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Abstract

Commutative bounded integral residuated lattices
(residutaed lattices, in short) form a large class of al-
gebras containing algebras which are algebraic counter-
parts of certain propositional fuzzy logics. The paper
deals with the so-called extended filters of filters of resid-
uated lattices. It is used the fact that the extended filters
of filters associated with subsets coincide with those as-
sociated ones with corresponding filters. This makes it
possible to investigate the set of all extended filters of
residuated lattices within the Heyting algebras of their
filters by means of the structural methods of the theory
of such algebras.
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1 Introduction
Extended filters associated with subsets of bounded commutative Rℓ- monoids (= bounded integral
commutative residuated lattices satisfying divisibility) have been introduced and investigated in
[8]. It was shown there that if M is an Rℓ-monoid and B is a subset of M , then the extended
filter of M associated with B coincides with the extended filter of M associated with the filter
⟨B⟩ of M generated by B. This gives us the opportunity to study, without loss of generality,
extended filters of Rℓ-monoids only within the (complete) lattices of their filters. It is known
that the lattices of filters and congruences of bounded Rℓ-monoids are mutually isomorphic, e.g.
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[9]. Moreover, the congruence lattices of bounded Rℓ-monoids are Heyting algebras because the
signature of Rℓ-monoids contains a lattice reduct. Hence the lattices of filters of Rℓ-monoids are
also Heyting algebras. Moreover, if M is an Rℓ-monoid, then in the lattice F(M) of filters of
M , extended filters associated with filters coincide with relative pseudocomplements in the lattice
F(M).

Therefore it is not necessary to prove some assertions concerning extended filters directly using
methods of the theory of Rℓ-monoids, e.g. [8], but it suffices to show that they are special properties
of Heyting algebras.

Similarly it is possible to apply properties of Heyting algebras to the lattices of filters of more
general residuated lattices.

Commutative bounded integral residuated lattices (residuated lattices, in short) form a large
class of algebras which contains e.g. algebras that are algebraic counterparts of some propositional
many-valued and fuzzy logics. We can consider as particular cases of residuated lattices: MTL-
algebras [5] that are algebras of the monoidal t-norm based logic, BL-algebras [7], i.e. algebras
of Hájek’s basic fuzzy logic, MV -algebras [2] that are an algebraic semantics of the Łukasiewicz
infinite valued logic. Moreover, Heyting algebras, i.e. algebras of the intuitionistic logic can be
also recognized as residuated lattices. Therefore residuated lattices can be considered as algebras
of the substructural logic FL, the more general logic that contains the mentioned non-classical
logics as particular cases [6]. The deductive systems of those logics correspond to filters of their
algebraic counterparts.

The main goal of the paper is to show that many of results concerning filters of all residuated
lattices can be also obtained as simple applications of appropriate properties of Heyting algebras.
In Section 2 we recall the notion of a commutative bounded integral residuated lattice (a residuated
lattice in short) as a common generalization of algebras of certain fuzzy logics.

In Section 3 we deal with extended filters of filters associated with subsets of residuated lattices.
We use the fact that if B is a subset of a residuated lattice M and F is a filter of M , then the
extended filter EF (B) associated with B coincides with the filter EF (⟨B⟩) associated with the filter
⟨B⟩ of M generated by B. This enables us to investigate, without loos of generality, only extended
filters associated with filters within the Heyting lattice F(M) of filters of M using the technique
of Heyting algebras. The properties of extended filters are then particular cases of properties of
Heyting algebras.

In Section 4 we investigate the sets of extended filters of type EF (K) where F and K are filters
of M and F or K are fixed. The results are again obtained as particular cases of those of Heyting
algebras.

2 Preliminaries
A commutative bounded integral residuated lattice is an algebra M = (M ; ⊙,∨,∧,→, 0, 1) of type
⟨2, 2, 2, 2, 0, 0⟩ satisfying the following conditions.

(i) (M ; ⊙, 1) is a commutative monoid.

(ii) (M ; ∨,∧, 0, 1) is a bounded lattice.

