We take4

S = {q ∈ P | j(qc) = qc}.

Now for p ∈ P and D ∈↓ P , we have that p ̸∈ j(D) iff j(D) ⊆ pc iff there is some meet-irreducible
component qc of j(D) such that j(D) ⊆ qc ⊆ pc. Taking into consideration Lemma 2.5 and the fact that
j(j(D)) = j(D), this happens iff there is q ∈ S such that j(D) ⊆ j(qc) = qc ⊆ pc, i.e. iff there is q ∈ S such
that D ⊆ qc ⊆ pc (in fact, since j(qc) = qc, the inclusion j(D) ⊆ qc is equivalent to the inclusion D ⊆ qc).
However qc ⊆ pc holds iff q ≤ p; thus, in conclusion we have that p ̸∈ j(D) iff there is q ∈ S such that q ̸∈ D
and q ≤ p iff p ̸∈ jS(D). Since p and D are arbitrary, this shows that j = jS , as wanted.

Let us call a finite lax Kripke model (or simply a finite lax model or a finite Kripke model) any valuation
V whose codomain is an algebra of the kind H(PS), for a finite PS . Putting together our results, we get the
following completeness/finite model property theorem for (PLL) with respect to finite lax Kripke frames:

Theorem 2.7. For every formula A, we have that ⊢PLL A iff V (A) = 1 for every finite lax Kripke model
V .

3Recall that an element a of a lattice is said to be join-irreducible iff the relation a ≤ b1 ⊔ · · · ⊔ bn (for some n ≥ 0 and
b1, . . . , bn) implies a ≤ bi for some i. The definition of a meet-irreducible element is dual.

4In view of (6), this is the same as taking S to be {q ∈ P | ∀D ∈↓P (q ∈ j(D) → q ∈ D)}. Such alternative definition of S
matches the definition of the ‘covering by points’ Grothendieck topology in the canonical model [14].
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It is customary to reformulate Kripke semantics in terms of forcing; this is a purely mechanical trans-
lation, taking in mind that “the point p ∈ P of the model induced by the valuation V forces a formula A”
must be defined in such a way that it is equivalent to “p ∈ V (A)”. Also, notice that the forcing relation
at p ∈ P defined in this way only depends on the restriction of the model to the points q ≤ p. This is
why sometimes it is preferred to formulate Kripke semantics using rooted posets (a poset (P,≤) is rooted
when there is ρ ∈ P such that ↓ ρ = P ). We directly give below such reformulation in terms of rooted
posets, leaving the reader to convince himself that Theorem 2.8 below is just a rewording of Theorem 2.7
above. We adopted such rewording to make our notation fully compliant with [11]; for the same reason,
we prefer to introduce Kripke models defined only over finite subsets of the set of atomic propositions. We
nevertheless maintain the name ‘(lax) Kripke models’ for the models introduced below, despite these light
and immaterial differences.

For a finite set of atoms X, we let F (X) the set of all (PLL)-formulae built up from atoms in X (we
often write A(X) to mean that A ∈ F (X)).

A lax Kripke model (or, simply, a Kripke model or, again, a lax model) is a tuple

u = (X,P,≤, Su, V ), (7)

where X is a finite set of atoms, (P,≤) is a finite rooted poset, Su ⊆ P 5 and V : X −→↓P is a function.
Often the elements of P are called ‘worlds’ of the model and ≤ is called the ‘accessibility relation’. When

u is a model as in (7), we say that u is a model over X or that it is an X-model.
Given such a model, it is possible to define the forcing relation u |=p A (where p ∈ P and A ∈ F (X)) as

follows, by induction on A:

- u |=p ⊤ always;

- u ̸|=p ⊥ always;

- u |=p x iff p ∈ V (x) for all x ∈ X;

- u |=p A ∧B if and only if u |=p A and u |=p B;

- u |=p A ∨B if and only if u |=p A or u |=p B;

- u |=p A → B if and only if for every point q ≤ p of P , if u |=q A, then u |=q B;

- u |=p jA iff for every point s ≤ p belonging to Su we have that u |=s A.

