Hyper BZ-algebras and semihypergroups

Document Type : Original Article


School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an, China


In this paper, we introduce the new concept of a hyper BZ-algebra which is a generalization of BZ-algebra and hyper BCI-algebra, and give some examples and basic properties. We discuss the relationships among hyper BZ-algebras, hyper BCC-algebras and hyper BCI-algebra. Moreover, we propose the concepts of anti-grouped hyper BZ-algebras and generalized anti-grouped hyper BZ-algebras, and prove that the following important results:
(1) Every anti-grouped hyper BZ-algebra is an anti-grouped BZ-algebra;
(2) Every generalized anti-grouped hyper BZ-algebra corresponds to a semihypergroup.
Finally, we present a method to construct a new hyper BZ-algebra by using a hyper BCC-algebra and a standard generalized anti-grouped hyper BZ-algebra.


[1] A. Ahadpanah, A. Borumand Saeid, Smarandache hyper BCC-algebra, Computers and Mathematics
with Applications, 61(9) (2011), 2490{2497.
[2] R.A. Borzooei, M. Aaly Kologani, An overview of hyper logical algebras, Journal of Algebraic
Hyperstructrues and Logical Algebras, 1(3) (2020), 31{50.
[3] R.A. Borzooei, W.A. Dudek, N. Koohestanki, On hyper BCC-algebras, International Journal
of Mathematics and Mathematical Sciences, 2006 (2006), DOI: 10.1155/IJMMS/2006/49703.
[4] R.A. Borzooei, B. Ganji Safar, R. Ameri, On hyper EQ-algebras, Italian Journal of Pure and
Applied Mathematics, 31 (2013), 77{96.
[5] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics,
Kluwer Academic Publishers, Dordrecht, 2003.
[6] B. Davvaz, Semihypergroup theory, Elsevier: Amsterdam, 2016.
[7] B. Davvaz, A. Dehghan Nezhad, M.M. Heidari, Inheritance examples of algebraic hyperstruc-
tures, Information Sciences, 224 (2013), 180{187.
[8] W.A. Dudek, Solid weak BCC-algebras, International Journal of Computer Mathematics,
88(14) (2011), 2915{2925.
[9] W.A. Dudek, J. Thomys, On some generalizations of BCC-algebras, International Journal of
Computer Mathematics, 89(12) (2012), 1596{1616.
[10] W.A. Dudek, X.H. Zhang, On ideals and congruence in BCC-algebras, Czechoslovak Mathematical
Journal, 48(123) (1998), 21{29.
[11] W.A. Dudek, X.H. Zhang, Y.Q.Wang, Ideals and atoms of BZ-algebras, Mathematica Slovaca,
59 (2009), 387{404.
[12] W. Huang, On BCI-algebras and semigroups, Mathematica Japonicae, 42 (1995), 59{64.
[13] Y.S. Huang, BCI-algebra, Science Press, Beijing, 2006.
[14] A. Iorgulescu, Implicative-groups vs. groups and generalizations, Bucuresti: Matrix Rom,
[15] Y.B. Jun, Multipolar fuzzy hyper BCK-ideals of hyper BCK-algebras, Journal of Algebraic
Hyperstructures and Logical Algebras, 1(1) (2020), 37{47.
[16] Y.B. Jun, M.S. Kang, H.S. Kim, Hyper MV-deductive systems of hyper MV-algebras, Communications
of the Korean Mathematical Society, 25(4) (2010), 537{545.
[17] Y.B. Jun, M.S. Kang, H.S. Kim, Bipolar fuzzy hyper BCK-ideals in hyper BCK-algebras,
Iranian Journal of Fuzzy Systems, 8(2) (2011), 105{120.
[18] Y.B. Jun, K.J. Lee, M.A.  Ozturk, Soft BCC-algebras, Journal of Applied Mathematics and
Informatics, 27(5-6) (2009), 1293{1305.
[19] Y.B. Jun, E.H. Roh, Fuzzy (weak) implicative hyper K-ideals, Bulletin of the Korean Mathematical
Society, 43(43) (2006), 141{148.
[20] Y.B. Jun, E.H. Roh, H. Harizavi, Hyper BCC-algebras, Honam Mathematical Journal, 28(1)
(2006), 57{67.
[21] Y.B. Jun, S.Z. Song, W.H. Shim, On implicative hyper K-ideals of hyper K-algebras, Scientiae
Mathematicae Japonicae, 59(3) (2004), 443{450.
[22] Y.B. Jun, X.L. Xin, Scalar elements and hyperatoms of hyper BCK-algebras, Scientiae Mathematicae,
2(3) (1999), 303{309.
[23] Y.B. Jun, X.L. Xin, E.H. Roh, A class of algebras related to BCI-algebras and semigroups,
Soochow Journal of Mathematics, 24(4) (1998), 309{321.
[24] Y.B. Jun, M.M. Zahedi, X.L. Xin, R.A. Borzooei, On hyper BCK-algebras, Italian Journal of
Pure and Applied Mathematics, 8 (2000), 127{136.
[25] Y.B. Jun, X.H. Zhang, General forms of BZ-ideals and T-ideals in BZ-algebras, Honam Mathematical
Journal, 30(2) (2008), 379{390.
[26] Y. Komori, The class of BCC-algebras is not a variety, Mathematica Japonica, 29(3) (1984),
[27] X.Y. Mao, H.J. Zhou, Classi cation of proper hyper BCI-algebras of order 3, Applied Mathematics
and Information Sciences, 9(1) (2015), 387{393.
[28] J. Meng, Y.B. Jun, BCK-algebras, Kyung Moon Sa Co. Seoul, Korea, 1994.
[29] J. Thomys, X.H. Zhang, On weak-BCC-algebras, The Scienti c World Journal, 2013, Article
ID 935097, 10 pages, http://dx.doi.org/10.1155/2013/935097.
[30] H.S. Wall, Hypergroups, American Journal of Mathematics, 59 (1937), 77{98.
[31] X.L. Xin, Hyper BCI-algebras, Discussiones Mathematicae, General Algebra and Applications,
26 (2006), 5{19.
[32] R.F. Ye, BZ-algebras, selected paper on BCI, BCK-algebra and computer logics (in Chinese),
Shanghai Jiaotong University Press, 1991, 25{27.
[33] X.H. Zhang, BCC-algebras and residuated partially-ordered groupoid, Mathematica Slovaca,
63(3) (2013), 397{410.
[34] X.H. Zhang, A survey of algebraic structures derived from non-classical logics, Journal of
Sichuan Normal University (Natural Science), 42(1) (2019), 1{14.
[35] X.H. Zhang, Y.B. Jun, Anti-grouped pseudo-BCI algebras and anti-grouped  lters, Fuzzy Systems
and Mathematics, 28(2) (2014), 21{33.
[36] X.H. Zhang, W.H. Li, On pseudo-BL algebras and BCC-algebras, Soft Computing, 10(10)
(2006), 941{952.
[37] X.H. Zhang, R.F. Ye, BZ-algebra and group, Journal of Mathematical and Physical Sciences,
29(5) (1995), 223{233.