(iii) x⊙ y ≤ z if and only if x ≤ y → z, for any x, y, z ∈ M .

In what follows, by a residuated lattice we will mean a commutative bounded integral residuated
lattice.
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For any residuated lattice M we define the unary operation (negation) ”−” on M by
x− := x → 0 for any x ∈ M .

Recall that algebras of logics mentioned in Introduction are characterized in the class of resid-
uated lattices as follows:

A residuated lattice M is

(a) an MTL-algebra [5] if M satisfies the identity of pre-linearity

(iv) (x → y) ∨ (y → x) = 1;

(b) involutive if M satisfies the identity of double negation

(v) x−− = x;

(c) an Rℓ-monoid [4] (or a bounded commutative GBL-algebra [9]) if M satisfies the identity of
divisibility

(vi) (x → y)⊙ x = x ∧ y;

(d) a BL-algebra [7] if M satisfies both (a) and (c);

(e) an MV -algebra [2] if M is an involutive BL-algebra;

(f) a Heyting algebra [1] if the operations ”⊙” and ”∧” coincide on M .

Lemma 2.1. [3, 9] Let M be a residuated lattice. Then for any x, y, z ∈ M we have:

(i) x ≤ y =⇒ y− ≤ x−,

(ii) x⊙ y ≤ x ∧ y,

(iii) (x → y)⊙ x ≤ y,

(iv) x ≤ x−−,

(v) x−−− = x−,

(vi) x ≤ y =⇒ y → z ≤ x → z,

(vii) x ≤ y =⇒ z → x ≤ z → y,

(viii) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z),

(ix) x ∨ (y ⊙ z) ≥ (x ∨ y)⊙ (x ∨ z),

(x) x → (y → z) = (x⊙ y) → z.

Let M be a residuated lattice and ∅ ̸= F ⊆ M , then F is called a filter of M if for any x, y ∈ F
and z ∈ M :

1. x⊙ y ∈ F ;
2. x ≤ z imply z ∈ F.

Let D ⊆ M , then D is called a deductive system of M if
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3. 1 ∈ D;
4. x ∈ D, x → y ∈ D imply y ∈ D.

Proposition 2.2. Let M is a residuated lattice and ∅ ̸= H ⊆ M , then H is a filter of M if and
only if H is a deductive system.

Proof. Let H be a filter of M . obviously 1 ∈ H. Let x ∈ H, y ∈ M and x → y ∈ H. Then
(x → y)⊙ x ∈ H. Since (x → y)⊙ x ≤ y, we have y ∈ H.

Conversely, let H be a deductive system of M and x, y ∈ H. Then, by Lemma 2.1(x),
x → (y → (x ⊙ y)) = (x ⊙ y) → (x ⊙ y) = 1 ∈ H thus y → (x ⊙ y) ∈ H, therefore also
x⊙ y ∈ H. If x ∈ H, z ∈ M and x ≤ z, then x → z = 1 ∈ H, hence z ∈ H.

Denote by F(M) the set of all filters of a residuated lattice M . Then F(M) ordered by set
inclusion is a complete lattice in which infima are equal to the set intersections.

If B ⊆ M , denote by ⟨B⟩ the filter of M generated by B. Then for ∅ ̸= B ⊆ M we have

⟨B⟩ = {z ∈ M : z ≥ b1 ⊙ · · · ⊙ bn, where n ∈ N, b1, . . . , bn ∈ B}.

3 Extended filters
Extended filters of filters of Rℓ-monoids, i.e. of residuated lattices satisfying divisibility, have been
defined and studied in [8], using the direct methods of Rℓ-monoids. Here we generalize extended
filters of filters to arbitrary (commutative bounded integral) residuated lattices and show that
results concerning extended filters can be simply obtained as special cases of properties of Heyting
algebras.

In accordance with [8] we use the following denotation: If M is a residuated lattice, F ∈ F(M)
and B ⊆ M , put

EF (B) := {x ∈ M : x ∨ b ∈ F for every b ∈ B}.