When we write u |= A (without specifying p), we mean u |=ρ A, where ρ is the root of P . Actually, it is
always possible to avoid the specification of p by considering submodels: For p ∈ P , we denoted by up the
model obtained from u by restricting P and Su to the subset {q ∈ P | q ≤ p} (p will be the root of this
restricted model). Then it is easily seen that we have

u |=p A iff up |= A,

for every formula A (we shall systematically adopt this model restriction notation in the paper).
The semantics of a formula A ∈ F (X) (denoted by A∗) is the class of models over X validating A;

formally, we define
A∗ = {u = (X,P,≤, Su, V ) | u |= A}. (8)

Then we can reformulate the completeness Theorem 2.7 in the style of [11] (Theorem 1 p. 862) as follows:

Theorem 2.8. For every formulae A,B ∈ F (X), we have that A ⊢PLL B iff A∗ ⊆ B∗.
5Note that Su is not necessarily a downset of P (otherwise we would collapse our logic inside intuitionism with a distinguished

atom). However, it is still true that lax formulas are interpreted as downsets.
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3 Unification and projectivity
A substitution is a map σ : X → F (Y ), where X,Y are finite sets of atoms. A substitution extends
naturally to a map from F (X) to F (Y ). The composition of the substitutions σ : F (X) → F (Y ) and
τ : F (Y ) → F (Z) is the substitution τσ : F (X) → F (Z) defined by (τσ)(x) := τ(σ(x)) for all x ∈ X.
A substitution σ1 : F (X) → F (Y ) is less general than σ2 : F (X) → F (Z), written σ1 ≤ σ2, if there is
τ : F (Z) → F (Y ) such that ⊢PLL τ(σ2(x)) ↔ σ1(x).

We say that the substitution σ is a unifier of A if ⊢PLL σ(A).
A set S of unifiers for A is said to be a complete set of unifiers for A if every unifier for A is less general

than a member of S. A complete set of unifiers for A is said to be a basis of unifiers for A if and only if its
members are pairwise incomparable with respect to the preorder ≤. A unifier σ for A is said to be a most
general unifier (mgu) for A if and only if {σ} is a complete set of unifiers for A.

A logic has finitary unification type if every every unifiable formula has a finite complete set of unifiers.
Among logics with finitary unification types, we can mention intuitionistic logic [11] and the modal systems
K4, S4, Grz,GL [12]; however the modal system K lacks this property [19].

Given σ : F (X) → F (Y ) and u a model over a finite set Y of atoms, σ∗(u) is the model on the same
frame but over the atoms X, such that σ∗(u)p |= x if and only if up |= σ(x), for all p in the domain of u
and for all x ∈ X (by an easy induction, this implies

σ∗(u)p |= A iff up |= σ(A), (9)

for all A ∈ F (X)). Notice that for composition of substitutions, we have the following equality (τσ)(u) =
σ∗(τ∗(u)); for restrictions to submodels, we have σ∗(u)p = σ∗(up) for all p in the domain of u.

Projective formulas
A lax formula A(X) is said to be projective if there is a unifier σ : F (X) → F (X) of A such that

A ⊢PLL x ↔ σ(x), (10)

for every atom x ∈ X. By the replacement theorem (which holds in lax logic), the previous formula implies

A ⊢PLL B ↔ σ(B), (11)

for every lax formula B ∈ F (X). A unifier σ of a formula A satisfying (10) is said to be a projective unifier
of A; it is immediate to see that projective unifiers of A are most general unifiers of A.

Like in [11], it is easily seen that substitutions satisfying (10) (independently on the fact whether they
unify A or not) are closed under composition.

Moreover, like in [11], given a formula A ∈ F (X) and given a subset a of X, we define the substitution

θaA(x) =

{
A → x, if x ∈ a

A ∧ x, if x /∈ a.

θaA satisfies (10) and the same holds for every composition of such substitutions.
The aim of this section is to give a semantic characterization of projective formulae. Such characterization

is in term of the extension property and is the same as the characterization given in [11] for intuitionistic
projective formulae (of course, the extension property now refers to lax Kripke models, but this is the only
formal difference). Proofs follows the same schema and the same arguments as in [11], so they are reported
here only in a synthetic way.