Theorem 3.1. Let M be a residuated lattice, F ∈ F(M) and B ⊆ M . Then EF (B) ∈ F(M) and
F ⊆ EF (B).

Proof. For any b ∈ B, 1 ∨ b = 1 ∈ F , thus 1 ∈ EF (B).
Let x, x → y ∈ EF (B). Then (b ∨ x) ⊙ (b ∨ (x → y)) ≤ b ∨ (x ⊙ (x → y)) ≤ b ∨ y, hence

b ∨ y ∈ F for any b ∈ B, thus y ∈ EF (B). Therefore EF (B) ∈ F(M).
Let x ∈ F . Then x ∨ b ∈ F for every b ∈ B, hence x ∈ EF (B).

EF (B) will be called the extended filter of a filter F associated with a subset B.

Theorem 3.2. If M is a residuated lattice, B ⊆ M and ⟨B⟩ is the filter of M generated by B,
then EF (B) = EF (⟨B⟩) for any F ∈ F(M).

Proof. Let us show firstly that if F ∈ F(M) and B ⊆ C ⊆ M , then EF (C) ⊆ EF (B). Let
x ∈ EF (C). Then x ∨ c ∈ F for every c ∈ C, thus x ∨ b ∈ F for every b ∈ B, that means
x ∈ EF (B). Therefore EF (⟨B⟩) ⊆ EF (B) for any B ⊆ M .

Let now x ∈ EF (B), i.e. x ∨ b ∈ F for any b ∈ B. If z ∈ ⟨B⟩ then there are b1, . . . , bn ∈ B
such that z ≥ b1 ⊙ · · · ⊙ bn. Hence x ∨ z ≥ x ∨ (b1 ⊙ · · · ⊙ bn) ≥ (x ∨ b1)⊙ · · · ⊙ (x ∨ bn). Since
x ∨ bi ∈ F, i = 1, . . . , n, and F ∈ F(M), we get x ∨ z ∈ F . That means x ∈ EF (⟨B⟩).
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Recall the notions of pseudocomplemented lattices and Heyting algebras [1]. Let L be a lattice
with 0. An element a ∈ L is pseudocomplemented if there is a largest element in L which is disjoint
with a. If such an element exists, it is denoted by a∗ and is called the pseudocomplement of a.
That means a ∧ x = 0 iff x ≤ a∗, for each x ∈ L. A pseudocomplemented lattice is a lattice with
0 in which every element has a pseudocomplement. Let L be a lattice and a, b ∈ L. If there is a
largest x ∈ L such that a ∧ x ≤ b, then this element is denoted by a → b and is called the relative
pseudocomplement of a with respect to b. A Heyting algebra is a lattice with 0 in which a → b exists
for each a, b ∈ L. Heyting algebras satisfy the infinite distributive law: If L is a Heyting algebra,
{bi : i ∈ I} ⊆ L and

∨
i∈I

bi exists then for each a ∈ L,
∨
i∈I

(a ∧ bi) exists and a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi).

A Heyting algebra is called a relative Stone algebra if it satisfies the identity (x → y) ∨ (y →
x) = 1. We will say that a Heyting algebra is representable if it is a subdirect product of linearly
ordered Heyting algebra. By [10], every relative Stone algebra is representable.

Now we go back to extended filters of residuated lattices. Based on Theorem 3.2, in the sequel
we will investigate, without loss of generality, EF (B) only for B ∈ F(M).

The lattice F(M) is isomorphic to the congruence lattice on M which is, as the congruence
lattice on an algebra with underlying lattice reduct, a Heyting algebra, too. Moreover, it is easy
to check, that EF (K) = K → F , for every F,K ∈ F(M). Firstly, we show that K ∩ EF (K) ⊆ F .
If x ∈ K ∩ EF (K) than x ∨ x = x ∈ F . Further, let us assume K ∩X ⊆ F for some X ∈ F(M).
Then K ∩X ⊆ K ∩ F ⊆ K ∩ EF (K), by Theorem 3.1. It implies X ⊆ EF (K).

The following theorem contains a list of properties of extended filters of residuated lattices
which are direct consequences of corresponding ones for elements of Heyting algebras (see e.g. [1,
Theorem IX.3]).

Theorem 3.3. Let M be a residuated lattice and F, K, G, L, Fi, Ki ∈ F(M), i ∈ I. Then:

1. K ∩ EF (K) ⊆ F ;

2. K ⊆ EF (EF (K));

3. F ⊆ EF (K);

4. F ⊆ G =⇒ EF (K) ⊆ EG(K);

5. F ⊆ G =⇒ EK(G) ⊆ EK(F );

6. K ∩ EF (K) = K ∩ F ;

7. EF (K) = M ⇐⇒ K ⊆ F ;

8. EF (EF (G)) ∩ EF (G) = F ;

9. F ⊆ G =⇒ EF (G) ∩G = F ;

10. EF (EF (EF (K))) = EF (K);

11. K ⊆ L, EF (K) = F =⇒ EF (L) = F ;

12. EEM (L)(K) = EM (K ∩ L);

13. EEF (K)(L) = EEF (L)(K);
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14. EF (K) = F =⇒ EF (EF (K)) = M ;

15.
∩
i∈I

EFi(K) = E∩
{Fi: i∈I}(K);

16. EF

(∨
i∈I

Ki

)
=
∩
i∈I

EF (Ki).

Proof. As examples, we can verify, e.g., properties 8 and 15. For completeness we give also the
proofs of the corresponding assertions for Heyting algebras.

8. Let A be a Heyting algebra, x, y ∈ A. Then (x → y) → y ≥ y, x → y ≥ y, hence
((x → y) → y) ∧ (x → y) ≥ y. At the same time, by the definition of a Heyting algebra,
(x → y) ∧ ((x → y) → y) ≤ y. Thus ((x → y) → y) ∧ (x → y) = y.

Therefore, EF (EF (G)) ∩EF (G) = (EF (G) → F )∩EF (G) = ((G → F ) → F )∩ (G → F ) = F .
15. For Heyting algebras, which need not be complete, we prove a little more general assertion:

If A is a Heyting algebra, x, yi ∈ A, i ∈ I, and
∧
i∈I

yi exists, then
∧
i∈I

(x → yi) also exists and

x →
∧
i∈I

yi =
∧
i∈I

(x → yi).

We have x →
∧
i∈I

yi ≤ x → yj for each j ∈ I, and if z ∈ A is such that z ≤ x → yj , for each

j ∈ I, then x ∧ z ≤ yj , for each j ∈ I, hence z ≤ x →
∧
i∈I

yi, and so x →
∧
i∈I

yi =
∧
i∈I

(x → yi).

From this it follows immediately:
∩
i∈I

EFi(K) =
∩
i∈I

(K → Fi) = K →
∩
i∈I

Fi = E∩
{Fi: i∈I}(K).

4 Sets of extended filters with a fixed filter
Now we will deal with the sets EF (K) where F and K, respectively, are fixed.

Let A be a Heyting algebra and a ∈ A. Put

E(a) := {a → x : x ∈ A}.

In particular, if M is a residuated lattice and K ∈ F(M), then E(K) = {K → F : F ∈ F(M)} =
{EF (K) : F ∈ F(M)}.

Recall that if A is a Heyting algebra, a, xi ∈ A, i ∈ I and
∧
i∈I

xi exists, then
∧
i∈I

(a → xi) also

exists and ∧
i∈I

(a → xi) = a →
∧
i∈I

xi.

Therefore we obtain the following assertion.

Proposition 4.1. a) If A is a Heyting algebra, a ∈ A and xi ∈ E(a), i ∈ I, then
∧
i∈I

E(a)
xi exists

if and only if
∧
i∈I

Axi exists, and in such a case
∧
i∈I

E(a)
xi =

∧
i∈I

Axi.

b) If A is a complete Heyting algebra, then for any a ∈ A, E(a) is a complete lattice which is
a complete inf-subsemilattice of A.
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Theorem 4.2. If M is a residuated lattice and K ∈ F(M), then (E(K),⊆) is a complete lattice
which is a complete inf-subsemilattice of the lattice F(M).