Lemma 3.1. Let A(X) be a lax formula, a ⊆ X, x ∈ X. We have:

1. ⊢PLL θaA(x) ↔ θaA(θ
a
A(x));

2. For every other b ⊆ X, A ↔ θbA(A) ⊢PLL θbA(θ
a
A(x)) ↔ θaA(x).

The semantic analog of the previous lemma is the following:
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Lemma 3.2. Let A be a lax formula over X, a ⊆ X, u be a lax model. We have:

1. If u |= A, then (θaA)
∗(u) = u,

2. If u ̸|= A, then (θaA)
∗(u)(ρ) ⊆ a,

3. (θaA)
∗((θaA)

∗(u)) = (θaA)
∗(u),

4. Given another b ⊆ X, if for all p ∈ u,

(θbA)
∗(up) |= A iff up |= A,

then (θaA)
∗((θbA)

∗(u)) = (θaA)
∗(u).

A lax model is a variant of a model on the same lax frame if they are equal or they differ only on the
semantics of the atoms at the root.

Lemma 3.3. Let A be a lax formula over X and let u be a lax model such that u ̸|= A but up |= A for
every nonroot p. If there is a variant u′ of u which is a model of A, then for some a ⊆ X we have both
(θaA)

∗(u) |= A and (θaA)
∗(u)(ρ) = a.

Like [11] we define a substitution θA as follows. Let ai be an ordering of all subsets of X such that
ai ⊆ aj implies i ≤ j. Let

θA = (θas

A ) . . . (θa1

A ).

Note that
θ∗A(u) = (θa1

A ) . . . (θas

A )∗(u),

for every lax model u over X. In this way we obtain:

Lemma 3.4. Let A be a lax formula and u a lax model such that θ∗A(u) |= A. Let i = 1, . . . , s such that
ai ⊆ θ∗A(u)(ρ). Then

(θai

A )∗ . . . (θas

A )∗(u) |= A.

A class K of lax models has the extension property if for every model u such that up ∈ K for every
nonroot p in the domain of u, there is a variant of u which belongs to K.

The projectivity criterion of [11] (Theorem 5, page 866) for intuitionism extends to lax logic, because
the sets of special worlds S appearing in the models play no role in the proofs. In particular we have:

Theorem 3.5. (see [11], Theorem 5, page 866) If A is a lax formula, then the following properties are
equivalent:

1. θA unifies A.

2. A is projective.

3. A∗ has the extension property.

Proof. (1 ⇒ 2) Follows because θA satisfies (10).
(2 ⇒ 3) Suppose σ is a unifier for A satisfying (10) and take a lax model u such that up ∈ A∗ for every

nonroot p. Then σ∗(u) ∈ A∗. It is sufficient to show that σ∗(u) is a variant of u: This follows from the fact
that σ∗(u)p = σ∗(up) for all p ∈ u and from the fact that if w ∈ A∗, then σ∗(w) = w for every lax model w,
because σ satisfies (10).

(3 ⇒ 1) Let u be a lax model. Our aim is to show θ∗A(u) |= A. Suppose not. We can assume θ∗A(up) |= A
for all nonroot p, since u is finite.

Since A∗ has the extension property, by Lemma 3.3 there is i = 1, . . . , s such that

(θai

A )∗(θ∗A(u)) |= A,

and
ai = (θai

A )∗(θ∗A(u))(ρ),
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hence ai ⊆ θ∗A(u)(p) for every nonroot p because lax models are monotonic and because of Lemma 3.2. By
Lemma 3.4 we infer

(θai

A )∗ . . . (θas

A )∗(up) |= A,

for all nonroot p. Now we can repeatedly apply the hypothesis of Lemma 3.2(4) to all Kripke models

(θ
aj

A )∗ . . . (θai

A )∗ . . . (θas

A )∗(u) (1 < j ≤ i),

relatively to θaA = θai

A and θbA = θ
aj−1

A (in fact, A is true at points different from the root and false at
the root both for (θ

aj

A )∗ . . . (θai

A )∗ . . . (θas

A )∗(u) and for (θ
aj−1

A )∗(θ
aj

A )∗ . . . (θai

A )∗ . . . (θas

A )∗(u)). With the same
calculations of [11] we obtain the equation

(θai

A )∗(θA)
∗(u) = (θai

A )∗ . . . (θas

A )∗(u),

because of Lemma 3.2(3). So from (θai

A )∗(θA)
∗(u) |= A and the above equation, we get (θai

A )∗ . . . (θas

A )∗(u) |=
A, hence also θ∗A(u) |= A by Lemma 3.2(1), contradiction.