Now we will describe a large class of residuated lattices M such that, for every K ∈ F(M), E(K)
is not only an inf-sublattice but also a sublattice of F(M).

Proposition 4.3. Every linearly ordered Heyting algebra satisfies the identity

x → (y ∨ z) = (x → y) ∨ (x → z). (1)

Proof. Let A be a linearly ordered Heyting algebra and x, y, z ∈ A.
a) If x ≤ y ≤ z, then x → (y ∨ z) = x → z = 1 and (x → y) ∨ (x → z) = 1 ∨ 1 = 1.
b) If y ≤ z ≤ x. Then x → (y∨z) = x → z and x → y ≤ x → z. So (x → y)∨(x → z) = x → z.
c) If z ≤ x ≤ y, then x → (y ∨ z) = x → y = 1, and (x → y) ∨ (x → z) = 1 ∨ (x → z) = 1.

Corollary 4.4. If A is a representable Heyting algebra or a relative Stone algebra then A satis-
fies (1).

Corollary 4.5. If A is a representable Heyting algebra or a relative Stone algebra, and a ∈ A,
then E(a) is a sublattice of A.

Theorem 4.6. If M is a residuated lattice such that F(M) is a representable Heyting algebra or
a relative Stone algebra and K ∈ F(M), then E(K) is a sublattice of the lattice F(M).

Let now A be a Heyting algebra and a ∈ A. Put Ea := {x → a : x ∈ A}. In particular, if M is
a residuated lattice and K ∈ F(M), then EK = {F → K : F ∈ F(M)} = {EF (K) : K ∈ F(M)}.

Recall that if A is a Heyting algebra, a ∈ A and xi ∈ E(a), i ∈ I, then
∧
i∈I

E(a)
xi exists if and

only if
∧
i∈I

Axi exists, and in such a case
∧
i∈I

E(a)
xi =

∧
i∈I

Axi.

Now consider the mapping φ : A −→ A such that φ(x) = (x → a) → a. Then for every
x, y ∈ A:

1. (x → a) → a ≥ x, thus x ≤ φ(x);

2. If x ≤ y, then x → a ≥ y → a, hence (x → a) → a ≤ (y → a) → a, and so φ(x) ≤ φ(y);

3. φ(φ(x)) = φ((x → a) → a) = (((x → a) → a) → a) → a = (x → a) → a = φ(x).

Hence φ is a closure operator on A and Ea is the set of closed elements with respect to φ.
From this we get the assertion concerning infima of arbitrary systems of elements in Ea.
The following assertion is now an immediate consequence.

Proposition 4.7. If A is a complete Heyting algebra and a ∈ A, then Ea is a complete lattice
which is a complete inf-subsemilattice of A.

Theorem 4.8. If M is a residuated lattice and K ∈ F(M), then EK is a complete inf-subsemilattice
of the lattice F(M).

Now we will show further properties of the sets Ea. If A is a pseudocomplemented distributive
lattice, denote by Reg(A) := {x ∈ A : x∗∗ = x}, the set of regular elements in A. By Glivenko’s
theorem, see e.g. [1], Reg(A) is a Boolean algebra with respect to the induced order.
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Proposition 4.9. If A is a Heyting algebra and a ∈ A, then Ea is a Boolean algebra with respect
to the induced order.

Proof. By [1, Theorem IX.28], the interval [a, 1] is a Heyting algebra, hence also a pseudo-
complemented distributive lattice. If x → a, where x ∈ A, is an arbitrary element in Ea,
then its pseudocomplement in [a, 1] is (x → a)∗ = (x → a) → a. Thus in [a, 1] we obtain
(x → a)∗∗ = ((x → a) → a) → a = x → a, and so x → a ∈ Reg([a, 1]).