Corollary 3.6. The projectivity of a lax formula A is decidable.

Proof. Let A be a formula over a finite set X of atoms. A is projective if and only if θA unifies A, i.e. iff
⊢PLL θA(A), which is decidable because (PLL) is decidable.

We conclude the section by supplying some information which is specific for (PLL). There are projective
formulae in lax logic which are not intuitionistic formulae; an example is

jx → x

whose most general unifier is the substitution mapping x to (jx → x) → x. However, the following
proposition says in particular that, up to logical equivalence, the main connective of a projective formula
cannot be j:

Proposition 3.7. If P is projective, then for every formula A we have

⊢PLL P → jA iff ⊢PLL P → A .

Proof. One side is trivial, as ⊢PLL A → jA. For the other side, suppose that we have ⊢PLL P → jA but
that there is a model v such that v |= P and v ̸|= A. Let ρ be the root of v and let v′ be an extension of
v with a new root ρ′ such that v′ |= P and ρ′ is in the set of the selected worlds Sv′ relatively to the lax
Kripke frame underlying v′: such v′ exists because P ∗ has the extension property. Then we obtain v′ |= P ,
v′ |= jA and also v′ |= A because the root of v′ is in Sv′ . By monotonicity of the forcing relation, it follows
that v′ρ = v |= A, a contradiction.

4 Lax simulation
To carry out the proof of Theorem 1.2 we need a notion of simulation in lax logic. The idea is to modify
the simulation for intuitionism of [11] so to take account of the j operator. We define simulation in an
alternating sequence of steps, where the odd steps are as in [11] and the even steps take into account the j
operator.

Definition 4.1. Let u, v be X-models; for n ≥ 0 we define the relations u ∼n v and u ≤n v as follows, by
induction on n.

- We say v ∼n u if v ≤n u and u ≤n v.

- We say v ≤0 u if every atom of X true in the root of u is true in the root of v.

- We say v ≤2n+1 u if v ≤2n u and for every p ∈ Sv there is q ∈ Su such that vp ≤2n uq.

- We say v ≤2n+2 u if v ≤2n+1 u and for every p ∈ dom(v) there is q ∈ dom(u) such that vp ∼2n+1 uq.
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Lemma 4.2. For every n,X there are only finitely many non ∼n-equivalent lax models over X.

Proof. By induction.

Lemma 4.3. For every finite set of atoms X, for every X-model u and for every n ≥ 0, there exists a lax
formula Xn

u (called the n-characteristic formula of u) such that for every X-model v we have that

v |= Xn
u if and only if v ≤n u.

Proof. For n = 0, X0
u is the conjunction of the atoms of X true in the root of u.

For the even case 2n+ 2 we take (as in [11]):

X2n+2
u := X2n+1

u ∧
∧

{u′|∀p∈P. u′ ̸∼2n+1up}

(X2n+1
u′ →

∨
{w|u′ ̸≤2n+1w}

X2n+1
w ).

For the odd case 2n+ 1, we take:

X2n+1
u := X2n

u ∧ j(
∨

r∈Su

X2n
ur

).

Now we prove by induction on n that for every X-model v we have

v ≤n u iff v |= Xn
u .

The even case is similar to [11]. Let us check the odd case.
Suppose v ≤2n+1 u; since v ≤2n u, by induction we have v |= X2n

u . To show that v |= j(
∨

r∈Su
X2n

ur
),

take p ∈ Sv; from v ≤2n+1 u, we get that vp ≤2n uq for some q ∈ Su, thus we have vp |= X2n
uq

, yielding what
required.

Vice versa, suppose that v |= X2n+1
u ; this implies that v |= X2n

u and also that v ≤2n u. Pick now p ∈ Sv;
since v |= j(

∨
r∈Su

X2n
ur

), we have vp |=
∨

r∈Su
X2n

ur
, which means that there is q ∈ Su such that vp |= X2n

uq
,

that is there is q ∈ Su such that vp ≤2n uq.

5 Invariance
A set K of finite models over X is said to be ≤n-invariant iff u ∈ K and v ≤n u imply v ∈ K. Likewise we
speak of ∼n invariance.

Lemma 5.1. There are only finitely many ≤n-invariant sets of X-models for every X and for every n ≥ 0.

Proof. This holds because every ≤n-invariant set is defined by a union of sets of the kind (Xn
u )

∗ and the
latter are finitely many.

We say that a formula A is ≤n-invariant (∼n-invariant) iff the set of models A∗ is ≤n-invariant (resp.
∼n-invariant).

Lemma 5.2. For every n ≥ 0, we have that ≤n-invariance implies ∼n-invariance and ≤m invariance for
every m > n.

Proof. Obvious, because ≤m ⊆≤n and ∼n ⊆≤n.

Lemma 5.3. Invariance has the following further properties:

1. The atoms x ∈ X and ⊤, ⊥ are ≤0-invariant;

2. If A,B are ≤n-invariant, then A ∧B, A ∨B are ≤n-invariant;

3. If A,B are ∼2n+1-invariant, then A → B is ≤2n+2-invariant (in particular, if A,B are ≤2n+1-
invariant, then A → B is ≤2n+2-invariant);

4. If A is ≤2n-invariant, then jA is ≤2n+1-invariant.
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Proof. The first two statements are easy.
For the third, we reason by contradiction. Suppose A,B are ∼2n+1 invariant, u |= A → B and v ≤2n+2 u.

Suppose for a contradiction that v ̸|= A → B. Then there is z ≤ v such that vz |= A and vz ̸|= B. By the
definition of ≤2n+2 there is z′ ≤ u with uz′ ∼2n+1 vz. So uz′ |= A and uz′ ̸|= B, contrary to the fact that
u |= A → B.

For the fourth, we again reason by contradiction. Suppose A is ≤2n invariant. Suppose u |= jA and
v ≤2n+1 u. Suppose by contradiction v ̸|= jA. Then there is p ∈ Sv such that vp ̸|= A. By the definition of
≤2n+1, there is q ∈ Su with vp ≤2n uq. But uq |= A, so vp |= A, a contradiction.

From the lemma we infer:

Theorem 5.4. For every formula A there is n such that A is ≤n-invariant. It is enough to take n = 2∗N(A),
where N(A) is the maximum number of nested occurrences of the symbols →, j in A.

Proof. By induction.

We remark that the bound for n = 2 ∗ N(A) given in Theorem 5.4 is not optimal. For instance, the
4 = 2 ∗ 2 bound for jjx is due to the following chain of arguments: One begins by observing that x is
≤0-invariant; then one infers by Lemma 5.3 that jx is ≤1-invariant, hence also ≤2-invariant; finally, again
by Lemma 5.3, one could conclude that jjx is ≤3-invariant and also ≤4-invariant. However, it is easily seen
that jjx is ≤1-invariant (being logically equivalent to jx).

For the purpose of this paper, we do not need to compute optimal bounds for ≤n-invariance, the
information that some bound exists being sufficient. However, better bounds could improve algorithms
for computing projective approximations and complete sets of unifiers. In addition, it is interesting to
notice that, applying only ∧,∨, j, an odd invariance bound does not increase. For this reason, we conclude
this section by relating invariance to a syntactically defined ‘complexity’ measure (we make this further
investigation just for the sake of completeness, the result we obtain will not be used in the sequel).

We define the complexity c(A) of a formula A, by induction as follows:

- If A is an atom or ⊥,⊤, then c(A) = 0;

- If A is B ∨ C, then c(A) = max(c(B), c(C));

- If A is B ∧ C, then c(A) = max(c(B), c(C));

- If A is B → C, then c(A) is the smallest even number strictly greater than c(B), c(C);

- If A is j(B), then c(A) is the smallest odd number greater or equal to c(B).

Lemma 5.5. If c(jA) = c(A), then there is a formula B whose complexity is strictly less than c(A) and
such that jA is logically equivalent to jB.