Therefore by Glivenko’s theorem we get that Ea is a Boolean algebra with respect to the
induced order.

The following theorem is now an immediate consequence.

Theorem 4.10. If M is a residuated lattice and K ∈ F(M), then EK ordered by inclusion is
a Boolean algebra.

Proposition 4.11. Every linearly ordered Heyting algebra satisfies the identity

(y ∧ z) → x = (y → x) ∨ (z → x). (2)

Proof. Let A be a linearly ordered Heyting algebra and x, y, z ∈ A.
a) If x ≤ y ≤ z. Then (y∧z) → x = y → x and z → x ≤ y → x. So (y → x)∨(z → x) = y → x.
b) If y ≤ z ≤ x, then (y ∧ z) → x = y → x = 1 and (y → x) ∨ (z → x) = 1 ∨ 1 = 1.
c) If z ≤ x ≤ y. Then (y ∧ z) → x = z → x = 1 and (y → x) ∨ (z → x) = (y → x) ∨ 1 = 1.

Corollary 4.12. Every representable Heyting algebra satisfies (2).

Corollary 4.13. Every relative Stone algebra satisfies (2).

Corollary 4.14. If A is a relative Stone algebra, or a representable Heyting algebra, and a ∈ A,
then Ea is a sublattice of the lattice A.

Theorem 4.15. If M is a residuated lattice such that F(M) is a relative Stone algebra or a rep-
resentable Heyting algebra and K ∈ F(M), then EK is a sublattice of the lattice F(M).

From the other side, now we will show some classes of residuated lattice M that contain filters
K such that E(K) and EK , respectively, are not sublattices of F(M).

Proposition 4.16. Let A be a Heyting algebra such that the subset A \ {1} has a greatest element
a and let there exist b, c ∈ A such that b < a, c < a and b ∨ c = a. Then E(a) is not a sublattice
of A.

Proof. Let A contain such elements a, b and c. Then a → y = y for any y < a and a → a = 1 =
a → 1, hence a /∈ E(a), but b, c ∈ E(a). Therefore in the lattice E(a) we have b ∨E(a) c = 1, that
means E(a) is not a sublattice of A.

Example 4.17. Let M be the lattice in the following figure. Then M is a Heyting algebra with
the relative pseudocomplements in the following table.
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→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

b

b b

b

b

cb

a

1

0

If we put ⊙ = ∧, then M = (M ; ∨,∧,⊙,→, 0, 1) is a residuated lattice. Since the filters of
the residuated lattice M are precisely the lattice filters of M , we get F(M) = {F0, Fa, Fb, Fc, F1},
where F0 = M = {0, a, b, c, 1}, Fa = {a, b, c, 1}, Fb = {b, 1}, Fc = {c, 1}, F1 = {1}. Hence
the lattice F(M) is anti-isomorphic to the lattice M on the following figure:

b

b b

b

b

FcFb

F1

F0

Fa

Then we get E(Fa) = {F1, Fb, Fc, F0} and according to Proposition 4.16, E(Fa) is not a sub-
lattice of F(M).

Proposition 4.18. Let A be a Heyting algebra which contains elements a, b, c, d such that a <
b < d < 1, a < c < d < 1, b ∧ c = a, b ∨ c = d, d is the greatest element in A \ {1} and a is the
greatest element in A \ {b, c, d, 1}. Then Ea is not a sublattice of the lattice A.

Proof. Let A contain such elements a, b, c and d. Let z → a = d for some z ∈ A. Then z → a ̸= 1,
hence z ≰ a, and thus z ∈ {b, c, d, 1}. At the same time b → a = c, c → a = b, d → a = a, 1 →
a = a, a contradiction. Therefore d /∈ Ea, while b, c ∈ Ea. From this we get b ∨Ea c ̸= b ∨A c, and
so Ea is not a sublattice of the lattice A.

Example 4.19. Let M be again the residuated lattice from Example 4.17. Then
EF1 = {F1, Fb, Fc, F0}, and hence EF1 is not a sublattice of the lattice F(M).
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