Proof. We use the fact that
j(C ∨ jD) ↔ j(C ∨D), (12)

is a valid formula (the argument is similar to the argument used in the proof of Lemma 2.2). We first rewrite
jA as

∧
i j(

∨
k Aik), where the main connective of the formulae Aik is either j or →. Since c(jA) = c(A),

the Aik whose main connective is → have complexities less than c(A): We let A′
ik be Aik for such Aik. The

Aik that are of the kind jA′
ik have complexity less or equal to c(A). According to (12), we have that jA is

logically equivalent to
∧

i j(
∨

k A
′
ik). We can repeat the above procedure until possible, i.e. until all the A′

ik

have complexity less than c(A). The procedure terminates because we can associate with any formula of
the kind

∧
i j(

∨
k Aik) the multiset of the numbers of the j operators occurring in the subformulae Aik.

Using the above lemma together with Lemmas 5.2 and 5.3, one can easily prove by induction the following
improvement of Theorem 5.4:

Proposition 5.6. If c(A) ≤ n, then A is ≤n-invariant. Vice versa, if A is ≤n-invariant, then there exists
A′ which is logically equivalent to A and is such that c(A′) ≤ n.

Proof. For the vice versa claim, take A′ to be the disjunction of the (finitely many) characteristic formulae
Xn

u , varying u among the models of A.
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6 On the extension property
A class K of lax models over the same set of atoms X is stable if u ∈ K implies up ∈ K for every point p
of u. Let ⟨K⟩n be the closure of K under ≤n, i.e. is the smallest ≤n-invariant class extending K.

Lemma 6.1. (see also [11], Lemma 3, page 870) Let K be a stable class of lax models over a finite set X
of atoms. If K has the extension property, so does ⟨K⟩2n+2 for every n ≥ 0.

Proof. Let u be such that up ∈ ⟨K⟩2n+2 for all nonroot p. We look for a variant of u belonging to ⟨K⟩2n+2.
By definition, every nonroot p is such that there is vp ∈ K such that up ≤2n+2 vp; as K is stable, for every
nonroot p there is wp ∈ K with

up ∼2n+1 wp, (13)

(wp will be a submodel of vp).
Take the model w0 given by the disjoint union of the models wp plus a root where every atom is false,

and the root belongs to Sw0
if and only if the root of u belongs to Su. A variant w′ of w0 belongs to K

since K has the extension property.
Define now a variant u′ of u by putting u′(ρ) = w′(ρ). Note that the root of u′ is in Su′ if and only

if the root of w′ is in Sw′ ; also u′(ρ) ⊆ u′(p) = u(p) for all nonroot p ∈ dom(u′) = dom(u) because
w′(ρ) ⊆ wp(ρ) = u(p), as up ∼0 wp.

It is enough to show that
u′ ≤2n+2 w′,

and by construction, it is sufficient to show

u′ ∼2n+1 w′,

(in particular, this implies u′ ≤2n+1 w′, as required by Definition 4.1, even case). So we prove that

u′ ∼k w′,

for all k = 0, . . . , 2n+ 1 by induction on k.
For k = 0, u′ ∼0 w′ holds by definition of u′. For k > 0 we must show (this is different from [11]):

(i) If k is even, for all p ∈ dom(u′) there is q ∈ dom(w′) with u′
p ∼k−1 w′

q;
(ii) If k is even, for all q ∈ dom(w′) there is p ∈ dom(u′) with u′

p ∼k−1 w′
q;

(iii) If k is odd, for all p ∈ Su′ there is q ∈ Sw′ with u′
p ≤k−1 w′

q;
(iv) If k is odd, for all q ∈ Sw′ there is p ∈ Su′ with u′

p ≤k−1 w′
q.

The case (i) follows by (13) and induction (induction is needed when p is the root). The case (ii) follows
again by induction when q is the root; if q is not the root, then q belongs to the domain of some wp̃ for
some p̃ ∈ dom(u′) different from the root. By (13), we have u′

p̃ = up̃ ∼2n+1 wq̃ = w′
q̃, where q̃ is the root of

wp̃. Then u′
p̃ ∼2n w′

q̃, so there is p in the domain of up̃ with w′
q ∼2n−1 u′

p. Since k is even, from k ≤ 2n+1,
we get k ≤ 2n and k − 1 ≤ 2n− 1, so we are done.

Consider the case (iii). So let k > 0 be even. Let us pick p ∈ Su′ and distinguish two subcases.
(iii.1) Suppose that p is the root of u′. If p is the root, since the root of w′ is in Sw′ , we have up =

u′ ∼k−1 w′ by induction and (iii) is satisfied.
(iii.2) Suppose instead that p is different from the root of u′; then, since u′

p = up ∼2n+1 wp by (13),
there is q ∈ Sw′ such that u′

p ≤2n w′
q and we are done since k − 1 ≤ 2n+ 1− 1 = 2n.

In the case (iv), we argue as in (iii.1) if q is the root of Sw′ ; if not, then q belongs to the domain
of some wp̃ for some p̃ ∈ dom(u′) different from the root. By (13), we have u′

p̃ = up̃ ∼2n+1 wq̃ = w′
q̃,

where q̃ is the root of wp̃. This implies that there is p ∈ Su′ such that u′
p ≤2n w′

q and we are done since
k − 1 ≤ 2n+ 1− 1 = 2n.

Summing up, u′ ≤2n+2 w′ and u′ ∈ ⟨K⟩2n+2. Hence ⟨K⟩2n+2 has the extension property.



72 S. Ghilardi, G. Lenzi

7 End of the proof
As in [11], given two models u, v on the same set of atoms X, we write u ∼∞ v if u ∼n v holds for every
n ≥ 0.

Lemma 7.1. For rooted finite models u, v on X, we have that u ∼∞ v if and only if for every p there is q
such that up ∼∞ vq and viceversa.

It follows that if u(ρ), v(ρ) both force the same atoms from X and both are in Su (resp. Sv) or both not
in Su (resp. Sv), then in order to conclude that u ∼∞ v holds, it is sufficient to show that for every nonroot
p there is q such that up ∼∞ vq and viceversa.

Proof. The claim is due to the fact that the domains of our models are finite. Thus u ∼2n+2 v for every
n ≥ 0 implies that for every p ∈ dom(u) there is q ∈ dom(v) such that up ∼2n+1 vq (and vice versa);
for infinitely many n, this q must be the same, thus there is q ∈ dom(v) (independent on n) such that
up ∼2n+1 vq (and vice versa). From up ∼2n+1 vq, since ∼2n ⊇∼2n+1, we also obtain up ∼2n vq for all n. In
conclusion, for every p there is q such that up ∼∞ vq and vice versa.

This proves the left-to-right part of the first claim; the right-to-left part of the first claim is proved by
showing that (under the assumptiom that for every p there is q such that up ∼∞ vq and vice versa) we have
that v ≤n u and u ≤n v hold for every n, by induction on n. Let us show for instance v ≤n u in the odd
n > 0 case: pick p ∈ Sv and consider q̃ ∈ Su such that vp ∼∞ uq̃. Then we have vp ≤n uq̃ and so there is
q ∈ Su such that vp ≤n−1 uq, as required.

To show the second claim, it is sufficient again to check by induction on n ≥ 0 that (under the hypotheses
of the claim) we have v ≤n u and u ≤n v.

Now the proof of Theorem 1.2 is concluded as follows.

Theorem 7.2. Each unifiable lax formula A(x) admits a finite complete set of unifiers.

Proof. Let A be ≤n-invariant with unifier σ : F (X) → F (Y ). Note that we can suppose n even and positive,
see Theorem 5.4.

As in [11], the theorem is proved once we find a projective formula B which is ≤n-invariant such that
B ⊢PLL A and σ is a unifier for B, because then σ would be less general than the mgu of B and the latter
would also be a unifier for A.

Define the set
K = {v model on X| there is u on Y s.t. v ∼∞ σ∗(u)}.

K is stable by Lemma 7.1 (recall the equalities σ∗(u)p = σ∗(up) coming from the definition of σ∗). We
show that K has the extension property.

Suppose v is a model on X such that vq ∈ K for every nonroot q. Let uq ∈ K such that σ∗(uq) ∼∞ vq.
Call u the disjoint sum of the uq plus a root where all the atoms are false, and the root is in Su if and only
if the root of v is in Sv.

Define a variant v′ of v by v′(ρ) = σ∗(u)(ρ). Note that the root of v′ is in Sv′ if and only if the root of
σ∗(u) is in Su = Sσ∗(u). By Lemma 7.1, we have v′ ∼∞ σ∗(u). So v′ ∈ K and K has the extension property.

Since n is even and positive, we can apply Lemma 6.1 to ⟨K⟩n. So ⟨K⟩n has the extension property and
has the form B∗ where B is ≤n-invariant and B is projective by Theorem 3.5. Since B is ≤n-invariant for
a fixed n, the search for B ranges over a finite set (recall that our n comes from the ≤n-invariance of A).

Moreover σ unifies B because for every lax model u on Y , we have σ∗(u) ∈ K ⊆ ⟨K⟩n = B∗, which
implies u ∈ (σ(B))∗ by (8) and (9): in other words, σ(B) is provable in PLL as (σ(B))∗ contains all models.

It remains to show that B ⊢PLL A. As σ unifies A we have σ∗(u) |= A for every lax model u on Y , so
K ⊆ A∗. But A is ≤n invariant, so ⟨K⟩n ⊆ A∗ and ⟨K⟩n = B∗ ⊆ A∗, that is B ⊢PLL A.

We notice that the finite complete set mentioned in Theorem 7.2 can be effectively computed. In fact,
given a formula A, we can easily compute an even number n such that A is ≤n-invariant (see Theorem 5.4).
Then one can go through the formulae which are ≤n-invariant (their representatives can be syntactically
enumerated via Proposition 5.6), select those which are projective and imply A and finally take their most
general unifiers (given by Theorem 3.5). This algorithm is quite heavy (actually non elementary), however
we believe that it can be improved along the lines of [13].



Unification in lax logic 73

Notice also that for projective formulae P1, P2, we have that the mgu θP1 of P1 is less general, as a
substitution, than the mgu of P2 iff ⊢PLL P1 → P2 (this is easily established, see in any case the argument
in [11]). Thus we can introduce the notion of a projective approximation [11, 12].

Given a formula A, a projective approximation of A is a finite set of projective formulae ΠA such that:

1. Every P ∈ ΠA implies A, i.e. ⊢PLL P → A;

2. If P1, P2 ∈ ΠA and ⊢PLL P1 → P2, then P1 = P2;

3. For every projective formula Q such that ⊢PLL Q → A, there is P ∈ ΠA such that ⊢PLL Q → P .

The content of the proof of Theorem 7.2 is that projective approximations exist, are computable for every
formula A and can be taken to be formed by formulae having the same even invariance as A;6 moreover,
every unifier of A is less general then the mgu of some P ∈ ΠA. In particular, A is unifiable iff it has a non
empty projective approximation.

Projective approximations can be used to decide admissibility of rules. An inference rule

from A infer B, (14)

is admissible iff every unifier of A is also a unifier of B (the rule is derivable iff ⊢PLL A → B).

Theorem 7.3. The inference rule (14) is admissible iff we have ⊢PLL P → B for every P ∈ ΠA.

Proof. Immediate from the above results and definitions (notice also that for a projective formula P , we
have that ⊢PLL P → B iff ⊢PLL θP (B), where θP is a projective unifier of P ).

As an example, notice that the inference rule

from jx infer x,

is admissible (and not derivable), because {x} is a projective approximation of jx, according to Proposi-
tion 3.7.

8 Conclusions
We have studied unification and admissibility for propositional lax logic (in the parameter-free case) and we
showed that this logic essentially behaves like intuitionistic logic. Although our approach closely follows [11]
and consequently gives a non elementary algorithm for admissibility, we are confident that an improved
calculus similar to that introduced in [13] should produce a more practical algorithm and that an optimal
coNExpPTime complexity bound should be available by applying the techniques from [18] (see also the
recent paper [20] for a deep picture concerning complexity results of unification and admissibility in various
modal logics, including the extensions where parameters are included).

Another interesting research direction would consist in designing analytic calculi for admissibility (in
the style of [23]) specific for lax logic.
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